Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nucleic Acids Res ; 49(19): 11294-11311, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34551427

RESUMEN

C9ORF72-derived dipeptide repeat proteins have emerged as the pathogenic cause of neurodegeneration in amyotrophic lateral sclerosis and frontotemporal dementia (C9-ALS/FTD). However, the mechanisms underlying their expression are not fully understood. Here, we demonstrate that ZNF598, the rate-limiting factor for ribosome-associated quality control (RQC), co-translationally titrates the expression of C9ORF72-derived poly(GR) protein. A Drosophila genetic screen identified key RQC factors as potent modifiers of poly(GR)-induced neurodegeneration. ZNF598 overexpression in human neuroblastoma cells inhibited the nuclear accumulation of poly(GR) protein and decreased its cytotoxicity, whereas ZNF598 deletion had opposing effects. Poly(GR)-encoding sequences in the reporter RNAs caused translational stalling and generated ribosome-associated translation products, sharing molecular signatures with canonical RQC substrates. Furthermore, ZNF598 and listerin 1, the RQC E3 ubiquitin-protein ligase, promoted poly(GR) degradation via the ubiquitin-proteasome pathway. An ALS-relevant ZNF598R69C mutant displayed loss-of-function effects on poly(GR) expression, as well as on general RQC. Moreover, RQC function was impaired in C9-ALS patient-derived neurons, whereas lentiviral overexpression of ZNF598 lowered their poly(GR) expression and suppressed proapoptotic caspase-3 activation. Taken together, we propose that an adaptive nature of the RQC-relevant ZNF598 activity allows the co-translational surveillance to cope with the atypical expression of pathogenic poly(GR) protein, thereby acquiring a neuroprotective function in C9-ALS/FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Proteínas Portadoras/genética , Drosophila melanogaster/genética , Demencia Frontotemporal/genética , Biosíntesis de Proteínas , Ubiquitina-Proteína Ligasas/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Proteína C9orf72/deficiencia , Proteínas Portadoras/metabolismo , Caspasa 3/genética , Caspasa 3/metabolismo , Línea Celular Tumoral , Dipéptidos/genética , Dipéptidos/metabolismo , Modelos Animales de Enfermedad , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Femenino , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Humanos , Masculino , Neuronas/metabolismo , Neuronas/patología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Transducción de Señal , Ubiquitina-Proteína Ligasas/deficiencia
2.
FEBS J ; 288(5): 1712-1723, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32745320

RESUMEN

Pathogenesis of familial amyotrophic lateral sclerosis (ALS) linked to expansion of the chromosome 9 open reading frame 72 (C9orf72) hexanucleotide repeat that impairs C9orf72 expression. Loss of function of the C9orf72 protein is one of the three main proposed C9orf72-related ALS mechanisms. However, C9orf72 loss of function, by itself, is insufficient to cause severe phenotypes in mice. Excitotoxicity is another major disease mechanism of ALS. We speculate that loss of C9orf72 protein might cause ALS in combination with excitotoxicity. To date, the effect of C9orf72 deficiency in the background of SD rat has not been examined. To test our hypothesis, we generated a line of rat with a deletion of part of the C9orf72 gene ablating the encoded protein. These animals did not develop any ALS phenotypes; however, when they were treated with kainic acid, an excitotoxicity inducer, the rats developed motor deficits and showed loss of motor neurons (MNs), Golgi complex fragmentation, and abnormal vesicle trafficking. RNA sequencing revealed profound changes in the gene profiles that were primarily associated with neural activity. Our results demonstrated that C9orf72 ablation alone was not enough to cause ALS pathogenesis in rat; but the ablation sensitized MNs to other risk factors that synergistically caused the ALS. These results support a loss of function of C9orf72 mechanism of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Agonistas de Aminoácidos Excitadores/farmacología , Interacción Gen-Ambiente , Ácido Kaínico/farmacología , Proteínas del Tejido Nervioso/genética , Esclerosis Amiotrófica Lateral/etiología , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Proteína C9orf72/deficiencia , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Aparato de Golgi/metabolismo , Aparato de Golgi/patología , Humanos , Masculino , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/genética , Ratas , Ratas Sprague-Dawley , Ratas Transgénicas , Bazo/metabolismo , Bazo/patología , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/patología
3.
Acta Neuropathol Commun ; 8(1): 155, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32887666

RESUMEN

Hexanucleotide repeat expansion of C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Synergies between loss of C9ORF72 functions and gain of toxicities from the repeat expansions contribute to C9ORF72-mediated pathogenesis. However, how loss of C9orf72 impacts neuronal and synaptic functions remains undetermined. Here, we showed that long-term potentiation at the dentate granule cells and long-term depression at the Schaffer collateral/commissural synapses at the area CA1 were reduced in the hippocampus of C9orf72 knockout mice. Using unbiased transcriptomic analysis, we identified that Klotho, a longevity gene, was selectively dysregulated in an age-dependent manner. Specifically, Klotho protein expression in the hippocampus of C9orf72 knockout mice was incorrectly enriched in the dendritic regions of CA1 with concomitant reduction in granule cell layer of dentate gyrus at 3-month of age followed by an accelerating decline during aging. Furthermore, adult hippocampal neurogenesis was reduced in C9orf72 knockout mice. Taken together, our data suggest that C9ORF72 is required for synaptic plasticity and adult neurogenesis in the hippocampus and Klotho deregulations may be part of C9ORF72-mediated toxicity.


Asunto(s)
Proteína C9orf72/deficiencia , Glucuronidasa/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Plasticidad Neuronal/fisiología , Animales , Proteínas Klotho , Ratones , Ratones Noqueados , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neurogénesis/fisiología , Transcriptoma
4.
Nature ; 585(7823): 96-101, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32814898

RESUMEN

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative disorders that overlap in their clinical presentation, pathology and genetic origin. Autoimmune disorders are also overrepresented in both ALS and FTD, but this remains an unexplained epidemiologic observation1-3. Expansions of a hexanucleotide repeat (GGGGCC) in the C9orf72 gene are the most common cause of familial ALS and FTD (C9-ALS/FTD), and lead to both repeat-containing RNA and dipeptide accumulation, coupled with decreased C9orf72 protein expression in brain and peripheral blood cells4-6. Here we show in mice that loss of C9orf72 from myeloid cells alone is sufficient to recapitulate the age-dependent lymphoid hypertrophy and autoinflammation seen in animals with a complete knockout of C9orf72. Dendritic cells isolated from C9orf72-/- mice show marked early activation of the type I interferon response, and C9orf72-/- myeloid cells are selectively hyperresponsive to activators of the stimulator of interferon genes (STING) protein-a key regulator of the innate immune response to cytosolic DNA. Degradation of STING through the autolysosomal pathway is diminished in C9orf72-/- myeloid cells, and blocking STING suppresses hyperactive type I interferon responses in C9orf72-/- immune cells as well as splenomegaly and inflammation in C9orf72-/- mice. Moreover, mice lacking one or both copies of C9orf72 are more susceptible to experimental autoimmune encephalitis, mirroring the susceptibility to autoimmune diseases seen in people with C9-ALS/FTD. Finally, blood-derived macrophages, whole blood and brain tissue from patients with C9-ALS/FTD all show an elevated type I interferon signature compared with samples from people with sporadic ALS/FTD; this increased interferon response can be suppressed with a STING inhibitor. Collectively, our results suggest that patients with C9-ALS/FTD have an altered immunophenotype because their reduced levels of C9orf72 cannot suppress the inflammation mediated by the induction of type I interferons by STING.


Asunto(s)
Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Inflamación/metabolismo , Inflamación/prevención & control , Proteínas de la Membrana/metabolismo , Células Mieloides/metabolismo , Envejecimiento/inmunología , Esclerosis Amiotrófica Lateral/genética , Animales , Proteína C9orf72/deficiencia , Células Dendríticas/citología , Células Dendríticas/inmunología , Encefalomielitis Autoinmune Experimental/genética , Encefalomielitis Autoinmune Experimental/inmunología , Femenino , Humanos , Inflamación/genética , Inflamación/inmunología , Interferón Tipo I/biosíntesis , Interferón Tipo I/inmunología , Proteínas de la Membrana/antagonistas & inhibidores , Ratones , Células Mieloides/inmunología , Neoplasias/inmunología , Linfocitos T/citología , Linfocitos T/inmunología
5.
Prog Mol Biol Transl Sci ; 172: 157-202, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32620242

RESUMEN

Motor neuron diseases (MNDs) are a wide group of neurodegenerative disorders characterized by the degeneration of a specific neuronal type located in the central nervous system, the motor neuron (MN). There are two main types of MNs, spinal and cortical MNs and depending on the type of MND, one or both types are affected. Cortical MNs innervate spinal MNs and these control a variety of cellular targets, being skeletal muscle their main one which is also affected in MNDs. A correct functionality of autophagy is necessary for the survival of all cellular types and it is particularly crucial for neurons, given their postmitotic and highly specialized nature. Numerous studies have identified alterations of autophagy activity in multiple MNDs. The scientific community has been particularly prolific in reporting the role that autophagy plays in the most common adult MND, amyotrophic lateral sclerosis, although many studies have started to identify physiological and pathological functions of this catabolic system in other MNDs, such as spinal muscular atrophy and spinal and bulbar muscular atrophy. The degradation of selective cargo by autophagy and how this process is altered upon the presence of MND-causing mutations is currently also a matter of intense investigation, particularly regarding the selective autophagic clearance of mitochondria. Thorough reviews on this field have been recently published. This chapter will cover the current knowledge on the functionality of autophagy and lysosomal homeostasis in the main MNDs and other autophagy-related topics in the MND field that have risen special interest in the research community.


Asunto(s)
Autofagia , Enfermedad de la Neurona Motora/patología , Adulto , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Autofagia/efectos de los fármacos , Autofagia/fisiología , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/fisiología , Proteína C9orf72/deficiencia , Proteína C9orf72/genética , Proteína C9orf72/fisiología , Expansión de las Repeticiones de ADN , Modelos Animales de Enfermedad , Endocitosis , Humanos , Ratones Transgénicos , Enfermedad de la Neurona Motora/genética , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patología , Mutación , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Orgánulos , Proteína FUS de Unión a ARN/deficiencia , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/fisiología , Proteinopatías TDP-43/genética , Proteinopatías TDP-43/patología
7.
Acta Neuropathol ; 137(6): 859-877, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30721407

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a progressive, adult-onset neurodegenerative disease caused by degeneration of motor neurons in the brain and spinal cord leading to muscle weakness. Median survival after symptom onset in patients is 3-5 years and no effective therapies are available to treat or cure ALS. Therefore, further insight is needed into the molecular and cellular mechanisms that cause motor neuron degeneration and ALS. Different ALS disease mechanisms have been identified and recent evidence supports a prominent role for defects in intracellular transport. Several different ALS-causing gene mutations (e.g., in FUS, TDP-43, or C9ORF72) have been linked to defects in neuronal trafficking and a picture is emerging on how these defects may trigger disease. This review summarizes and discusses these recent findings. An overview of how endosomal and receptor trafficking are affected in ALS is followed by a description on dysregulated autophagy and ER/Golgi trafficking. Finally, changes in axonal transport and nucleocytoplasmic transport are discussed. Further insight into intracellular trafficking defects in ALS will deepen our understanding of ALS pathogenesis and will provide novel avenues for therapeutic intervention.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Transporte Biológico/fisiología , Neuronas Motoras/metabolismo , Proteínas del Tejido Nervioso/fisiología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Autofagia , Transporte Axonal , Proteína C9orf72/deficiencia , Proteína C9orf72/genética , Proteína C9orf72/fisiología , Expansión de las Repeticiones de ADN , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Flavoproteínas/genética , Aparato de Golgi/metabolismo , Humanos , Lisosomas/metabolismo , Mutación , Degeneración Nerviosa/fisiopatología , Proteínas del Tejido Nervioso/genética , Monoéster Fosfórico Hidrolasas/genética , Transporte de Proteínas , Receptores de Glutamato/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Proteinopatías TDP-43/genética , Proteína que Contiene Valosina/genética , Proteínas de Unión al GTP rab/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA