Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.330
Filtrar
1.
J Cell Biol ; 223(10)2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-38958606

RESUMEN

Calorie restriction increases lifespan. Among the tissue-specific protective effects of calorie restriction, the impact on the gastrointestinal tract remains unclear. We report increased numbers of chromogranin A-positive (+), including orexigenic ghrelin+ cells, in the stomach of calorie-restricted mice. This effect was accompanied by increased Notch target Hes1 and Notch ligand Jag1 and was reversed by blocking Notch with DAPT, a gamma-secretase inhibitor. Primary cultures and genetically modified reporter mice show that increased endocrine cell abundance is due to altered Lgr5+ stem and Neurog3+ endocrine progenitor cell proliferation. Different from the intestine, calorie restriction decreased gastric Lgr5+ stem cells, while increasing a FOXO1/Neurog3+ subpopulation of endocrine progenitors in a Notch-dependent manner. Further, activation of FOXO1 was sufficient to promote endocrine cell differentiation independent of Notch. The Notch inhibitor PF-03084014 or ghrelin receptor antagonist GHRP-6 reversed the phenotypic effects of calorie restriction in mice. Tirzepatide additionally expanded ghrelin+ cells in mice. In summary, calorie restriction promotes Notch-dependent, FOXO1-regulated gastric endocrine cell differentiation.


Asunto(s)
Restricción Calórica , Proteína Forkhead Box O1 , Ghrelina , Receptores Notch , Transducción de Señal , Animales , Ghrelina/metabolismo , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Receptores Notch/metabolismo , Receptores Notch/genética , Ratones , Diferenciación Celular , Ratones Endogámicos C57BL , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Proliferación Celular , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Células Madre/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Mucosa Gástrica/metabolismo , Factor de Transcripción HES-1/metabolismo , Factor de Transcripción HES-1/genética , Masculino , Estómago
2.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 59(7): 672-680, 2024 Jul 09.
Artículo en Chino | MEDLINE | ID: mdl-38949135

RESUMEN

Objective: To investigate the effects of Porphyromonas gingivalis (Pg) persisters (Ps) on immuno-inflammatory responses in macrophages, and to explore the underlying mechanisms. Methods: Pg cells were cultured to the stationary phase (72 h), and subsequently treated by high concentration of metronidazole at 100 mg/L, amoxicillin at 100 mg/L and the combination of them for different time period, named as metronidazole group, amoxicillin group and (metronidazole+amoxicillin) group. Pg cells without treatment were used as Blank control. The survival profile of PgPs cells was measured by colony-forming unit assay. The living state of PgPs was observed by Live/Dead staining. Then, Pg and metronidazole-treated PgPs (M-PgPs) were used to treat macrophages, named as Pg group and M-PgPs group. Transmission electron microscopy (TEM) was used to observe the bacteria in the macrophages. The expression levels of proinflammatory cytokines in macrophages were determined by real-time fluorescence quantitative PCR and enzyme-linked immunosorbent assay. The location of forkhead box transcription factor 1 (FOXO1) was detected by confocal immunofluorescence microscopy. After inhibiting or enhancing the FOXO1 expressions using inhibitors (Fi) or activators (Fa) respectively, the macrophages were treated with Pg and M-PgPs, divided as Blank group, Pg group, M-PgPs group, Fi group, (Fi+Pg) group, (Fi+M-PgPs) group, Fa group, (Fa+Pg) group and (Fa+M-PgPs) group. Then, the expression pattens of proinflammatory cytokines were assessed. Results: Remarkable number of lived PgPs was observed, both in planktonic culture and Pg biofilms either treated with metronidazole, amoxicillin or both, and those persisters could form new colonies. Pg and M-PgPs were able to enter into the macrophages and the protein expression levels of interleukin (IL)-1ß, IL-6, IL-8 and tumor necrosis factor-α (TNF-α) [Pg group: (2 392±188), (162±29), (5 558±661), (789±155) µg/L; M-PgPs group: (2 415±420), (155±3), (5 732±782), (821±176) µg/L] were significantly upregulated than those in Blank group [(485±140), (21±9), (2 332±87), (77±7) µg/L] (P<0.01). Moreover, Pg and M-PgPs could facilitate the nuclear translocation and accumulation of FOXO1. In addition, the relative mRNA expression levels of FOXO1, B-cell lymphoma 6 and Krüppel-like factor 2 were upregulated when compared to Blank group (P<0.05). Furthermore, the protein expression levels of IL-1ß, IL-6, IL-8 and TNF-α in Fi+Pg group [(1 081±168), (70±8), (1 976±544), (420±47) µg/L] were remarkably lower than Pg group [(4 411±137), (179±6), (5 161±929), (934±24) µg/L] (P<0.05). Similarly, the protein expression levels of IL-1ß, IL-6, IL-8 and TNF-α in Fi+M-PgPs group [(1 032±237), (74±10), (1 861±614), (405±32) µg/L] were remarkably lower than M-PgPs group [(4 342±314), (164±17), (4 438±1 374), (957±25) µg/L] (P<0.05). On the contrary, the protein expression levels of IL-1ß, IL-6, IL-8 and TNF-α in Fa+Pg group [(8 198±1 825), (431±28), (8 919±650), (2 186±301) µg/L] and Fa+M-PgPs group [(8 159±2 627), (475±26), (8 995±653), (2 255±387) µg/L] were significantly higher than Pg group and M-PgPs group, respectively (P<0.05). Conclusions: PgPs are highly tolerant to metronidazole and amoxicillin. The M-PgPs could enhance the immuno-inflammatory responses in macrophages by upregulating the FOXO1 signaling pathway, while this effect exhibits no significant difference with Pg.


Asunto(s)
Biopelículas , Macrófagos , Metronidazol , Porphyromonas gingivalis , Transducción de Señal , Macrófagos/metabolismo , Metronidazol/farmacología , Biopelículas/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Amoxicilina/farmacología , Regulación hacia Arriba , Animales , Interleucina-1beta/metabolismo , Ratones , Proteína Forkhead Box O1/metabolismo , Interleucina-8/metabolismo , Inflamación , Humanos
3.
Parasit Vectors ; 17(1): 299, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987795

RESUMEN

BACKGROUND: Toxoplasma gondii infection causes adverse pregnancy outcomes by affecting the expression of immunotolerant molecules in decidual immune cells. Galectin-9 (Gal-9) is widely expressed in decidual macrophages (dMφ) and is crucial for maintaining normal pregnancy by interacting with the immunomodulatory protein T-cell immunoglobulin and mucin domain-containing molecule 3 (Tim-3). However, the effects of T. gondii infection on Gal-9 expression in dMφ, and the impact of altered Gal-9 expression levels on the maternal-fetal tolerance function of decidual natural killer (dNK) cells, are still unknown. METHODS: Pregnancy outcomes of T. gondii-infected C57BL/6 and Lgals9-/- pregnant mice models were recorded. Expression of Gal-9, c-Jun N-terminal kinase (JNK), phosphorylated JNK (p-JNK), and Forkhead box protein O1 (FOXO1) was detected by western blotting, flow cytometry or immunofluorescence. The binding of FOXO1 to the promoter of Lgals9 was determined by chromatin immunoprecipitation-polymerase chain reaction (ChIP-PCR). The expression of extracellular signal-regulated kinase (ERK), phosphorylated ERK (p-ERK), cAMP-response element binding protein (CREB), phosphorylated CREB (p-CREB), T-box expressed in T cells (T-bet), interleukin 10 (IL-10), and interferon gamma (IFN-γ) in dNK cells was assayed by western blotting. RESULTS: Toxoplasma gondii infection increased the expression of p-JNK and FOXO1 in dMφ, resulting in a reduction in Gal-9 due to the elevated binding of FOXO1 with Lgals9 promoter. Downregulation of Gal-9 enhanced the phosphorylation of ERK, inhibited the expression of p-CREB and IL-10, and promoted the expression of T-bet and IFN-γ in dNK cells. In the mice model, knockout of Lgals9 aggravated adverse pregnancy outcomes caused by T. gondii infection during pregnancy. CONCLUSIONS: Toxoplasma gondii infection suppressed Gal-9 expression in dMφ by activating the JNK/FOXO1 signaling pathway, and reduction of Gal-9 contributed to dysfunction of dNK via Gal-9/Tim-3 interaction. This study provides new insights for the molecular mechanisms of the adverse pregnancy outcomes caused by T. gondii.


Asunto(s)
Galectinas , Células Asesinas Naturales , Macrófagos , Ratones Endogámicos C57BL , Toxoplasma , Toxoplasmosis , Animales , Femenino , Embarazo , Galectinas/genética , Galectinas/metabolismo , Ratones , Células Asesinas Naturales/inmunología , Macrófagos/inmunología , Toxoplasma/inmunología , Toxoplasmosis/inmunología , Decidua/inmunología , Ratones Noqueados , Receptor 2 Celular del Virus de la Hepatitis A/genética , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Resultado del Embarazo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo
4.
Cells ; 13(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38994961

RESUMEN

Cytokine-induced ß-cell apoptosis is a major pathogenic mechanism in type 1 diabetes (T1D). Despite significant advances in understanding its underlying mechanisms, few drugs have been translated to protect ß-cells in T1D. Epigenetic modulators such as bromodomain-containing BET (bromo- and extra-terminal) proteins are important regulators of immune responses. Pre-clinical studies have demonstrated a protective effect of BET inhibitors in an NOD (non-obese diabetes) mouse model of T1D. However, the effect of BET protein inhibition on ß-cell function in response to cytokines is unknown. Here, we demonstrate that I-BET, a BET protein inhibitor, protected ß-cells from cytokine-induced dysfunction and death. In vivo administration of I-BET to mice exposed to low-dose STZ (streptozotocin), a model of T1D, significantly reduced ß-cell apoptosis, suggesting a cytoprotective function. Mechanistically, I-BET treatment inhibited cytokine-induced NF-kB signaling and enhanced FOXO1-mediated anti-oxidant response in ß-cells. RNA-Seq analysis revealed that I-BET treatment also suppressed pathways involved in apoptosis while maintaining the expression of genes critical for ß-cell function, such as Pdx1 and Ins1. Taken together, this study demonstrates that I-BET is effective in protecting ß-cells from cytokine-induced dysfunction and apoptosis, and targeting BET proteins could have potential therapeutic value in preserving ß-cell functional mass in T1D.


Asunto(s)
Apoptosis , Citocinas , Células Secretoras de Insulina , FN-kappa B , Transducción de Señal , Animales , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , FN-kappa B/metabolismo , Ratones , Citocinas/metabolismo , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Proteína Forkhead Box O1/metabolismo , Ratones Endogámicos NOD , Masculino , Ratones Endogámicos C57BL
5.
Mol Biol Rep ; 51(1): 807, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39002036

RESUMEN

BACKGROUND: Acute Myeloid Leukemia (AML) is a fast-developing invading cancer that impacts the blood and bone marrow, marked by the rapid proliferation of abnormal white blood cells. Chemotherapeutic agents, a primary treatment for AML, encounter clinical limitations such as poor solubility and low bioavailability. Previous studies have highlighted antibiotics as effective in inducing cancer cell death and potentially preventing metastasis. Besides, insulin is known to activate the PI3K/Akt pathway, often disrupted in cancers, leading to enhanced cell survival and resistance to apoptosis. In light of the above-mentioned points, we examined the anti-cancer impact of antibiotics Ciprofloxacin (CP) and Salinomycin (SAL) and their combination on KG1-a cells in the presence and absence of insulin. METHODS: This was accomplished by exposing KG1-a cells to different doses of CP and SAL alone, in combination, and with or without insulin for 24-72 h. Cell viability was evaluated using the MTT assay. Besides, apoptotic effects were examined using Hoechst staining and Annexin-V/PI flow cytometry. The expression levels of Bax, p53, BIRC5, Akt, PTEN, and FOXO1 were analyzed through Real-Time PCR. RESULTS: CP and SAL demonstrated cytotoxic and notable pro-apoptotic impact on KG1-a cells by upregulating Bax and p53 and downregulating BIRC5, leading to G0/G1 cell cycle arrest and prevention of the PI3K-Akt signaling pathway. Our findings demonstrated that combination of CP and SAL promote apoptosis in the KG1-a cell line by down-regulating BIRC5 and Akt, as well as up-regulating Bax, p53, PTEN, and FOXO1. Additionally, the findings strongly indicated that insulin effectively mitigates apoptosis by enhancing Akt expression and reducing FOXO1 and PTEN gene expression in the cells treated with CP and SAL. CONCLUSION: Our findings showed that the combined treatment of CP and SAL exhibit a strong anti-cancer effect on leukemia KG1-a cells. Moreover, it was discovered that the PI3K-Akt signaling can be a promising target in leukemia treatment particularly in hyperinsulinemia condition.


Asunto(s)
Apoptosis , Supervivencia Celular , Ciprofloxacina , Insulina , Piranos , Humanos , Ciprofloxacina/farmacología , Apoptosis/efectos de los fármacos , Piranos/farmacología , Línea Celular Tumoral , Insulina/metabolismo , Supervivencia Celular/efectos de los fármacos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína Forkhead Box O1/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proliferación Celular/efectos de los fármacos , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Leucemia/tratamiento farmacológico , Leucemia/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Policétidos Poliéteres
6.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(6): 1173-1181, 2024 Jun 20.
Artículo en Chino | MEDLINE | ID: mdl-38977348

RESUMEN

OBJECTIVES: To investigate the regulatory role of miRNA-224-5p in hypoxia/reoxygenation (H/R) -induced H9c2 cardiomyocyte injury. METHODS: Plasma samples were collected from 160 patients with acute myocardial infarction and 80 healthy controls(HC) to measure miRNA-224-5p levels and other biochemical parameters. In cultured H9c2 cells with H/R injury, the effects of transfection with miR-224-5p mimics or a negative control sequence on cell viability, malondialdehyde (MDA) content, and superoxide dismutase 2 (SOD2) and lactate dehydrogenase (LDH) activities were tested. Dual luciferase reporter gene assay was performed to verify the targeting relationship between miR-224-5p and PTEN. Bioinformatics methods were used to analyze the potential mechanisms of the target genes. The expression of miRNA-224-5p in the treated cells was detected with qRT-PCR, the protein expressions of PTEN, Bcl-2, Bax, cleaved caspase-3, SOD2, p-PI3K/PI3K, p-Akt/Ak and p-FoxO1/FoxO1 were determined using Western blotting, and cell apoptosis was analysed with flow cytometry. RESULTS: The levels of blood glucose, C-reactive protein, CK, CK-MB and cTnI were significantly higher in the AMI group compared with the HC group (P < 0.05). The expression level of miR-224-5p was significantly lowered in patients with STEMI and NSTEMI and in H9c2 cells with H/R injury. The viability of H9c2 cells decreased time-dependently following H/R injury. PTEN was a target gene of miR-224-5p, and the PI3K/Akt pathway was the most significantly enriched pathway. H9c2 cells with H/R injury showed significantly decreased SOD2 activity, increased LDH activity and MDA content, increased cell apoptosis, decreased protein expression levels of p-PI3K, p-Akt, p-FoxO1, SOD2, and Bcl-2, and increased expressions of PTEN, Bax, and cleaved caspase-3. These changes were obviously attenuated by trasnfection of the cells with miR-224-5p mimics prior to H/R exposure. CONCLUSION: MiR-224-5p overexpression upregulates the expression of the antioxidant gene SOD2 through the PI3K/Akt/FoxO1 axis to relieve H/R-induced oxidative stress and reduce apoptosis of H9c2 cells.


Asunto(s)
Apoptosis , Proteína Forkhead Box O1 , MicroARNs , Miocitos Cardíacos , Estrés Oxidativo , Fosfohidrolasa PTEN , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , MicroARNs/genética , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Humanos , Ratas , Proteína Forkhead Box O1/metabolismo , Fosfohidrolasa PTEN/metabolismo , Animales , Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Transducción de Señal , Línea Celular , Hipoxia de la Célula , Superóxido Dismutasa/metabolismo , Supervivencia Celular
7.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 542-551, 2024 May 20.
Artículo en Chino | MEDLINE | ID: mdl-38948287

RESUMEN

Objective: Kisspeptin, a protein encoded by the KISS1 gene, functions as an essential factor in suppressing tumor growth. The intricate orchestration of cellular processes such as proliferation and differentiation is governed by the Notch1/Akt/Foxo1 signaling pathway, which assumes a central role in maintaining cellular homeostasis. In the specific context of this investigation, the focal point lies in a meticulous exploration of the intricate mechanisms underlying the regulatory effect of kisspeptin on the process of endometrial decidualization. This investigation delves into the interplay between kisspeptin and the Notch1/Akt/Foxo1 signaling pathway, aiming to elucidate its significance in the pathophysiology of recurrent spontaneous abortion (RSA). Methods: We enrolled a cohort comprising 45 individuals diagnosed with RSA, who were admitted to the outpatient clinic of the Reproductive Center at the Second Affiliated Hospital of Soochow University between June 2020 and December 2020. On the other hand, an additional group of 50 women undergoing elective abortion at the outpatient clinic of the Family Planning Department during the same timeframe was also included. To comprehensively assess the molecular landscape, Western blot and RT-qPCR were performed to analyze the expression levels of kisspeptin (and its gene KISS1), IGFBP1 (an established marker of decidualization), Notch1, Akt, and Foxo1 within the decidua. Human endometrial stromal cells (hESC) were given targeted interventions, including treatment with siRNA to disrupt KISS1 or exposure to kisspeptin10 (the bioactive fragment of kisspeptin), and were subsequently designated as the siKP group or the KP10 group, respectively. A control group comprised hESC was transfected with blank siRNA, and cell proliferation was meticulously evaluated with CCK8 assay. Following in vitro induction for decidualization across the three experimental groups, immunofluorescence assay was performed to identify differences in Notch1 expression and decidualization morphology between the siKP and the KP10 groups. Furthermore, RT-qPCR and Western blot were performed to gauge the expression levels of IGFBP1, Notch1, Akt, and Foxo1 across the three cell groups. Subsequently, decidualization was induced in hESC by adding inhibitors targeting Notch1, Akt, and Foxo1. The expression profiles of the aforementioned proteins and genes in the four groups were then examined, with hESC induced for decidualization without adding inhibitors serving as the normal control group. To establish murine models of normal pregnancy (NP) and RSA, CBA/J×BALB/c and CBA/J×DBA/2 mice were used. The mice were respectively labeled as the NP model and RSA model. The experimental groups received intraperitoneal injections of kisspeptin10 and kisspeptin234 (acting as a blocker) and were designated as RSA-KP10 and NP-KP234 groups. On the other hand, the control groups received intraperitoneal injections of normal saline (NS) and were referred to as RSA-NS and NP-NS groups. Each group comprised 6 mice, and uterine tissues from embryos at 9.5 days of gestation were meticulously collected for observation of embryo absorption and examination of the expression of the aforementioned proteins and genes. Results: The analysis revealed that the expression levels of kisspeptin, IGFBP1, Notch1, Akt, and Foxo1 were significantly lower in patients diagnosed with RSA compared to those in women with NP (P<0.01 for kisspeptin and P<0.05 for IGFBP1, Notch1, Akt, and Foxo1). After the introduction of kisspeptin10 to hESC, there was an observed enhancement in decidualization capability. Subsequently, the expression levels of Notch1, Akt, and Foxo1 showed an increase, but they decreased after interference with KISS1. Through immunofluorescence analysis, it was observed that proliferative hESC displayed a slender morphology, but they transitioned to a rounder and larger morphology post-decidualization. Concurrently, the expression of Notch1 increased, suggesting enhanced decidualization upon the administration of kisspeptin10, but the expression decreased after interference with KISS1. Further experimentation involved treating hESC with inhibitors specific to Notch1, Akt, and Foxo1 separately, revealing a regulatory sequence of Notch1/Akt/Foxo1 (P<0.05). In comparison to the NS group, NP mice administered with kisspeptin234 exhibited increased fetal absorption rates (P<0.001) and decreased expression of IGFBP1, Notch1, Akt, and Foxo1 (P<0.05). Conversely, RSA mice administered with kisspeptin10 demonstrated decreased fetal absorption rates (P<0.001) and increased expression levels of the aforementioned molecules (P<0.05). Conclusion: It is suggested that kisspeptin might exert its regulatory influence on the process of decidualization through the modulation of the Notch1/Akt/Foxo1 signaling cascade. A down-regulation of the expression levels of kisspeptin could result in suboptimal decidualization, which in turn might contribute to the development or progression of RSA.


Asunto(s)
Aborto Habitual , Decidua , Endometrio , Proteína Forkhead Box O1 , Kisspeptinas , Proteínas Proto-Oncogénicas c-akt , Receptor Notch1 , Transducción de Señal , Femenino , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Endometrio/metabolismo , Decidua/metabolismo , Decidua/citología , Embarazo , Receptor Notch1/metabolismo , Receptor Notch1/genética , Aborto Habitual/metabolismo , Aborto Habitual/genética , Kisspeptinas/metabolismo , Kisspeptinas/genética , Adulto , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proliferación Celular
8.
J Mol Model ; 30(8): 260, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981921

RESUMEN

CONTEXT: Diabetes mellitus (DM) is a metabolic disorder disease that causes hyperglycemia conditions and associated with various chronic complications leading to mortality. Due to high toxicity of conventional diabetic drugs, the exploration of natural compounds as alternative diabetes treatments has been widely carried out. Previous in silico studies have highlighted berberine, a natural compound, as a promising alternative in antidiabetic therapy, potentially acting through various pathways, including the inhibition of the FOXO1 transcription factor in the gluconeogenesis pathway. However, the specific mechanism by which berberine interacts with FOXO1 remains unclear, and research in this area is relatively limited. Therefore, this study aims to determine the stability of berberine structure with FOXO1 based on RMSD, RMSF, binding energy, and trajectory analysis to determine the potential of berberine to inhibit the gluconeogenesis pathway. This research was conducted by in silico method with molecular docking using AutoDock4.2 and molecular dynamics study using Amber20, then visualized by VMD. METHODS: Docking between ligand and FOXO1 receptor was carried out with Autodock4.2. For molecular dynamics simulations, the force fields of DNA.OL15, protein.ff14SB, gaff2, and tip3p were used.


Asunto(s)
Berberina , Proteína Forkhead Box O1 , Hipoglucemiantes , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Berberina/química , Berberina/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/química , Humanos , Unión Proteica , Sitios de Unión , Ligandos
9.
J Nanobiotechnology ; 22(1): 367, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918838

RESUMEN

BACKGROUND: Premature ovarian insufficiency (POI) is an important cause of female infertility and seriously impacts the physical and psychological health of patients. Human umbilical cord mesenchymal stem cell-derived exosomes (HucMSCs-Exs, H-Exs) have exhibited protective effects on ovarian function with unclear mechanisms. METHODS: A comprehensive analysis of the Gene Expression Omnibus (GEO) database were used to identify POI-associated circRNAs and miRNAs. The relationship between HucMSC-derived exosomal circBRCA1/miR-642a-5p/FOXO1 axis and POI was examined by RT-qPCR, Western blotting, reactive oxygen species (ROS) staining, senescence-associated ß-gal (SA-ß-gal) staining, JC-1 staining, TEM, oxygen consumption rate (OCR) measurements and ATP assay in vivo and in vitro. RT-qPCR detected the expression of circBRCA1 in GCs and serum of patients with normal ovarian reserve function (n = 50) and patients with POI (n = 50); then, the correlation of circBRCA1 with ovarian reserve function indexes was analyzed. RESULTS: Herein, we found that circBRCA1 was decreased in the serum and ovarian granulosa cells (GCs) of patients with POI and was associated with decreased ovarian reserve. H-Exs improved the disorder of the estrous cycles and reproductive hormone levels, reduced the number of atretic follicles, and alleviated the apoptosis and senescence of GCs in rats with POI. Moreover, H-Exs mitigated mitochondrial damage and reversed the reduced circBRCA1 expression induced by oxidative stress in GCs. Mechanistically, FTO served as an eraser to increase the stability and expression of circBRCA1 by mediating the m6A demethylation of circBRCA1, and exosomal circBRCA1 sponged miR-642a-5p to block its interaction with FOXO1. CircBRCA1 insufficiency aggravated mitochondrial dysfunction, mimicking FTO or FOXO1 depletion effects, which was counteracted by miR-642a-5p inhibition. CONCLUSION: H-Exs secreted circBRCA1 regulated by m6A modification, directly sponged miR-642a-5p to upregulate FOXO1, resisted oxidative stress injuries in GCs and protected ovarian function in rats with POI. Exosomal circBRCA1 supplementation may be a general prospect for the prevention and treatment of POI.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Exosomas , Células de la Granulosa , MicroARNs , Estrés Oxidativo , Insuficiencia Ovárica Primaria , ARN Circular , Femenino , Células de la Granulosa/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Animales , Exosomas/metabolismo , Ratas , ARN Circular/genética , ARN Circular/metabolismo , Humanos , Insuficiencia Ovárica Primaria/metabolismo , Insuficiencia Ovárica Primaria/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Ratas Sprague-Dawley , Células Madre Mesenquimatosas/metabolismo , Adulto
10.
Lancet Oncol ; 25(7): 912-921, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38936378

RESUMEN

BACKGROUND: The Children's Oncology Group defines intermediate-risk rhabdomyosarcoma as unresected FOXO1 fusion-negative disease arising at an unfavourable site or non-metastatic FOXO1 fusion-positive disease. Temsirolimus in combination with chemotherapy has shown promising activity in patients with relapsed or refractory rhabdomyosarcoma. We aimed to compare event-free survival in patients with intermediate-risk rhabdomyosarcoma treated with vincristine, actinomycin, and cyclophosphamide alternating with vincristine and irinotecan (VAC/VI) combined with temsirolimus followed by maintenance therapy versus VAC/VI alone with maintenance therapy. METHODS: ARST1431 was a randomised, open-label, phase 3 trial conducted across 210 institutions in Australia, Canada, New Zealand, and the USA. Eligible patients were those aged 40 years or younger with non-metastatic FOXO1-positive rhabdomyosarcoma or unresected FOXO1-negative rhabdomyosarcoma disease from unfavourable sites. Two other groups of patients were also eligible: those who had FOXO1-negative disease at a favourable site (excluding orbit) that was unresected; and those who were aged younger than 10 years with stage IV FOXO1-negative disease with distant metastases. Eligible patients had to have a Lansky performance status score of 50 or higher if 16 years or younger and a Karnofsky performance status score of 50 or higher if older than 16 years; all patients were previously untreated. Patients were randomised (1:1) in blocks of four and stratified by histology, stage, and group. Patients received intravenous VAC/VI chemotherapy with a cyclophosphamide dose of 1·2 g/m2 per dose per cycle with or without a reducing dose of intravenous weekly temsirolimus starting at 15 mg/m2 or 0·5 mg/kg per dose for those who weighed less than 10 kg. The total duration of therapy was 42 weeks followed by 6 months of maintenance therapy with oral cyclophosphamide plus intravenous vinorelbine for all patients. Temsirolimus was withheld during radiotherapy and for 2 weeks before any major surgical procedure. The primary endpoint was 3-year event-free survival. Data were analysed with a revised intention-to-treat approach. The study is registered with ClinicalTrials.gov (NCT02567435) and is complete. FINDINGS: Between May 23, 2016, and Jan 1, 2022, 325 patients were enrolled. In 297 evaluable patients (148 assigned to VAC/VI alone and 149 assigned to VAC/VI with temsirolimus), the median age was 6·3 years (IQR 3·0-11·3); 33 (11%) patients were aged 18 years or older; 179 (60%) of 297 were male. 113 (77%) of 148 patients were FOXO1 negative in the VAC/VI group, and 108 (73%) of 149 were FOXO1 negative in the VAC/VI with temsirolimus group. With a median follow-up of 3·6 years (IQR 2·8-4·5), 3-year event-free survival did not differ significantly between the two groups (64·8% [95% CI 55·5-74·1] in the VAC/VI group vs 66·8% [57·5-76·2] in the VAC/VI plus temsirolimus group (hazard ratio 0·86 [95% CI 0·58-1·26]; log-rank p=0·44). The most common grade 3-4 adverse events were anaemia (62 events in 60 [41%] of 148 patients in the VAC/VI group vs 89 events in 87 [58%] of 149 patients in the VAC/VI with temsirolimus group), lymphopenia (83 events in 65 [44%] vs 99 events in 71 [48%]), neutropenia (160 events in 99 [67%] vs 164 events in 105 [70%]), and leukopenia (121 events in 86 [58%] vs 132 events in 93 [62%]). There was one treatment-related death in the VAC/VI with temsirolimus group, categorised as not otherwise specified. INTERPRETATION: Addition of temsirolimus to VAC/VI did not improve event-free survival in patients with intermediate-risk rhabdomyosarcoma defined by their FOXO1 translocation status and clinical factors. Novel biology-based strategies are needed to improve outcomes in this population. FUNDING: The Children's Oncology Group (supported by the US National Cancer Institute, US National Institutes of Health).


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Ciclofosfamida , Rabdomiosarcoma , Sirolimus , Vincristina , Humanos , Masculino , Femenino , Niño , Adolescente , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Sirolimus/análogos & derivados , Sirolimus/administración & dosificación , Sirolimus/uso terapéutico , Rabdomiosarcoma/tratamiento farmacológico , Rabdomiosarcoma/mortalidad , Rabdomiosarcoma/patología , Preescolar , Vincristina/administración & dosificación , Vincristina/efectos adversos , Adulto Joven , Ciclofosfamida/administración & dosificación , Adulto , Dactinomicina/administración & dosificación , Irinotecán/administración & dosificación , Irinotecán/uso terapéutico , Lactante , Supervivencia sin Progresión , Proteína Forkhead Box O1/genética
11.
Respir Res ; 25(1): 261, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943142

RESUMEN

AIMS: To detect the expression of autophagy components, p38 MAPK (p38) and phosphorylated forkhead box transcription factor O-1 (pFoxO1) in pulmonary vascular endothelial cells of chronic thromboembolic pulmonary hypertension (CTEPH) rats and to investigate the possible mechanism through which tissue factor (TF) regulates autophagy. METHODS: Pulmonary artery endothelial cells (PAECs) were isolated from CTEPH (CTEPH group) and healthy rats (control group (ctrl group)) which were cocultured with TF at different time points including 12 h, 24 h, 48 h and doses including 0 nM,10 nM, 100 nM, 1µM, 10µM, 100µM and cocultured with TFPI at 48 h including 0 nM, 2.5 nM, 5 nM. The expression of forkhead box transcription factor O-1 (FoxO1), pFoxO1, p38, Beclin-1 and LC3B in PAECs was measured. Coimmunoprecipitation (co-IP) assays were used to detect the interaction between FoxO1 and LC3. RESULTS: The protein expression of p-FoxO1/FoxO1 was significantly lower in the CTEPH groups (cocultured with TF from 0 nM to 100 µM) than in the ctrl group at 12 h, 24 h, and 48 h (P < 0.05) and was significantly lower in the CTEPH groups (cocultured with TFPI from 0 nM to 5 nM) than in the ctrl group at 48 h (P < 0.05). The protein expression of p38 in the CTEPH groups treated with 0 nM, 10 nM, 100 nM or 1 µM TF for 48 h significantly increased than ctrl groups (P < 0.05) and was significantly increased in the CTEPH groups (cocultured with TFPI concentration from 0 nM to 5 nM) than in the ctrl group at 48 h (P < 0.05). The protein expression of Beclin1 at the same concentration (cocultured with TF from 0 nM to 100 µM) was significantly lower in the CTEPH groups than ctrl groups after 24 h and 48 h (P < 0.05) and was significantly decreased in the CTEPH groups (cocultured with TFPI concentration from 2.5 nM to 5 nM) than in the ctrl group at 48 h (P < 0.05). The protein expression of LC3-II/LC3-I at the same concentration (cocultured with TF 0 nM, 1 µM, 10 µM, and 100 µM) was significantly lower in the CTEPH than in the ctrl groups after 12 h (P < 0.05) and was significantly lower in the CTEPH groups (cocultured with TFPI concentration from 0 nM to 5 nM) than in the ctrl group at 48 h (P < 0.05). There were close interactions between FoxO1 and LC3 in the control and CTEPH groups at different doses and time points. CONCLUSION: The autophagic activity of PAECs from CTEPH rats was disrupted. TF, FoxO1 and p38 MAPK play key roles in the autophagic activity of PAECs. TF may regulate autophagic activity through the p38 MAPK-FoxO1 pathway.


Asunto(s)
Autofagia , Células Endoteliales , Hipertensión Pulmonar , Arteria Pulmonar , Ratas Sprague-Dawley , Tromboplastina , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Autofagia/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Ratas , Masculino , Células Endoteliales/metabolismo , Células Cultivadas , Tromboplastina/metabolismo , Tromboplastina/biosíntesis , Hipertensión Pulmonar/metabolismo , Embolia Pulmonar/metabolismo , Embolia Pulmonar/patología , Enfermedad Crónica , Transducción de Señal/fisiología , Proteína Forkhead Box O1
12.
Sheng Li Xue Bao ; 76(3): 376-384, 2024 Jun 25.
Artículo en Chino | MEDLINE | ID: mdl-38939932

RESUMEN

The present study aimed to explore the effects of different exercise modes on neuromuscular junction (NMJ) and metabolism of skeletal muscle-related proteins in aging rats. Ten from 38 male Sprague-Dawley (SD) rats (3-month-old) were randomly selected into young (Y) group, while the rest were raised to 21 months old and randomly divided into elderly control (O), endurance exercise (EN) and resistance exercise (R) groups. After 8 weeks of corresponding exercises training, the gastrocnemius muscles of rats were collected, and the expression of S100B in Schwann cells was detected by immunofluorescence staining. Western blot was used to detect the protein expression levels of agglutinate protein (Agrin), low-density lipoprotein receptor-related protein 4 (Lrp4), muscle- specific kinase protein (MuSK), downstream tyrosine kinase 7 (Dok7), phosphorylated protein kinase B (p-Akt), phosphorylated mammalian target rapamycin (p-mTOR), and phosphorylated forkhead box O1 (p-FoxO1) in rat gastrocnemius muscles. The results showed that, endurance and resistance exercises increased the wet weight ratio of gastrocnemius muscle in the aging rats. The protein expression of S100B in the R group was significantly higher than those in the O and EN groups. Proteins related to NMJ function, including Agrin, Lrp4, MuSK, and Dok7 were significantly decreased in the O group compared with those in the Y group. Resistance exercise up-regulated these four proteins in the aging rats, whereas endurance exercise could not reverse the protein expression levels of Lrp4, MuSK and Dok7. Regarding skeletal muscle-related proteins, the O group showed down-regulated p-Akt, and p-mTOR protein expression levels and up-regulated p-FoxO1 protein expression level, compared to the Y group. Resistance and endurance exercises reversed the changes in p-mTOR and p-FoxO1 protein expression in the aging rats. These findings demonstrate that both exercise modes can enhance NMJ function, increase protein synthesis and reduce the catabolism of skeletal muscle-related proteins in aging rats, with resistance exercise showing a more pronounced effect.


Asunto(s)
Envejecimiento , Músculo Esquelético , Unión Neuromuscular , Condicionamiento Físico Animal , Ratas Sprague-Dawley , Animales , Masculino , Envejecimiento/metabolismo , Envejecimiento/fisiología , Ratas , Músculo Esquelético/metabolismo , Condicionamiento Físico Animal/fisiología , Unión Neuromuscular/metabolismo , Unión Neuromuscular/fisiología , Proteínas Musculares/metabolismo , Entrenamiento de Fuerza/métodos , Proteína Forkhead Box O1
13.
Nutrients ; 16(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38931156

RESUMEN

Nucleotides (NTs) act as pivotal regulatory factors in numerous biological processes, playing indispensable roles in growth, development, and metabolism across organisms. This study delves into the effects of exogenous NTs on hepatic insulin resistance using palmitic-acid-induced HepG2 cells, administering interventions at three distinct dosage levels of exogenous NTs. The findings underscore that exogenous NT intervention augments glucose consumption in HepG2 cells, modulates the expression of glycogen-synthesis-related enzymes (glycogen synthase kinase 3ß and glycogen synthase), and influences glycogen content. Additionally, it governs the expression levels of hepatic enzymes (hexokinase, phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase). Moreover, exogenous NT intervention orchestrates insulin signaling pathway (insulin receptor substrate-1, protein kinase B, and forkhead box protein O1) and AMP-activated protein kinase (AMPK) activity in HepG2 cells. Furthermore, exogenous NT intervention fine-tunes the expression levels of oxidative stress-related markers (malondialdehyde, glutathione peroxidase, and NADPH oxidase 4) and the expression of inflammation-related nuclear transcription factor (NF-κB). Lastly, exogenous NT intervention regulates the expression levels of glucose transporter proteins (GLUTs). Consequently, exogenous NTs ameliorate insulin resistance in HepG2 cells by modulating the IRS-1/AKT/FOXO1 pathways and regulate glucose consumption, glycogen content, insulin signaling pathways, AMPK activity, oxidative stress, and inflammatory status.


Asunto(s)
Proteína Forkhead Box O1 , Proteínas Sustrato del Receptor de Insulina , Resistencia a la Insulina , Ácido Palmítico , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Humanos , Células Hep G2 , Ácido Palmítico/farmacología , Proteínas Sustrato del Receptor de Insulina/metabolismo , Proteína Forkhead Box O1/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Nucleótidos/metabolismo , Nucleótidos/farmacología , Glucosa/metabolismo , Estrés Oxidativo/efectos de los fármacos , Glucógeno/metabolismo , Insulina/metabolismo
14.
Int J Mol Sci ; 25(11)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38891994

RESUMEN

The PI3K/AKT pathway plays a pivotal role in cellular processes, and its dysregulation is implicated in various cancers, including colorectal cancer. The present study correlates the expression levels of critical genes (PIK3CA, PTEN, AKT1, FOXO1, and FRAP) in 60 tumor tissues with clinicopathological and demographic characteristics. The results indicate age-related variation in FOXO1 gene expression, with higher levels observed in patients aged 68 and above. In addition, tumors originating from the rectum exhibit higher FOXO1 expression compared to colon tumors, suggesting region-specific differences in expression. The results also identify the potential correlation between PTEN, PIK3CA gene expression, and parameters such as tumor grade and neuroinvasion. The bioinformatic comparative analysis found that PTEN and FOXO1 expressions were downregulated in colorectal cancer tissue compared to normal colon tissue. Relapse-free survival analysis based on gene expression identified significant correlations, highlighting PTEN and FRAP as potential indicators of favorable outcomes. Our findings provide a deeper understanding of the role of the PI3K/AKT pathway in colorectal cancer and the importance of understanding the molecular basis of colorectal cancer development and progression.


Asunto(s)
Neoplasias Colorrectales , Regulación Neoplásica de la Expresión Génica , Fosfohidrolasa PTEN , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal/genética , Anciano , Masculino , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Femenino , Persona de Mediana Edad , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Adulto , Anciano de 80 o más Años
15.
J Am Heart Assoc ; 13(13): e033155, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38934864

RESUMEN

BACKGROUND: Current protocols generate highly pure human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in vitro that recapitulate characteristics of mature in vivo cardiomyocytes. Yet, a risk of arrhythmias exists when hiPSC-CMs are injected into large animal models. Thus, understanding hiPSC-CM maturational mechanisms is crucial for clinical translation. Forkhead box (FOX) transcription factors regulate postnatal cardiomyocyte maturation through a balance between FOXO and FOXM1. We also previously demonstrated that p53 activation enhances hiPSC-CM maturation. Here, we investigate whether p53 activation modulates the FOXO/FOXM1 balance to promote hiPSC-CM maturation in 3-dimensional suspension culture. METHODS AND RESULTS: Three-dimensional cultures of hiPSC-CMs were treated with Nutlin-3a (p53 activator, 10 µM), LOM612 (FOXO relocator, 5 µM), AS1842856 (FOXO inhibitor, 1 µM), or RCM-1 (FOXM1 inhibitor, 1 µM), starting 2 days after onset of beating, with dimethyl sulfoxide (0.2% vehicle) as control. P53 activation promoted hiPSC-CM metabolic and electrophysiological maturation alongside FOXO upregulation and FOXM1 downregulation, in n=3 to 6 per group for all assays. FOXO inhibition significantly decreased expression of cardiac-specific markers such as TNNT2. In contrast, FOXO activation or FOXM1 inhibition promoted maturational characteristics such as increased contractility, oxygen consumption, and voltage peak maximum upstroke velocity, in n=3 to 6 per group for all assays. Further, by single-cell RNA sequencing of n=2 LOM612-treated cells compared with dimethyl sulfoxide, LOM612-mediated FOXO activation promoted expression of cardiac maturational pathways. CONCLUSIONS: We show that p53 activation promotes FOXO and suppresses FOXM1 during 3-dimensional hiPSC-CM maturation. These results expand our understanding of hiPSC-CM maturational mechanisms in a clinically-relevant 3-dimensional culture system.


Asunto(s)
Diferenciación Celular , Proteína Forkhead Box M1 , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Proteína p53 Supresora de Tumor , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Proteína Forkhead Box M1/metabolismo , Proteína Forkhead Box M1/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Técnicas de Cultivo Tridimensional de Células/métodos , Células Cultivadas , Transducción de Señal , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética
16.
Mol Nutr Food Res ; 68(12): e2300912, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38847553

RESUMEN

Diabetic liver injury (DLI) is one of the complications of diabetes mellitus, which seriously jeopardizes human health. Punicalagin (PU), a polyphenolic compound mainly found in pomegranate peel, has been shown to ameliorate metabolic diseases such as DLI, and the mechanism needs to be further explored. In this study, a HFD/STZ-induced diabetic mouse model is established to investigate the effect and mechanism of PU on DLI. The results show that PU intervention significantly improves liver histology and serum biochemical abnormalities in diabetic mice, significantly inhibits the expression of pyroptosis-related proteins such as NLRP3, Caspase1, IL-1ß, and GSDMD in the liver of diabetic mice, and up-regulated the expression of autophagy-related proteins. Meanwhile, PU treatment significantly increases FoxO1 protein expression and inhibits TXNIP protein expression in the liver of diabetic mice. The above results are further verified in the HepG2 cell injury model induced by high glucose. AS1842856 is a FoxO1 specific inhibitor. The intervention of AS1842856 combined with PU reverses the regulatory effects of PU on pyroptosis and autophagy in HepG2 cells. In conclusion, this study demonstrates that PU may inhibit pyroptosis and upregulate autophagy by regulating FoxO1/TXNIP signaling, thereby alleviating DLI.


Asunto(s)
Autofagia , Proteínas Portadoras , Diabetes Mellitus Experimental , Proteína Forkhead Box O1 , Taninos Hidrolizables , Hígado , Ratones Endogámicos C57BL , Piroptosis , Transducción de Señal , Animales , Piroptosis/efectos de los fármacos , Taninos Hidrolizables/farmacología , Autofagia/efectos de los fármacos , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Transducción de Señal/efectos de los fármacos , Humanos , Masculino , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Células Hep G2 , Hígado/efectos de los fármacos , Hígado/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Tiorredoxinas
17.
Toxicol Appl Pharmacol ; 489: 116991, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38871090

RESUMEN

Liver fibrosis is considered an epidemic health problem due to different insults that lead to death. Dapagliflozin (DAPA), a sodium-glucose cotransporter-2 (SGLT2) inhibitor, is one of the newer anti-diabetic drugs used to manage type 2 diabetes mellitus (T2DM). DAPA exerted beneficial effects in many human and rat models due to its antioxidant, anti-inflammatory and antifibrotic activities. AIM: Due to previously reported capabilities related to DAPA, we designed this study to clarify the beneficial role of DAPA in liver fibrosis triggered by common bile duct ligation (CBL) in male rats. METHODS: For 14 or 28 days after CBL procedures, DAPA was administered to the rats orally at a dose of 10 mg/kg once daily. The effects of DAPA were evaluated by assaying liver enzymes, hepatic oxidant/antioxidant parameters, serum levels of tumor necrotic factor alpha (TNF-α), and AMP-activated protein kinase (AMPK). In addition, we measured the hepatic expression of fibrosis regulator-related genes along with evaluating liver histological changes. KEY FINDINGS: DAPA successfully decreased hepatic enzymes and malondialdehyde levels, increased superoxide dismutase activity, elevated catalase levels, decreased serum levels of TNF-α, elevated serum levels of AMPK, decreased liver hydroxyproline content, upregulated Sirt1/PGC1α/FoxO1 liver gene expressions, down-regulated fibronectin-1 (Fn-1), collagen-1 genes in liver tissues, and improved the damaged liver tissues. Deteriorated biochemical parameters and histological liver insults associated with CBL were more pronounced after 28 days, but DAPA administration for 14 and 28 days showed significant improvement in most parameters and reflected positively in the histological structures of the liver. SIGNIFICANCE: The significance of this study lies in the observation that DAPA mitigated CBL-induced liver fibrosis in rats, most likely due to its antioxidant, anti-inflammatory, and antifibrotic effects. These results suggest that DAPA's beneficial impact on liver fibrosis might be attributed to its interaction with the Sirt1/AMPK/PGC1α/FoxO1 pathway, indicating a potential mechanistic action for future exploration.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Compuestos de Bencidrilo , Conducto Colédoco , Glucósidos , Cirrosis Hepática , Hígado , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Sirtuina 1 , Animales , Sirtuina 1/metabolismo , Masculino , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Glucósidos/farmacología , Glucósidos/uso terapéutico , Proteínas Quinasas Activadas por AMP/metabolismo , Ligadura , Compuestos de Bencidrilo/farmacología , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/patología , Cirrosis Hepática/metabolismo , Ratas , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Conducto Colédoco/cirugía , Transducción de Señal/efectos de los fármacos , Ratas Wistar , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Antifibróticos/farmacología , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , Proteína Forkhead Box O1
18.
Nature ; 630(8018): 976-983, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38867048

RESUMEN

Interleukin (IL-)23 is a major mediator and therapeutic target in chronic inflammatory diseases that also elicits tissue protection in the intestine at homeostasis or following acute infection1-4. However, the mechanisms that shape these beneficial versus pathological outcomes remain poorly understood. To address this gap in knowledge, we performed single-cell RNA sequencing on all IL-23 receptor-expressing cells in the intestine and their acute response to IL-23, revealing a dominance of T cells and group 3 innate lymphoid cells (ILC3s). Unexpectedly, we identified potent upregulation of the immunoregulatory checkpoint molecule cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) on ILC3s. This pathway was activated by gut microbes and IL-23 in a FOXO1- and STAT3-dependent manner. Mice lacking CTLA-4 on ILC3s exhibited reduced regulatory T cells, elevated inflammatory T cells and more-severe intestinal inflammation. IL-23 induction of CTLA-4+ ILC3s was necessary and sufficient to reduce co-stimulatory molecules and increase PD-L1 bioavailability on intestinal myeloid cells. Finally, human ILC3s upregulated CTLA-4 in response to IL-23 or gut inflammation and correlated with immunoregulation in inflammatory bowel disease. These results reveal ILC3-intrinsic CTLA-4 as an essential checkpoint that restrains the pathological outcomes of IL-23, suggesting that disruption of these lymphocytes, which occurs in inflammatory bowel disease5-7, contributes to chronic inflammation.


Asunto(s)
Inmunidad Innata , Inflamación , Interleucina-23 , Linfocitos , Animales , Femenino , Humanos , Masculino , Ratones , Antígeno CTLA-4/metabolismo , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Microbioma Gastrointestinal , Inflamación/inmunología , Inflamación/patología , Inflamación/metabolismo , Interleucina-23/inmunología , Intestinos/inmunología , Intestinos/patología , Linfocitos/inmunología , Linfocitos/metabolismo , Ratones Endogámicos C57BL , Células Mieloides/metabolismo , Análisis de Expresión Génica de una Sola Célula , Factor de Transcripción STAT3/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo
19.
Chin J Nat Med ; 22(6): 554-567, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38906602

RESUMEN

Diffuse large B-cell lymphoma (DLBCL) is characterized by significant treatment resistance. Palmitic acid (PA) has shown promising antitumor properties. This study aims to elucidate the molecular mechanisms by which PA influences DLBCL progression. We quantified the expression levels of microRNAs (miRNAs), Forkhead box protein O1 (FOXO1), and DNA methyltransferase 3A (DNMT3A) in both untreated and PA-treated DLBCL tumors and cell lines. Assessments were made of cell viability, apoptosis, and autophagy-related protein expression following PA administration. Interaction analyses among miR-429, DNMT3A, and FOXO1 were conducted using luciferase reporter assays and methylation-specific (MSP) Polymerase chain reaction (PCR). After transfecting the miR-429 inhibitor, negative control (NC) inhibitor, shRNA against DNMT3A (sh-DNMT3A), shRNA negative control (sh-NC), overexpression vector for DNMT3A (oe-DNMT3A), or overexpression negative control (oe-NC), we evaluated the effects of miR-429 and DNMT3A on cell viability, mortality, and autophagy-related protein expression in PA-treated DLBCL cell lines. The efficacy of PA was also tested in vivo using DLBCL tumor-bearing mouse models. MiR-429 and FOXO1 expression levels were downregulated, whereas DNMT3A was upregulated in DLBCL compared to the control group. PA treatment was associated with enhanced autophagy, mediated by the upregulation of miR-429 and downregulation of DNMT3A. The luciferase reporter assay and MSP confirmed that miR-429 directly inhibits DNMT3A, thereby reducing FOXO1 methylation. Subsequent experiments demonstrated that PA promotes autophagy and inhibits DLBCL progression by upregulating miR-429 and modulating the DNMT3A/FOXO1 axis. In vivo PA significantly reduced the growth of xenografted tumors through its regulatory impact on the miR-429/DNMT3A/FOXO1 axis. Palmitic acid may modulate autophagy and inhibit DLBCL progression by targeting the miR-429/DNMT3A/FOXO1 signaling pathway, suggesting a novel therapeutic target for DLBCL management.


Asunto(s)
ADN Metiltransferasa 3A , Proteína Forkhead Box O1 , Linfoma de Células B Grandes Difuso , MicroARNs , Ácido Palmítico , MicroARNs/genética , MicroARNs/metabolismo , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/metabolismo , Humanos , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Animales , Ratones , Ácido Palmítico/farmacología , Línea Celular Tumoral , Metilación de ADN/efectos de los fármacos , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Regiones Promotoras Genéticas/efectos de los fármacos , Ratones Desnudos , Masculino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Femenino , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Ratones Endogámicos BALB C
20.
J Transl Med ; 22(1): 538, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844946

RESUMEN

Apalutamide, a novel endocrine therapy agent, has been shown to significantly improve the prognosis of patients with metastatic hormone-sensitive prostate cancer (mHSPC). However, resistance to apalutamide has also been reported, and the underlying mechanism for this response has yet to be clearly elucidated. First, this study established apalutamide-resistant prostate cancer (PCa) cells, and confirmed that apalutamide activated the release of calcium ions (Ca2+) and endoplasmic reticulum stress (ERS) to enhance autophagy. Second, RNA sequencing, western blotting, and immunohistochemistry revealed significantly decreased Calpain 2 (CAPN2) expression in the apalutamide-resistant PCa cells and tissues. Furthermore, immunofluorescence and transmission electron microscopy (TEM) showed that CAPN2 promoted apalutamide resistance by activating protective autophagy. CAPN2 promoted autophagy by reducing Forkhead Box O1 (FOXO1) degradation while increasing nuclear translocation via nucleoplasmic protein isolation and immunofluorescence. In addition, FOXO1 promoted protective autophagy through the transcriptional regulation of autophagy-related gene 5 (ATG5). Furthermore, a dual-fluorescence assay confirmed that transcription factor 3 (ATF3) stimulation promoted CAPN2-mediated autophagy activation via transcriptional regulation. In summary, CAPN2 activated protective autophagy by inhibiting FOXO1 degradation and promoting its nuclear translocation via transcriptional ATG5 regulation. ATF3 activation and transcriptional CAPN2 regulation jointly promoted this bioeffect. Thus, our findings have not only revealed the mechanism underlying apalutamide resistance, but also provided a promising new target for the treatment of metastatic PCa.


Asunto(s)
Autofagia , Calpaína , Resistencia a Antineoplásicos , Metástasis de la Neoplasia , Neoplasias de la Próstata , Tiohidantoínas , Humanos , Masculino , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Calpaína/metabolismo , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Tiohidantoínas/farmacología , Tiohidantoínas/uso terapéutico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteína Forkhead Box O1/metabolismo , Calcio/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA