Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Trends Mol Med ; 29(12): 996-1013, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37716905

RESUMEN

The PIDDosome is a multiprotein complex that includes p53-induced protein with a death domain 1 (PIDD1), receptor-interacting protein-associated ICH-1/CED-3 homologous protein with a death domain (RAIDD), and caspase-2, the activation of which is driven by PIDDosome assembly. In addition to the key role of the PIDDosome in the regulation of cell differentiation, tissue homeostasis, and organogenesis and regeneration, caspase-2, RAIDD and PIDD1 engagement in neuronal development was shown. Here, we focus on the involvement of PIDDosome components in neurodegenerative disorders, including retinal neuropathies, different types of brain damage, and Alzheimer's disease (AD), Huntington's disease (HD), and Lewy body disease. We also discuss pathogenic variants of PIDD1, RAIDD, and caspase-2 that are associated with intellectual, behavioral, and psychological abnormalities, together with prospective PIDDosome inhibition strategies and their potential clinical application.


Asunto(s)
Proteína Adaptadora de Señalización CRADD , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte , Humanos , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/genética , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Proteína Adaptadora de Señalización CRADD/metabolismo , Caspasa 2/genética , Caspasa 2/metabolismo , Estudios Prospectivos , Apoptosis/fisiología
2.
Biochem Biophys Res Commun ; 645: 147-153, 2023 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-36689811

RESUMEN

PIDDosome formation followed by caspase-2 activation is critical for genotoxic stress-induced apoptotic cell death. Failure of proper caspase-2 activation causes a neurodevelopmental disorder and intellectual disability. R815W, R862W, and Q863stop mutations in p53-induced protein with a death domain (PIDD), a component of the PIDDosome, also lead to this disorder. However, the molecular mechanisms underlying this pathogenesis remain elusive. In this study, we analyzed the molecular mechanisms underlying the pathogenesis of the PIDD DD pathogenic variants R815W, R862W, and Q863stop. We determined that these mutations prevented the interaction between PIDD and RIP-associated Ich-1/Ced-3 homologous protein with a death domain (RAIDD), a molecule that mediates PIDDosome formation. The disruption of this interaction affects PIDDosome formation and caspase-2 activation.


Asunto(s)
Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte , Trastornos del Neurodesarrollo , Humanos , Apoptosis/genética , Caspasa 2/genética , Caspasa 2/metabolismo , Proteína Adaptadora de Señalización CRADD/genética , Proteína Adaptadora de Señalización CRADD/metabolismo , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/genética , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Trastornos del Neurodesarrollo/genética
3.
Biochem Soc Trans ; 50(2): 813-824, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35343572

RESUMEN

The death fold domain-containing protein PIDD1 has recently attracted renewed attention as a regulator of the orphan cell death-related protease, Caspase-2. Caspase-2 can activate p53 to promote cell cycle arrest in response to centrosome aberrations, and its activation requires formation of the PIDDosome multi-protein complex containing multimers of PIDD1 and the adapter RAIDD/CRADD at its core. However, PIDD1 appears to be able to engage with multiple client proteins to promote an even broader range of biological responses, such as NF-κB activation, translesion DNA synthesis or cell death. PIDD1 shows features of inteins, a class of self-cleaving proteins, to create different polypeptides from a common precursor protein that allow it to serve these diverse functions. This review summarizes structural information and molecular features as well as recent experimental advances that highlight the potential pathophysiological roles of this unique death fold protein to highlight its drug-target potential.


Asunto(s)
Proteína Adaptadora de Señalización CRADD , Caspasa 2 , Apoptosis/fisiología , Proteína Adaptadora de Señalización CRADD/genética , Proteína Adaptadora de Señalización CRADD/metabolismo , Caspasa 2/genética , Caspasa 2/metabolismo , Caspasas/metabolismo , Puntos de Control del Ciclo Celular , Muerte Celular , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/genética , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Humanos , Inflamación
4.
Dev Cell ; 56(15): 2207-2222.e7, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34256011

RESUMEN

Cells counter DNA damage through repair or apoptosis, yet a direct mechanism for this choice has remained elusive. When facing interstrand crosslinks (ICLs), the ICL-repair protein FANCI heterodimerizes with FANCD2 to initiate ICL excision. We found that FANCI alternatively interacts with a pro-apoptotic factor, PIDD1, to enable PIDDosome (PIDD1-RAIDD-caspase-2) formation and apoptotic death. FANCI switches from FANCD2/repair to PIDD1/apoptosis signaling in the event of ICL-repair failure. Specifically, removing key endonucleases downstream of FANCI/FANCD2, increasing ICL levels, or allowing damaged cells into mitosis (when repair is suppressed) all suffice for switching. Reciprocally, apoptosis-committed FANCI reverts from PIDD1 to FANCD2 after a failed attempt to assemble the PIDDosome. Monoubiquitination and deubiquitination at FANCI K523 impact interactor selection. These data unveil a repair-or-apoptosis switch in eukaryotes. Beyond ensuring the removal of unrepaired genomes, the switch's bidirectionality reveals that damaged cells can offset apoptotic defects via de novo attempts at lesion repair.


Asunto(s)
Apoptosis/fisiología , Reparación del ADN/fisiología , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Animales , Proteína Adaptadora de Señalización CRADD/metabolismo , Línea Celular Tumoral , Cromatina/metabolismo , ADN/metabolismo , Daño del ADN/fisiología , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/fisiología , Proteínas del Grupo de Complementación de la Anemia de Fanconi/fisiología , Células HeLa , Humanos , Ubiquitinación , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
5.
Eur J Med Genet ; 64(4): 104181, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33647455

RESUMEN

In a consanguineous Pakistani kinship afflicted with mild to moderate intellectual disability (ID), mild lissencephaly, brain atrophy and skeletal anomalies, we detected homozygous CRADD c.2T > G (p.Met1?) and USP44 c.873_886delinsT (p.Leu291Phefs*8), two good candidates 1.85-Mb apart that segregated with the disorder. Biallelic damaging variants in CRADD cause recessive mental retardation-34 (MRT34; MIM 614499) with mild to moderate ID, "thin" lissencephaly, and variable megalencephaly and seizures. For USP44, only a single ID family has been reported with a homozygous deleterious variant, which is the same as the variant we detected. In affected individuals we present, at ages 29-32 years, clinical findings are similar yet not fully concordant with phenotypes for either gene considering the skeletal findings, and ID is not as severe as would be expected for defects in two genes with additive effect. Some variable CRADD-related features such as language impairment and seizures are not observed in the presented family. The presence of the two variants in the family is a very rare example of familial linked homozygous variants, and whether the damaging USP44 variant contributed to the disease in the family we present is not clear. As for the skeletal findings, facial dysmorphism and digestive problems, we did not find a candidate variant. This study is an example of both clinical variation and difficulty in variant detection and evaluation. Our findings highlight that even an extensive exome sequence analysis can fail to fully uncover the complex molecular basis of a syndrome even if potentially causative variants are identified.


Asunto(s)
Proteína Adaptadora de Señalización CRADD/genética , Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Lisencefalia/genética , Anomalías Musculoesqueléticas/genética , Estrabismo/genética , Ubiquitina Tiolesterasa/genética , Adulto , Consanguinidad , Discapacidades del Desarrollo/patología , Femenino , Humanos , Discapacidad Intelectual/patología , Lisencefalia/patología , Masculino , Anomalías Musculoesqueléticas/patología , Mutación , Linaje , Estrabismo/patología , Síndrome
6.
Transl Psychiatry ; 11(1): 1, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33414379

RESUMEN

PIDD1 encodes p53-Induced Death Domain protein 1, which acts as a sensor surveilling centrosome numbers and p53 activity in mammalian cells. Early results also suggest a role in DNA damage response where PIDD1 may act as a cell-fate switch, through interaction with RIP1 and NEMO/IKKg, activating NF-κB signaling for survival, or as an apoptosis-inducing protein by activating caspase-2. Biallelic truncating mutations in CRADD-the protein bridging PIDD1 and caspase-2-have been reported in intellectual disability (ID), and in a form of lissencephaly. Here, we identified five families with ID from Iran, Pakistan, and India, with four different biallelic mutations in PIDD1, all disrupting the Death Domain (DD), through which PIDD1 interacts with CRADD or RIP1. Nonsense mutations Gln863* and Arg637* directly disrupt the DD, as does a missense mutation, Arg815Trp. A homozygous splice mutation in the fifth family is predicted to disrupt splicing upstream of the DD, as confirmed using an exon trap. In HEK293 cells, we show that both Gln863* and Arg815Trp mutants fail to co-localize with CRADD, leading to its aggregation and mis-localization, and fail to co-precipitate CRADD. Using genome-edited cell lines, we show that these three PIDD1 mutations all cause loss of PIDDosome function. Pidd1 null mice show decreased anxiety, but no motor abnormalities. Together this indicates that PIDD1 mutations in humans may cause ID (and possibly lissencephaly) either through gain of function or secondarily, due to altered scaffolding properties, while complete loss of PIDD1, as modeled in mice, may be well tolerated or is compensated for.


Asunto(s)
Proteína Adaptadora de Señalización CRADD , Discapacidad Intelectual , Animales , Proteína Adaptadora de Señalización CRADD/genética , Proteína Adaptadora de Señalización CRADD/metabolismo , Caspasa 2/genética , Caspasa 2/metabolismo , Dominio de Muerte , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/genética , Células HEK293 , Humanos , India , Discapacidad Intelectual/genética , Ratones , Mutación
7.
EMBO J ; 40(4): e104844, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33350486

RESUMEN

Centrosome amplification results into genetic instability and predisposes cells to neoplastic transformation. Supernumerary centrosomes trigger p53 stabilization dependent on the PIDDosome (a multiprotein complex composed by PIDD1, RAIDD and Caspase-2), whose activation results in cleavage of p53's key inhibitor, MDM2. Here, we demonstrate that PIDD1 is recruited to mature centrosomes by the centriolar distal appendage protein ANKRD26. PIDDosome-dependent Caspase-2 activation requires not only PIDD1 centrosomal localization, but also its autoproteolysis. Following cytokinesis failure, supernumerary centrosomes form clusters, which appear to be necessary for PIDDosome activation. In addition, in the context of DNA damage, activation of the complex results from a p53-dependent elevation of PIDD1 levels independently of centrosome amplification. We propose that PIDDosome activation can in both cases be promoted by an ANKRD26-dependent local increase in PIDD1 concentration close to the centrosome. Collectively, these findings provide a paradigm for how centrosomes can contribute to cell fate determination by igniting a signalling cascade.


Asunto(s)
Proteína Adaptadora de Señalización CRADD/metabolismo , Caspasa 2/metabolismo , Centrosoma/metabolismo , Cisteína Endopeptidasas/metabolismo , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Regulación de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Células A549 , Proteína Adaptadora de Señalización CRADD/genética , Caspasa 2/genética , Diferenciación Celular , Cisteína Endopeptidasas/genética , Daño del ADN , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/genética , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Transducción de Señal , Proteína p53 Supresora de Tumor/genética
8.
Dev Cell ; 52(3): 335-349.e7, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-31983631

RESUMEN

E2F transcription factors control the cytokinesis machinery and thereby ploidy in hepatocytes. If or how these proteins limit proliferation of polyploid cells with extra centrosomes remains unknown. Here, we show that the PIDDosome, a signaling platform essential for caspase-2-activation, limits hepatocyte ploidy and is instructed by the E2F network to control p53 in the developing as well as regenerating liver. Casp2 and Pidd1 act as direct transcriptional targets of E2F1 and its antagonists, E2F7 and E2F8, that together co-regulate PIDDosome expression during juvenile liver growth and regeneration. Of note, whereas hepatocyte aneuploidy correlates with the basal ploidy state, the degree of aneuploidy itself is not limited by PIDDosome-dependent p53 activation. Finally, we provide evidence that the same signaling network is engaged to control ploidy in the human liver after resection. Our study defines the PIDDosome as a primary target to manipulate hepatocyte ploidy and proliferation rates in the regenerating liver.


Asunto(s)
Caspasa 2/fisiología , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/fisiología , Factores de Transcripción E2F/fisiología , Hepatocitos/citología , Regeneración Hepática , Poliploidía , Proteína p53 Supresora de Tumor/fisiología , Aneuploidia , Animales , Proteína Adaptadora de Señalización CRADD/fisiología , Centrosoma , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/fisiología , Citocinesis , Femenino , Hepatocitos/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados
9.
Eur J Hum Genet ; 27(8): 1235-1243, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30914828

RESUMEN

Intellectual disability (ID), megalencephaly, frontal predominant pachygyria, and seizures, previously called "thin" lissencephaly, are reported to be caused by recessive variants in CRADD. Among five families of different ethnicities identified, one homozygous missense variant, c.509G>A p.(Arg170His), was of Finnish ancestry. Here we report on the phenotypic variability associated for this potential CRADD founder variant in 22 Finnish individuals. Exome sequencing was used to identify candidate genes in Finnish patients presenting with ID. Targeted Sanger sequencing and restriction enzyme analysis were applied to screen for the c.509G>A CRADD variant in cohorts from Finland. Detailed phenotyping and genealogical studies were performed. Twenty two patients were identified with the c.509G>A p.(Arg170His) homozygous variant in CRADD. The majority of the ancestors originated from Northeastern Finland indicating a founder effect. The hallmark of the disease is frontotemporal predominant pachygyria with mild cortical thickening. All patients show ID of variable severity. Aggressive behavior was found in nearly half of the patients, EEG abnormalities in five patients and megalencephaly in three patients. This study provides detailed data about the phenotypic spectrum of patients with lissencephaly due to a CRADD variant that affects function. High inter- and intrafamilial phenotypic heterogeneity was identified in patients with pachygyria caused by the homozygous CRADD founder variant. The phenotype variability suggests that additional genetic and/or environmental factors play a role in the clinical presentation. Since frontotemporal pachygyria is the hallmark of the disease, brain imaging studies are essential to support the molecular diagnosis for individuals with ID and a CRADD variant.


Asunto(s)
Proteína Adaptadora de Señalización CRADD/genética , Efecto Fundador , Predisposición Genética a la Enfermedad/genética , Lisencefalia/genética , Mutación Missense , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Salud de la Familia , Femenino , Finlandia , Geografía , Homocigoto , Humanos , Lisencefalia/diagnóstico por imagen , Lisencefalia/patología , Imagen por Resonancia Magnética/métodos , Masculino , Linaje , Fenotipo , Secuenciación del Exoma
10.
Cell Death Dis ; 10(2): 102, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30718480

RESUMEN

Retinal ganglion cells (RGCs) undergo rapid cell death by apoptosis after injury but can be rescued by suppression of caspase-2 (CASP2) using an siRNA to CASP2 (siCASP2). Pigment epithelium-derived factor (PEDF), has neuroprotective and anti-angiogenic functions and protects RGC from death. The purpose of this study was to investigate if suppression of CASP2 is a possible mechanism of neuroprotection by PEDF in RGC. Adult rat retinal cells were treated in vitro with sub-optimal and optimal concentrations of siCASP2 and PEDF and levels of CASP2 mRNA and RGC survival were then quantified. Optic nerve crush (ONC) injury followed by intravitreal injections of siCASP2 or PEDF and eye drops of PEDF-34 were also used to determine CASP2 mRNA and protein reduction. Results showed that PEDF and PEDF-34 significantly suppressed CASP2 mRNA in culture, by 1.85- and 3.04-fold, respectively, and increased RGC survival by 63.2 ± 3.8% and 81.9 ± 6.6%, respectively compared to cells grown in Neurobasal-A alone. RGC survival was significantly reduced in glial proliferation inhibited and purified RGC cultures suggesting that some of the effects of PEDF were glia-mediated. In addition, intravitreal injection of PEDF and eye drops of PEDF-34 after ONC also suppressed CASP2 mRNA levels by 1.82- and 3.89-fold and cleaved caspase-2 (C-CASP2) protein levels by 4.98- and 8.93-fold compared to ONC + PBS vehicle groups, respectively, without affecting other executioner caspases. Treatment of retinal cultures with PEDF and PEDF-34 promoted the secretion of neurotrophic factors (NTF) into the culture media, of which brain-derived neurotrophic factor (BDNF) caused the greatest reduction in CASP2 mRNA and C-CASP2 protein. The neuroprotective effects of PEDF were blocked by a polyclonal antibody and PEDF suppressed key elements in the apoptotic pathway. In conclusion, this study shows that some of the RGC neuroprotective effects of PEDF is regulated through suppression of CASP2 and downstream apoptotic signalling molecules.


Asunto(s)
Caspasa 2/metabolismo , Proteínas del Ojo/farmacología , Factores de Crecimiento Nervioso/farmacología , Fármacos Neuroprotectores/farmacología , Células Ganglionares de la Retina/efectos de los fármacos , Serpinas/farmacología , Animales , Apoptosis/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína Adaptadora de Señalización CRADD/metabolismo , Caspasa 2/genética , Células Cultivadas , Proteínas del Ojo/metabolismo , Proteínas del Ojo/uso terapéutico , Femenino , Compresión Nerviosa , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/uso terapéutico , Neuroprotección , Fármacos Neuroprotectores/uso terapéutico , Traumatismos del Nervio Óptico/tratamiento farmacológico , Traumatismos del Nervio Óptico/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Retina/metabolismo , Células Ganglionares de la Retina/metabolismo , Serpinas/metabolismo , Serpinas/uso terapéutico
11.
Nat Commun ; 10(1): 410, 2019 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-30679432

RESUMEN

The contribution of de novo variants in severe intellectual disability (ID) has been extensively studied whereas the genetics of mild ID has been less characterized. To elucidate the genetics of milder ID we studied 442 ID patients enriched for mild ID (>50%) from a population isolate of Finland. Using exome sequencing, we show that rare damaging variants in known ID genes are observed significantly more often in severe (27%) than in mild ID (13%) patients. We further observe a significant enrichment of functional variants in genes not yet associated with ID (OR: 2.1). We show that a common variant polygenic risk significantly contributes to ID. The heritability explained by polygenic risk score is the highest for educational attainment (EDU) in mild ID (2.2%) but lower for more severe ID (0.6%). Finally, we identify a Finland enriched homozygote variant in the CRADD ID associated gene.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Variación Genética/genética , Genoma Humano/genética , Discapacidad Intelectual/epidemiología , Discapacidad Intelectual/genética , Proteína Adaptadora de Señalización CRADD/genética , Disfunción Cognitiva/epidemiología , Disfunción Cognitiva/genética , Estudios de Cohortes , Exoma , Femenino , Finlandia/epidemiología , Estudios de Asociación Genética , Enfermedades Genéticas Congénitas/epidemiología , Enfermedades Genéticas Congénitas/genética , Predisposición Genética a la Enfermedad , Geografía , Homocigoto , Humanos , Discapacidad Intelectual/diagnóstico , Masculino , Herencia Multifactorial , Mutación , Trastornos del Neurodesarrollo/epidemiología , Trastornos del Neurodesarrollo/genética , Patología Molecular , Prevalencia , Secuenciación del Exoma
12.
PLoS One ; 13(10): e0205042, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30281648

RESUMEN

Abnormal regulation of caspase-2-mediated neuronal cell death causes neurodegenerative diseases and defective brain development. PIDDosome is caspase-2 activating complex composed of PIDD, RAIDD, and caspase-2. Recent whole-exome sequencing study showed that the RAIDD mutations in the death domain (DD), including G128R, F164C, R170C, and R170H mutations, cause thin lissencephaly (TLIS) by reducing caspase-2-mediated neuronal apoptosis. Given that the molecular structure of the RAIDD DD:PIDD DD complex is available, in this study, we analyzed the molecular mechanisms underlying TLIS caused by the RAIDD TLIS variants by performing mutagenesis and biochemical assays.


Asunto(s)
Proteína Adaptadora de Señalización CRADD/genética , Lisencefalia/etiología , Lisencefalia/genética , Secuencia de Aminoácidos , Animales , Proteína Adaptadora de Señalización CRADD/química , Proteína Adaptadora de Señalización CRADD/metabolismo , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación Puntual , Dominios Proteicos
13.
Cell Death Dis ; 9(1): 13, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29317636

RESUMEN

Chronic lymphocytic leukaemia (CLL) is the most common B-cell malignancy with a variable clinical outcome. Biomarkers of CLL progression are required for optimising prognosis and therapy. The Inhibitor of Bruton's tyrosine kinase-isoform α (IBTKα) gene encodes a substrate receptor of Cullin 3-dependent E3 ubiquitin ligase, and promotes cell survival in response to the reticulum stress. Searching for novel markers of CLL progression, we analysed the expression of IBTKα in the peripheral blood B-cells of CLL patients, before and after first line therapy causing remission. The expression of IBTKα was significantly increased in disease progression, and decreased in remission after chemotherapy. Consistently with a pro-survival action, RNA interference of IBTKα increased the spontaneous and Fludarabine-induced apoptosis of MEC-1 CLL cells, and impaired the cell cycle of DeFew B-lymphoma cells by promoting the arrest in G0/G1 phase and apoptosis. Consistently, RNA interference of IBTKα up regulated the expression of pro-apoptotic genes, including TNF, CRADD, CASP7, BNIP3 and BIRC3. Our results indicate that IBTKα is a novel marker of CLL progression promoting cell growth and resistance to apoptosis. In this view, IBTKα may represent an attractive cancer drug target for counteracting the therapy-resistance of tumour cells.


Asunto(s)
Apoptosis , Proteínas Portadoras/metabolismo , Leucemia Linfocítica Crónica de Células B/patología , Proteínas Adaptadoras Transductoras de Señales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Linfocitos B/citología , Linfocitos B/metabolismo , Proteína Adaptadora de Señalización CRADD/genética , Proteína Adaptadora de Señalización CRADD/metabolismo , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Caspasa 7/genética , Caspasa 7/metabolismo , Resistencia a Antineoplásicos/genética , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Regulación hacia Arriba , Vidarabina/análogos & derivados , Vidarabina/farmacología , Vidarabina/uso terapéutico
14.
J Cell Sci ; 130(22): 3779-3787, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-29142064

RESUMEN

The PIDDosome is often used as the alias for a multi-protein complex that includes the p53-induced death domain protein 1 (PIDD1), the bipartite linker protein CRADD (also known as RAIDD) and the pro-form of an endopeptidase belonging to the caspase family, i.e. caspase-2. Yet, PIDD1 variants can also interact with a number of other proteins that include RIPK1 (also known as RIP1) and IKBKG (also known as NEMO), PCNA and RFC5, as well as nucleolar components such as NPM1 or NCL. This promiscuity in protein binding is facilitated mainly by autoprocessing of the full-length protein into various fragments that contain different structural domains. As a result, multiple responses can be mediated by protein complexes that contain a PIDD1 domain. This suggests that PIDD1 acts as an integrator for multiple types of stress that need instant attention. Examples are various types of DNA lesion but also the presence of extra centrosomes that can foster aneuploidy and, ultimately, promote DNA damage. Here, we review the role of PIDD1 in response to DNA damage and also highlight novel functions of PIDD1, such as in centrosome surveillance and scheduled polyploidisation as part of a cellular differentiation program during organogenesis.


Asunto(s)
Centrosoma/fisiología , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/fisiología , Animales , Apoptosis , Proteína Adaptadora de Señalización CRADD/fisiología , Caspasa 2/fisiología , Diferenciación Celular , Daño del ADN , Humanos , Complejos Multiproteicos/fisiología , Nucleofosmina , Poliploidía
15.
Am J Med Genet A ; 173(9): 2539-2544, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28686357

RESUMEN

Lissencephaly is a severe malformation of cortical development, most often attributed to abnormalities in neuronal migration. It is associated with a severe prognosis including developmental delay, intellectual disability, and seizures. Lissencephaly can be reliably diagnosed during late gestation by neurosonography or fetal magnetic resonance imaging (MRI). We report two sibling male fetuses who were diagnosed with delayed cortical sulcation highly suggestive of lissencephaly during late pregnancy. After receiving genetic counseling, the parents elected to terminate the pregnancies based on the neuroradiological findings and the associated severe prognosis. Whole exome sequencing (WES) of an affected fetus, and subsequent Sanger sequencing of the second fetus, revealed a homozygous frameshift variant in CRADD, which encodes an adaptor protein that interacts with PIDD and caspase-2 to initiate apoptosis. Biallelic variants in this gene have been recently reported to cause "thin" lissencephaly and intellectual disability. Interestingly, the allegedly healthy father was also found to be homozygous for the variant, prompting evaluation by brain MRI which revealed hypogyration. This study underscores the phenotypic variability of pathogenic variants in CRADD and the challenges of prenatal genetic counseling.


Asunto(s)
Apoptosis/genética , Proteína Adaptadora de Señalización CRADD/genética , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/genética , Lisencefalia/genética , Proteínas Adaptadoras Transductoras de Señales , Caspasa 2/genética , Exoma/genética , Femenino , Feto/diagnóstico por imagen , Feto/fisiopatología , Asesoramiento Genético , Homocigoto , Humanos , Lisencefalia/fisiopatología , Imagen por Resonancia Magnética , Masculino , Embarazo , Diagnóstico Prenatal
16.
J Cell Biol ; 216(6): 1795-1810, 2017 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-28432080

RESUMEN

The PIDDosome (PIDD-RAIDD-caspase-2 complex) is considered to be the primary signaling platform for caspase-2 activation in response to genotoxic stress. Yet studies of PIDD-deficient mice show that caspase-2 activation can proceed in the absence of PIDD. Here we show that DNA damage induces the assembly of at least two distinct activation platforms for caspase-2: a cytoplasmic platform that is RAIDD dependent but PIDD independent, and a nucleolar platform that requires both PIDD and RAIDD. Furthermore, the nucleolar phosphoprotein nucleophosmin (NPM1) acts as a scaffold for PIDD and is essential for PIDDosome assembly in the nucleolus after DNA damage. Inhibition of NPM1 impairs caspase-2 processing, apoptosis, and caspase-2-dependent inhibition of cell growth, demonstrating that the NPM1-dependent nucleolar PIDDosome is a key initiator of the caspase-2 activation cascade. Thus we have identified the nucleolus as a novel site for caspase-2 activation and function.


Asunto(s)
Apoptosis , Caspasa 2/metabolismo , Nucléolo Celular/enzimología , Cisteína Endopeptidasas/metabolismo , Daño del ADN , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Proteínas Nucleares/metabolismo , Animales , Proteína Adaptadora de Señalización CRADD/metabolismo , Caspasa 2/genética , Cisteína Endopeptidasas/genética , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/genética , Activación Enzimática , Genotipo , Células HEK293 , Células HeLa , Humanos , Ratones Noqueados , Microscopía Confocal , Microscopía Fluorescente , Microscopía por Video , Complejos Multiproteicos , Proteínas Nucleares/genética , Nucleofosmina , Fenotipo , Unión Proteica , Interferencia de ARN , Transducción de Señal , Transfección , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
17.
Oral Dis ; 23(5): 653-659, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28160766

RESUMEN

OBJECTIVE: In this study, we investigated the role of phenytoin (PHT) in death receptor-induced apoptosis of gingival fibroblasts to clarify the mechanism of PHT-induced gingival overgrowth. METHODS: Human gingival fibroblasts were cultured to semiconfluence and treated with PHT (0.025, 0.1, 0.25, and 1.0 µM) for 48 h, and then, the apoptotic cell numbers were relatively determined by absorptiometry. After 24 h of 0.25 µM PHT treatment, caspase activity was measured by absorptiometry, apoptotic and cell cycle phase distribution was analyzed by flow cytometry, expression levels of apoptotic genes were quantified by real-time qPCR, and expression of apoptotic proteins was detected by Western blot analysis. After 48 h of 0.25 µM PHT treatment, appearance of apoptotic cells was detected by TUNEL assay. RESULTS: PHT treatment decreased the proportion of apoptotic cells in gingival fibroblasts compared to a serum-free control culture in response to the protein changes as follows: PHT upregulated c-FLIP and, in turn, downregulated FADD, caspase-8, and caspase-3; PHT upregulated c-IAP2 and downregulated TRAF2; PHT downregulated caspase-9 and caspase-3 via decreased RIPK1 activity and increased Bcl-2 activity. CONCLUSION: PHT-induced gingival overgrowth may result from the above-mentioned mechanisms involving apoptosis inhibition in gingival fibroblasts.


Asunto(s)
Anticonvulsivantes/farmacología , Caspasas/metabolismo , Fenitoína/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Proteína 3 que Contiene Repeticiones IAP de Baculovirus/metabolismo , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/genética , Proteína Reguladora de Apoptosis Similar a CASP8 y FADD/metabolismo , Proteína Adaptadora de Señalización CRADD/genética , Células Cultivadas , Proteína de Dominio de Muerte Asociada a Fas/genética , Proteína de Dominio de Muerte Asociada a Fas/metabolismo , Fibroblastos , Expresión Génica , Encía/citología , Sobrecrecimiento Gingival/inducido químicamente , Humanos , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Factor 2 Asociado a Receptor de TNF/genética , Factor 2 Asociado a Receptor de TNF/metabolismo
18.
Genes Dev ; 31(1): 34-45, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28130345

RESUMEN

Centrosomes, the main microtubule-organizing centers in animal cells, are replicated exactly once during the cell division cycle to form the poles of the mitotic spindle. Supernumerary centrosomes can lead to aberrant cell division and have been causally linked to chromosomal instability and cancer. Here, we report that an increase in the number of mature centrosomes, generated by disrupting cytokinesis or forcing centrosome overduplication, triggers the activation of the PIDDosome multiprotein complex, leading to Caspase-2-mediated MDM2 cleavage, p53 stabilization, and p21-dependent cell cycle arrest. This pathway also restrains the extent of developmentally scheduled polyploidization by regulating p53 levels in hepatocytes during liver organogenesis. Taken together, the PIDDosome acts as a first barrier, engaging p53 to halt the proliferation of cells carrying more than one mature centrosome to maintain genome integrity.


Asunto(s)
Centrosoma/fisiología , Genes p53/genética , Complejos Multiproteicos/metabolismo , Activación Transcripcional/genética , Células A549 , Animales , Proteína Adaptadora de Señalización CRADD/metabolismo , Caspasa 2/metabolismo , Puntos de Control del Ciclo Celular/genética , Células Cultivadas , Centrosoma/patología , Citocinesis/genética , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Humanos , Hígado/citología , Hígado/embriología , Ratones , Organogénesis/genética
19.
Am J Hum Genet ; 99(5): 1117-1129, 2016 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-27773430

RESUMEN

Lissencephaly is a malformation of cortical development typically caused by deficient neuronal migration resulting in cortical thickening and reduced gyration. Here we describe a "thin" lissencephaly (TLIS) variant characterized by megalencephaly, frontal predominant pachygyria, intellectual disability, and seizures. Trio-based whole-exome sequencing and targeted re-sequencing identified recessive mutations of CRADD in six individuals with TLIS from four unrelated families of diverse ethnic backgrounds. CRADD (also known as RAIDD) is a death-domain-containing adaptor protein that oligomerizes with PIDD and caspase-2 to initiate apoptosis. TLIS variants cluster in the CRADD death domain, a platform for interaction with other death-domain-containing proteins including PIDD. Although caspase-2 is expressed in the developing mammalian brain, little is known about its role in cortical development. CRADD/caspase-2 signaling is implicated in neurotrophic factor withdrawal- and amyloid-ß-induced dendritic spine collapse and neuronal apoptosis, suggesting a role in cortical sculpting and plasticity. TLIS-associated CRADD variants do not disrupt interactions with caspase-2 or PIDD in co-immunoprecipitation assays, but still abolish CRADD's ability to activate caspase-2, resulting in reduced neuronal apoptosis in vitro. Homozygous Cradd knockout mice display megalencephaly and seizures without obvious defects in cortical lamination, supporting a role for CRADD/caspase-2 signaling in mammalian brain development. Megalencephaly and lissencephaly associated with defective programmed cell death from loss of CRADD function in humans implicate reduced apoptosis as an important pathophysiological mechanism of cortical malformation. Our data suggest that CRADD/caspase-2 signaling is critical for normal gyration of the developing human neocortex and for normal cognitive ability.


Asunto(s)
Apoptosis , Proteína Adaptadora de Señalización CRADD/genética , Caspasa 2/metabolismo , Cisteína Endopeptidasas/metabolismo , Lisencefalia/genética , Megalencefalia/genética , Neuronas/metabolismo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Caspasa 2/genética , Supervivencia Celular , Clonación Molecular , Cognición , Cisteína Endopeptidasas/genética , Células Dendríticas/metabolismo , Etnicidad/genética , Genes Recesivos , Estudio de Asociación del Genoma Completo , Células HEK293 , Humanos , Inmunoprecipitación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Células PC12 , Ratas , Transducción de Señal
20.
Cell Physiol Biochem ; 39(4): 1271-80, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27606466

RESUMEN

BACKGROUND/AIMS: Viral infections represent a global health problem with the need for new viral therapies and better understanding of the immune response during infection. The most immediate and potent anti-viral defense mechanism is the production of type I interferon (IFN-I) which are activated rapidly following recognition of viral infection by host pathogen recognition receptors (PRR). The mechanisms of innate cellular signaling downstream of PRR activation remain to be fully understood. In the present study, we demonstrate that CASP2 and RIPK1 domain-containing adaptor with death domain (CRADD/RAIDD) is a critical component in type I IFN production. METHODS: The role of RAIDD during IFN-I production was investigated using western blot, shRNA mediated lentiviral knockdown, immunoprecipitation and IFN-I driven dual luciferase assay. RESULTS: Immunoprecipitation analysis revealed the molecular interaction of RAIDD with interferon regulatory factor 7 (IRF7) and its phosphorylating kinase IKKε. Using an IFN-4α driven dual luciferase analysis in RAIDD deficient cells, type I IFN activation by IKKε and IRF7 was dramatically reduced. Furthermore, deletion of either the caspase recruitment domain (CARD) or death domain (DD) of RAIDD inhibited IKKε and IRF7 mediated interferon-4α activation. CONCLUSION: We have identified that the adaptor molecule RAIDD coordinates IKKε and IRF7 interaction to ensure efficient expression of type I interferon.


Asunto(s)
Proteína Adaptadora de Señalización CRADD/genética , Quinasa I-kappa B/genética , Factor 7 Regulador del Interferón/genética , Receptor Toll-Like 3/genética , Animales , Proteína Adaptadora de Señalización CRADD/inmunología , Dominio de Reclutamiento y Activación de Caspasas , Regulación de la Expresión Génica , Genes Reporteros , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Quinasa I-kappa B/inmunología , Factor 7 Regulador del Interferón/inmunología , Interferón-alfa/genética , Interferón-alfa/inmunología , Interferón beta/genética , Interferón beta/inmunología , Lentivirus/genética , Lentivirus/metabolismo , Luciferasas/genética , Luciferasas/metabolismo , Ratones , Plásmidos/química , Plásmidos/metabolismo , Poli I-C/farmacología , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Transducción de Señal , Receptor Toll-Like 3/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA