Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Trends Mol Med ; 29(12): 996-1013, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37716905

RESUMEN

The PIDDosome is a multiprotein complex that includes p53-induced protein with a death domain 1 (PIDD1), receptor-interacting protein-associated ICH-1/CED-3 homologous protein with a death domain (RAIDD), and caspase-2, the activation of which is driven by PIDDosome assembly. In addition to the key role of the PIDDosome in the regulation of cell differentiation, tissue homeostasis, and organogenesis and regeneration, caspase-2, RAIDD and PIDD1 engagement in neuronal development was shown. Here, we focus on the involvement of PIDDosome components in neurodegenerative disorders, including retinal neuropathies, different types of brain damage, and Alzheimer's disease (AD), Huntington's disease (HD), and Lewy body disease. We also discuss pathogenic variants of PIDD1, RAIDD, and caspase-2 that are associated with intellectual, behavioral, and psychological abnormalities, together with prospective PIDDosome inhibition strategies and their potential clinical application.


Asunto(s)
Proteína Adaptadora de Señalización CRADD , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte , Humanos , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/genética , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Proteína Adaptadora de Señalización CRADD/metabolismo , Caspasa 2/genética , Caspasa 2/metabolismo , Estudios Prospectivos , Apoptosis/fisiología
2.
Biochem Biophys Res Commun ; 645: 147-153, 2023 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-36689811

RESUMEN

PIDDosome formation followed by caspase-2 activation is critical for genotoxic stress-induced apoptotic cell death. Failure of proper caspase-2 activation causes a neurodevelopmental disorder and intellectual disability. R815W, R862W, and Q863stop mutations in p53-induced protein with a death domain (PIDD), a component of the PIDDosome, also lead to this disorder. However, the molecular mechanisms underlying this pathogenesis remain elusive. In this study, we analyzed the molecular mechanisms underlying the pathogenesis of the PIDD DD pathogenic variants R815W, R862W, and Q863stop. We determined that these mutations prevented the interaction between PIDD and RIP-associated Ich-1/Ced-3 homologous protein with a death domain (RAIDD), a molecule that mediates PIDDosome formation. The disruption of this interaction affects PIDDosome formation and caspase-2 activation.


Asunto(s)
Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte , Trastornos del Neurodesarrollo , Humanos , Apoptosis/genética , Caspasa 2/genética , Caspasa 2/metabolismo , Proteína Adaptadora de Señalización CRADD/genética , Proteína Adaptadora de Señalización CRADD/metabolismo , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/genética , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Trastornos del Neurodesarrollo/genética
3.
Biochem Soc Trans ; 50(2): 813-824, 2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35343572

RESUMEN

The death fold domain-containing protein PIDD1 has recently attracted renewed attention as a regulator of the orphan cell death-related protease, Caspase-2. Caspase-2 can activate p53 to promote cell cycle arrest in response to centrosome aberrations, and its activation requires formation of the PIDDosome multi-protein complex containing multimers of PIDD1 and the adapter RAIDD/CRADD at its core. However, PIDD1 appears to be able to engage with multiple client proteins to promote an even broader range of biological responses, such as NF-κB activation, translesion DNA synthesis or cell death. PIDD1 shows features of inteins, a class of self-cleaving proteins, to create different polypeptides from a common precursor protein that allow it to serve these diverse functions. This review summarizes structural information and molecular features as well as recent experimental advances that highlight the potential pathophysiological roles of this unique death fold protein to highlight its drug-target potential.


Asunto(s)
Proteína Adaptadora de Señalización CRADD , Caspasa 2 , Apoptosis/fisiología , Proteína Adaptadora de Señalización CRADD/genética , Proteína Adaptadora de Señalización CRADD/metabolismo , Caspasa 2/genética , Caspasa 2/metabolismo , Caspasas/metabolismo , Puntos de Control del Ciclo Celular , Muerte Celular , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/genética , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Humanos , Inflamación
4.
Dev Cell ; 56(15): 2207-2222.e7, 2021 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-34256011

RESUMEN

Cells counter DNA damage through repair or apoptosis, yet a direct mechanism for this choice has remained elusive. When facing interstrand crosslinks (ICLs), the ICL-repair protein FANCI heterodimerizes with FANCD2 to initiate ICL excision. We found that FANCI alternatively interacts with a pro-apoptotic factor, PIDD1, to enable PIDDosome (PIDD1-RAIDD-caspase-2) formation and apoptotic death. FANCI switches from FANCD2/repair to PIDD1/apoptosis signaling in the event of ICL-repair failure. Specifically, removing key endonucleases downstream of FANCI/FANCD2, increasing ICL levels, or allowing damaged cells into mitosis (when repair is suppressed) all suffice for switching. Reciprocally, apoptosis-committed FANCI reverts from PIDD1 to FANCD2 after a failed attempt to assemble the PIDDosome. Monoubiquitination and deubiquitination at FANCI K523 impact interactor selection. These data unveil a repair-or-apoptosis switch in eukaryotes. Beyond ensuring the removal of unrepaired genomes, the switch's bidirectionality reveals that damaged cells can offset apoptotic defects via de novo attempts at lesion repair.


Asunto(s)
Apoptosis/fisiología , Reparación del ADN/fisiología , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Animales , Proteína Adaptadora de Señalización CRADD/metabolismo , Línea Celular Tumoral , Cromatina/metabolismo , ADN/metabolismo , Daño del ADN/fisiología , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/fisiología , Proteínas del Grupo de Complementación de la Anemia de Fanconi/fisiología , Células HeLa , Humanos , Ubiquitinación , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
5.
Transl Psychiatry ; 11(1): 1, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33414379

RESUMEN

PIDD1 encodes p53-Induced Death Domain protein 1, which acts as a sensor surveilling centrosome numbers and p53 activity in mammalian cells. Early results also suggest a role in DNA damage response where PIDD1 may act as a cell-fate switch, through interaction with RIP1 and NEMO/IKKg, activating NF-κB signaling for survival, or as an apoptosis-inducing protein by activating caspase-2. Biallelic truncating mutations in CRADD-the protein bridging PIDD1 and caspase-2-have been reported in intellectual disability (ID), and in a form of lissencephaly. Here, we identified five families with ID from Iran, Pakistan, and India, with four different biallelic mutations in PIDD1, all disrupting the Death Domain (DD), through which PIDD1 interacts with CRADD or RIP1. Nonsense mutations Gln863* and Arg637* directly disrupt the DD, as does a missense mutation, Arg815Trp. A homozygous splice mutation in the fifth family is predicted to disrupt splicing upstream of the DD, as confirmed using an exon trap. In HEK293 cells, we show that both Gln863* and Arg815Trp mutants fail to co-localize with CRADD, leading to its aggregation and mis-localization, and fail to co-precipitate CRADD. Using genome-edited cell lines, we show that these three PIDD1 mutations all cause loss of PIDDosome function. Pidd1 null mice show decreased anxiety, but no motor abnormalities. Together this indicates that PIDD1 mutations in humans may cause ID (and possibly lissencephaly) either through gain of function or secondarily, due to altered scaffolding properties, while complete loss of PIDD1, as modeled in mice, may be well tolerated or is compensated for.


Asunto(s)
Proteína Adaptadora de Señalización CRADD , Discapacidad Intelectual , Animales , Proteína Adaptadora de Señalización CRADD/genética , Proteína Adaptadora de Señalización CRADD/metabolismo , Caspasa 2/genética , Caspasa 2/metabolismo , Dominio de Muerte , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/genética , Células HEK293 , Humanos , India , Discapacidad Intelectual/genética , Ratones , Mutación
6.
EMBO J ; 40(4): e104844, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33350486

RESUMEN

Centrosome amplification results into genetic instability and predisposes cells to neoplastic transformation. Supernumerary centrosomes trigger p53 stabilization dependent on the PIDDosome (a multiprotein complex composed by PIDD1, RAIDD and Caspase-2), whose activation results in cleavage of p53's key inhibitor, MDM2. Here, we demonstrate that PIDD1 is recruited to mature centrosomes by the centriolar distal appendage protein ANKRD26. PIDDosome-dependent Caspase-2 activation requires not only PIDD1 centrosomal localization, but also its autoproteolysis. Following cytokinesis failure, supernumerary centrosomes form clusters, which appear to be necessary for PIDDosome activation. In addition, in the context of DNA damage, activation of the complex results from a p53-dependent elevation of PIDD1 levels independently of centrosome amplification. We propose that PIDDosome activation can in both cases be promoted by an ANKRD26-dependent local increase in PIDD1 concentration close to the centrosome. Collectively, these findings provide a paradigm for how centrosomes can contribute to cell fate determination by igniting a signalling cascade.


Asunto(s)
Proteína Adaptadora de Señalización CRADD/metabolismo , Caspasa 2/metabolismo , Centrosoma/metabolismo , Cisteína Endopeptidasas/metabolismo , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Regulación de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Células A549 , Proteína Adaptadora de Señalización CRADD/genética , Caspasa 2/genética , Diferenciación Celular , Cisteína Endopeptidasas/genética , Daño del ADN , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/genética , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Transducción de Señal , Proteína p53 Supresora de Tumor/genética
7.
Cell Death Dis ; 10(2): 102, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30718480

RESUMEN

Retinal ganglion cells (RGCs) undergo rapid cell death by apoptosis after injury but can be rescued by suppression of caspase-2 (CASP2) using an siRNA to CASP2 (siCASP2). Pigment epithelium-derived factor (PEDF), has neuroprotective and anti-angiogenic functions and protects RGC from death. The purpose of this study was to investigate if suppression of CASP2 is a possible mechanism of neuroprotection by PEDF in RGC. Adult rat retinal cells were treated in vitro with sub-optimal and optimal concentrations of siCASP2 and PEDF and levels of CASP2 mRNA and RGC survival were then quantified. Optic nerve crush (ONC) injury followed by intravitreal injections of siCASP2 or PEDF and eye drops of PEDF-34 were also used to determine CASP2 mRNA and protein reduction. Results showed that PEDF and PEDF-34 significantly suppressed CASP2 mRNA in culture, by 1.85- and 3.04-fold, respectively, and increased RGC survival by 63.2 ± 3.8% and 81.9 ± 6.6%, respectively compared to cells grown in Neurobasal-A alone. RGC survival was significantly reduced in glial proliferation inhibited and purified RGC cultures suggesting that some of the effects of PEDF were glia-mediated. In addition, intravitreal injection of PEDF and eye drops of PEDF-34 after ONC also suppressed CASP2 mRNA levels by 1.82- and 3.89-fold and cleaved caspase-2 (C-CASP2) protein levels by 4.98- and 8.93-fold compared to ONC + PBS vehicle groups, respectively, without affecting other executioner caspases. Treatment of retinal cultures with PEDF and PEDF-34 promoted the secretion of neurotrophic factors (NTF) into the culture media, of which brain-derived neurotrophic factor (BDNF) caused the greatest reduction in CASP2 mRNA and C-CASP2 protein. The neuroprotective effects of PEDF were blocked by a polyclonal antibody and PEDF suppressed key elements in the apoptotic pathway. In conclusion, this study shows that some of the RGC neuroprotective effects of PEDF is regulated through suppression of CASP2 and downstream apoptotic signalling molecules.


Asunto(s)
Caspasa 2/metabolismo , Proteínas del Ojo/farmacología , Factores de Crecimiento Nervioso/farmacología , Fármacos Neuroprotectores/farmacología , Células Ganglionares de la Retina/efectos de los fármacos , Serpinas/farmacología , Animales , Apoptosis/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína Adaptadora de Señalización CRADD/metabolismo , Caspasa 2/genética , Células Cultivadas , Proteínas del Ojo/metabolismo , Proteínas del Ojo/uso terapéutico , Femenino , Compresión Nerviosa , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/uso terapéutico , Neuroprotección , Fármacos Neuroprotectores/uso terapéutico , Traumatismos del Nervio Óptico/tratamiento farmacológico , Traumatismos del Nervio Óptico/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Retina/metabolismo , Células Ganglionares de la Retina/metabolismo , Serpinas/metabolismo , Serpinas/uso terapéutico
8.
PLoS One ; 13(10): e0205042, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30281648

RESUMEN

Abnormal regulation of caspase-2-mediated neuronal cell death causes neurodegenerative diseases and defective brain development. PIDDosome is caspase-2 activating complex composed of PIDD, RAIDD, and caspase-2. Recent whole-exome sequencing study showed that the RAIDD mutations in the death domain (DD), including G128R, F164C, R170C, and R170H mutations, cause thin lissencephaly (TLIS) by reducing caspase-2-mediated neuronal apoptosis. Given that the molecular structure of the RAIDD DD:PIDD DD complex is available, in this study, we analyzed the molecular mechanisms underlying TLIS caused by the RAIDD TLIS variants by performing mutagenesis and biochemical assays.


Asunto(s)
Proteína Adaptadora de Señalización CRADD/genética , Lisencefalia/etiología , Lisencefalia/genética , Secuencia de Aminoácidos , Animales , Proteína Adaptadora de Señalización CRADD/química , Proteína Adaptadora de Señalización CRADD/metabolismo , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación Puntual , Dominios Proteicos
9.
Cell Death Dis ; 9(1): 13, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29317636

RESUMEN

Chronic lymphocytic leukaemia (CLL) is the most common B-cell malignancy with a variable clinical outcome. Biomarkers of CLL progression are required for optimising prognosis and therapy. The Inhibitor of Bruton's tyrosine kinase-isoform α (IBTKα) gene encodes a substrate receptor of Cullin 3-dependent E3 ubiquitin ligase, and promotes cell survival in response to the reticulum stress. Searching for novel markers of CLL progression, we analysed the expression of IBTKα in the peripheral blood B-cells of CLL patients, before and after first line therapy causing remission. The expression of IBTKα was significantly increased in disease progression, and decreased in remission after chemotherapy. Consistently with a pro-survival action, RNA interference of IBTKα increased the spontaneous and Fludarabine-induced apoptosis of MEC-1 CLL cells, and impaired the cell cycle of DeFew B-lymphoma cells by promoting the arrest in G0/G1 phase and apoptosis. Consistently, RNA interference of IBTKα up regulated the expression of pro-apoptotic genes, including TNF, CRADD, CASP7, BNIP3 and BIRC3. Our results indicate that IBTKα is a novel marker of CLL progression promoting cell growth and resistance to apoptosis. In this view, IBTKα may represent an attractive cancer drug target for counteracting the therapy-resistance of tumour cells.


Asunto(s)
Apoptosis , Proteínas Portadoras/metabolismo , Leucemia Linfocítica Crónica de Células B/patología , Proteínas Adaptadoras Transductoras de Señales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Linfocitos B/citología , Linfocitos B/metabolismo , Proteína Adaptadora de Señalización CRADD/genética , Proteína Adaptadora de Señalización CRADD/metabolismo , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Caspasa 7/genética , Caspasa 7/metabolismo , Resistencia a Antineoplásicos/genética , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Regulación hacia Arriba , Vidarabina/análogos & derivados , Vidarabina/farmacología , Vidarabina/uso terapéutico
10.
J Cell Biol ; 216(6): 1795-1810, 2017 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-28432080

RESUMEN

The PIDDosome (PIDD-RAIDD-caspase-2 complex) is considered to be the primary signaling platform for caspase-2 activation in response to genotoxic stress. Yet studies of PIDD-deficient mice show that caspase-2 activation can proceed in the absence of PIDD. Here we show that DNA damage induces the assembly of at least two distinct activation platforms for caspase-2: a cytoplasmic platform that is RAIDD dependent but PIDD independent, and a nucleolar platform that requires both PIDD and RAIDD. Furthermore, the nucleolar phosphoprotein nucleophosmin (NPM1) acts as a scaffold for PIDD and is essential for PIDDosome assembly in the nucleolus after DNA damage. Inhibition of NPM1 impairs caspase-2 processing, apoptosis, and caspase-2-dependent inhibition of cell growth, demonstrating that the NPM1-dependent nucleolar PIDDosome is a key initiator of the caspase-2 activation cascade. Thus we have identified the nucleolus as a novel site for caspase-2 activation and function.


Asunto(s)
Apoptosis , Caspasa 2/metabolismo , Nucléolo Celular/enzimología , Cisteína Endopeptidasas/metabolismo , Daño del ADN , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Proteínas Nucleares/metabolismo , Animales , Proteína Adaptadora de Señalización CRADD/metabolismo , Caspasa 2/genética , Cisteína Endopeptidasas/genética , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/genética , Activación Enzimática , Genotipo , Células HEK293 , Células HeLa , Humanos , Ratones Noqueados , Microscopía Confocal , Microscopía Fluorescente , Microscopía por Video , Complejos Multiproteicos , Proteínas Nucleares/genética , Nucleofosmina , Fenotipo , Unión Proteica , Interferencia de ARN , Transducción de Señal , Transfección , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
11.
Genes Dev ; 31(1): 34-45, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28130345

RESUMEN

Centrosomes, the main microtubule-organizing centers in animal cells, are replicated exactly once during the cell division cycle to form the poles of the mitotic spindle. Supernumerary centrosomes can lead to aberrant cell division and have been causally linked to chromosomal instability and cancer. Here, we report that an increase in the number of mature centrosomes, generated by disrupting cytokinesis or forcing centrosome overduplication, triggers the activation of the PIDDosome multiprotein complex, leading to Caspase-2-mediated MDM2 cleavage, p53 stabilization, and p21-dependent cell cycle arrest. This pathway also restrains the extent of developmentally scheduled polyploidization by regulating p53 levels in hepatocytes during liver organogenesis. Taken together, the PIDDosome acts as a first barrier, engaging p53 to halt the proliferation of cells carrying more than one mature centrosome to maintain genome integrity.


Asunto(s)
Centrosoma/fisiología , Genes p53/genética , Complejos Multiproteicos/metabolismo , Activación Transcripcional/genética , Células A549 , Animales , Proteína Adaptadora de Señalización CRADD/metabolismo , Caspasa 2/metabolismo , Puntos de Control del Ciclo Celular/genética , Células Cultivadas , Centrosoma/patología , Citocinesis/genética , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Humanos , Hígado/citología , Hígado/embriología , Ratones , Organogénesis/genética
12.
Dokl Biochem Biophys ; 467(1): 132-5, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27193717

RESUMEN

The mechanism of caspase-2 activation in response to DNA damage was studied using human ovarian cancer cells Caov-4 treated with chemotherapeutic agent cisplatin. It was shown that mutations of the three cleavage sites of caspase-2 do not affect the assembly of the macromolecular complex of caspase-2 and its activation, but, conversely, stabilize this complex, most likely, via the inhibition of the dissociation of the active caspase-2.


Asunto(s)
Caspasa 2/metabolismo , Cisteína Endopeptidasas/metabolismo , Daño del ADN/fisiología , Antineoplásicos/farmacología , Western Blotting , Proteína Adaptadora de Señalización CRADD/metabolismo , Caspasa 2/genética , Inhibidores de Caspasas/farmacología , Línea Celular Tumoral , Cisplatino/farmacología , Cisteína Endopeptidasas/genética , Daño del ADN/efectos de los fármacos , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Relación Dosis-Respuesta a Droga , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Inmunoprecipitación , Mutación , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/enzimología , Proteolisis , Transfección
13.
Cell Death Differ ; 22(11): 1803-11, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25857265

RESUMEN

The receptor-interacting protein-associated ICH-1/CED-3 homologous protein with a death domain (RAIDD/CRADD) functions as a dual adaptor and is a constituent of different multi-protein complexes implicated in the regulation of inflammation and cell death. Within the PIDDosome complex, RAIDD connects the cell death-related protease, Caspase-2, with the p53-induced protein with a death domain 1 (PIDD1). As such, RAIDD has been implicated in DNA-damage-induced apoptosis as well as in tumorigenesis. As loss of Caspase-2 leads to an acceleration of tumor onset in the Eµ-Myc mouse lymphoma model, whereas loss of Pidd1 actually delays onset of this disease, we set out to interrogate the role of Raidd in cancer in more detail. Our data obtained analyzing Eµ-Myc/Raidd(-/-) mice indicate that Raidd is unable to protect from c-Myc-driven lymphomagenesis. Similarly, we failed to observe a modulatory effect of Raidd deficiency on DNA-damage-driven cancer. The role of Caspase-2 as a tumor suppressor and that of Pidd1 as a tumor promoter can therefore be uncoupled from their ability to interact with the Raidd scaffold, pointing toward the existence of alternative signaling modules engaging these two proteins in this context.


Asunto(s)
Proteína Adaptadora de Señalización CRADD/metabolismo , Caspasa 2/metabolismo , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Proteína Adaptadora de Señalización CRADD/genética , Caspasa 2/genética , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Supervivencia Celular/genética , Supervivencia Celular/efectos de la radiación , Células Cultivadas , Daño del ADN/genética , Daño del ADN/efectos de la radiación , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/genética , Fibrosarcoma/genética , Fibrosarcoma/metabolismo , Ratones , Proteínas Proto-Oncogénicas c-myc/genética
15.
J Mol Biol ; 427(4): 737-752, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25528640

RESUMEN

Homotypic death domain (DD)-DD interactions are important in the assembly of oligomeric signaling complexes such as the PIDDosome that acts as a platform for activation of caspase-2-dependent apoptotic signaling. The structure of the PIDDosome core complex exhibits an asymmetric three-layered arrangement containing five PIDD-DDs in one layer, five RAIDD-DDs in a second layer and an additional two RAIDD-DDs. We addressed complex formation between PIDD-DD and RAIDD-DD in solution using heteronuclear nuclear magnetic resonance (NMR) spectroscopy, nanoflow electrospray ionization mass spectrometry and size-exclusion chromatography with multi-angle light scattering. The DDs assemble into complexes displaying molecular masses in the range 130-158kDa and RAIDD-DD:PIDD-DD stoichiometries of 5:5, 6:5 and 7:5. These data suggest that the crystal structure is representative of only the heaviest species in solution and that two RAIDD-DDs are loosely attached to the 5:5 core. Two-dimensional (1)H,(15)N-NMR experiments exhibited signal loss upon complexation consistent with the formation of high-molecular-weight species. (13)C-Methyl-transverse relaxation optimized spectroscopy measurements of the PIDDosome core exhibit signs of differential line broadening, cross-peak splitting and chemical shift heterogeneity that reflect the presence of non-equivalent sites at interfaces within an asymmetric complex. Experiments using a mutant RAIDD-DD that forms a monodisperse 5:5 complex with PIDD-DD show that the spectroscopic signature derives from the quasi- but non-exact equivalent environments of each DD. Since this characteristic was previously demonstrated for the complex between the DDs of CD95 and FADD, the NMR data for this system are consistent with the formation of a structure homologous to the PIDDosome core.


Asunto(s)
Proteína Adaptadora de Señalización CRADD/metabolismo , Proteína Adaptadora de Señalización CRADD/ultraestructura , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/ultraestructura , Secuencia de Aminoácidos , Proteína Adaptadora de Señalización CRADD/genética , Cristalografía por Rayos X , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/química , Humanos , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Resonancia Magnética Nuclear Biomolecular , Estructura Terciaria de Proteína , Espectrometría de Masa por Ionización de Electrospray
16.
J Biol Chem ; 289(32): 21973-83, 2014 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-24958727

RESUMEN

A hallmark of inflammation, increased vascular permeability, is induced in endothelial cells by multiple agonists through stimulus-coupled assembly of the CARMA3 signalosome, which contains the adaptor protein BCL10. Previously, we reported that BCL10 in immune cells is targeted by the "death" adaptor CRADD/RAIDD (CRADD), which negatively regulates nuclear factor κB (NFκB)-dependent cytokine and chemokine expression in T cells (Lin, Q., Liu, Y., Moore, D. J., Elizer, S. K., Veach, R. A., Hawiger, J., and Ruley, H. E. (2012) J. Immunol. 188, 2493-2497). This novel anti-inflammatory CRADD-BCL10 axis prompted us to analyze CRADD expression and its potential anti-inflammatory action in non-immune cells. We focused our study on microvascular endothelial cells because they play a key role in inflammation. We found that CRADD-deficient murine endothelial cells display heightened BCL10-mediated expression of the pleotropic proinflammatory cytokine IL-6 and chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2) in response to LPS and thrombin. Moreover, these agonists also induce significantly increased permeability in cradd(-/-), as compared with cradd(+/+), primary murine endothelial cells. CRADD-deficient cells displayed more F-actin polymerization with concomitant disruption of adherens junctions. In turn, increasing intracellular CRADD by delivery of a novel recombinant cell-penetrating CRADD protein (CP-CRADD) restored endothelial barrier function and suppressed the induction of IL-6 and MCP-1 evoked by LPS and thrombin. Likewise, CP-CRADD enhanced barrier function in CRADD-sufficient endothelial cells. These results indicate that depletion of endogenous CRADD compromises endothelial barrier function in response to inflammatory signals. Thus, we define a novel function for CRADD in endothelial cells as an inducible suppressor of BCL10, a key mediator of responses to proinflammatory agonists.


Asunto(s)
Proteína Adaptadora de Señalización CRADD/metabolismo , Células Endoteliales/metabolismo , Inflamación/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteína 10 de la LLC-Linfoma de Células B , Proteínas Adaptadoras de Señalización CARD/metabolismo , Proteína Adaptadora de Señalización CRADD/deficiencia , Proteína Adaptadora de Señalización CRADD/genética , Permeabilidad Capilar , Péptidos de Penetración Celular/genética , Péptidos de Penetración Celular/metabolismo , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana , Humanos , Mediadores de Inflamación/metabolismo , Pulmón/irrigación sanguínea , Ratones , Ratones de la Cepa 129 , Microvasos/citología , Microvasos/metabolismo , ARN Interferente Pequeño/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal
17.
BMB Rep ; 46(9): 471-6, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24064063

RESUMEN

The PIDDosome, which is an oligomeric signaling complex composed of PIDD, RAIDD and caspase-2, can induce proximity-based dimerization and activation of caspase-2. In the PIDDosome assembly, the adaptor protein RAIDD interacts with PIDD and caspase-2 via CARD:CARD and DD:DD, respectively. To analyze the PIDDosome assembly, we purified all of the DD superfamily members and performed biochemical analyses. The results revealed that caspase-2 CARD is an insoluble protein that can be solubilized by its binding partner, RAIDD CARD, but not by full-length RAIDD; this indicates that full-length RAIDD in closed states cannot interact with caspase-2 CARD. Moreover, we found that caspase-2 CARD can be solubilized and interact with full-length RAIDD in the presence of PIDD DD, indicating that PIDD DD initially binds to RAIDD, after which caspase-2 can be recruited to RAIDD via a CARD:CARD interaction. Our study will be useful in determining the order of assembly of the PIDDosome.


Asunto(s)
Proteína Adaptadora de Señalización CRADD/metabolismo , Caspasa 2/metabolismo , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Animales , Proteína Adaptadora de Señalización CRADD/genética , Caspasa 2/genética , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/genética , Ratones , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína
18.
Biochem J ; 455(1): 15-25, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23815625

RESUMEN

Neuronal apoptotic death generally requires de novo transcription, and activation of the transcription factor c-Jun has been shown to be necessary in multiple neuronal death paradigms. Caspase-2 has been implicated in death of neuronal and non-neuronal cells, but its relationship to transcriptional activation has not been clearly elucidated. In the present study, using two different neuronal apoptotic paradigms, ß-amyloid treatment and NGF (nerve growth factor) withdrawal, we examined the hierarchical role of caspase-2 activation in the transcriptional control of neuron death. Both paradigms induce rapid activation of caspase-2 as well as activation of the transcription factor c-Jun and subsequent induction of the pro-apoptotic BH3 (Bcl-homology domain 3)-only protein Bim (Bcl-2-interacting mediator of cell death). Caspase-2 activation is dependent on the adaptor protein RAIDD {RIP (receptor-interacting protein)-associated ICH-1 [ICE (interleukin-1ß-converting enzyme)/CED-3 (cell-death determining 3) homologue 1] protein with a death domain}, and both caspase-2 and RAIDD are required for c-Jun activation and Bim induction. The present study thus shows that rapid caspase-2 activation is essential for c-Jun activation and Bim induction in neurons subjected to apoptotic stimuli. This places caspase-2 at an apical position in the apoptotic cascade and demonstrates for the first time that caspase-2 can regulate transcription.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Proteína Adaptadora de Señalización CRADD/genética , Caspasa 2/genética , Proteínas de la Membrana/genética , Neuronas/metabolismo , Proteínas Proto-Oncogénicas c-jun/genética , Proteínas Proto-Oncogénicas/genética , Activación Transcripcional/efectos de los fármacos , Péptidos beta-Amiloides/farmacología , Animales , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteína 11 Similar a Bcl2 , Proteína Adaptadora de Señalización CRADD/metabolismo , Caspasa 2/metabolismo , Feto , Proteínas de la Membrana/metabolismo , Factor de Crecimiento Nervioso/deficiencia , Neuronas/citología , Neuronas/efectos de los fármacos , Cultivo Primario de Células , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
19.
Mol Cell ; 47(5): 681-93, 2012 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-22854598

RESUMEN

Biochemical evidence implicates the death-domain (DD) protein PIDD as a molecular switch capable of signaling cell survival or death in response to genotoxic stress. PIDD activity is determined by binding-partner selection at its DD: whereas recruitment of RIP1 triggers prosurvival NF-κB signaling, recruitment of RAIDD activates proapoptotic caspase-2 via PIDDosome formation. However, it remains unclear how interactor selection, and thus fate decision, is regulated at the PIDD platform. We show that the PIDDosome functions in the "Chk1-suppressed" apoptotic response to DNA damage, a conserved ATM/ATR-caspase-2 pathway antagonized by Chk1. In this pathway, ATM phosphorylates PIDD on Thr788 within the DD. This phosphorylation is necessary and sufficient for RAIDD binding and caspase-2 activation. Conversely, nonphosphorylatable PIDD fails to bind RAIDD or activate caspase-2, and engages prosurvival RIP1 instead. Thus, ATM phosphorylation of the PIDD DD enables a binary switch through which cells elect to survive or die upon DNA injury.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada , Proteína Adaptadora de Señalización CRADD/metabolismo , Caspasa 2/metabolismo , Muerte Celular , Supervivencia Celular , Células Cultivadas , Daño del ADN , Células HEK293 , Células HeLa , Humanos , Fosforilación
20.
Cell Death Differ ; 19(10): 1722-32, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22595758

RESUMEN

The PIDDosome, a multiprotein complex constituted of the 'p53-induced protein with a death domain (PIDD), 'receptor-interacting protein (RIP)-associated ICH-1/CED-3 homologous protein with a death domain' (RAIDD) and pro-Caspase-2 has been defined as an activating platform for this apoptosis-related protease. PIDD has been implicated in p53-mediated cell death in response to DNA damage but also in DNA repair and nuclear factor kappa-light-chain enhancer (NF-κB) activation upon genotoxic stress, together with RIP-1 kinase and Nemo/IKKγ. As all these cellular responses are critical for tumor suppression and deregulated expression of individual PIDDosome components has been noted in human cancer, we investigated their role in oncogenesis induced by DNA damage or oncogenic stress in gene-ablated mice. We observed that Pidd or Caspase-2 failed to suppress lymphoma formation triggered by γ-irradiation or 3-methylcholanthrene-driven fibrosarcoma development. In contrast, Caspase-2 showed tumor suppressive capacity in response to aberrant c-Myc expression, which did not rely on PIDD, the BH3-only protein Bid (BH3 interacting domain death agonist) or the death receptor ligand Trail (TNF-related apoptosis-inducing ligand), but associated with reduced rates of p53 loss and increased extranodal dissemination of tumor cells. In contrast, Pidd deficiency associated with abnormal M-phase progression and delayed disease onset, indicating that both proteins are differentially engaged upon oncogenic stress triggered by c-Myc, leading to opposing effects on tumor-free survival.


Asunto(s)
Proteína Adaptadora de Señalización CRADD/metabolismo , Caspasa 2/metabolismo , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/metabolismo , Animales , Apoptosis/efectos de los fármacos , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Proteína Adaptadora de Señalización CRADD/antagonistas & inhibidores , Proteína Adaptadora de Señalización CRADD/genética , Caspasa 2/deficiencia , Caspasa 2/genética , Línea Celular , Daño del ADN , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/antagonistas & inhibidores , Proteínas Adaptadoras de Señalización del Receptor del Dominio de Muerte/genética , Proteínas Activadoras de GTPasa/metabolismo , Rayos gamma , Células HCT116 , Humanos , Quinasa I-kappa B/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Metilcolantreno/farmacología , Ratones , Ratones Endogámicos C57BL , FN-kappa B/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA