Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 253
Filtrar
1.
BMC Plant Biol ; 24(1): 652, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982365

RESUMEN

BACKGROUND: Protein phosphatase class 2 C (PP2C) is the largest protein phosphatase family in plants. Members of the PP2C gene family are involved in a variety of physiological pathways in plants, including the abscisic acid signalling pathway, the regulation of plant growth and development, etc., and are capable of responding to a wide range of biotic and abiotic stresses, and play an important role in plant growth, development, and response to stress. Apocynum is a perennial persistent herb, divided into Apocynum venetum and Apocynum hendersonii. It mainly grows in saline soil, deserts and other harsh environments, and is widely used in saline soil improvement, ecological restoration, textiles and medicine. A. hendersonii was found to be more tolerant to adverse conditions. The main purpose of this study was to investigate the PP2C gene family and its expression pattern under salt stress and to identify important candidate genes related to salt tolerance. RESULTS: In this study, 68 AvPP2C genes and 68 AhPP2C genes were identified from the genomes of A. venetum and A. hendersonii, respectively. They were classified into 13 subgroups based on their phylogenetic relationships and were further analyzed for their subcellular locations, gene structures, conserved structural domains, and cis-acting elements. The results of qRT-PCR analyses of seven AvPP2C genes and seven AhPP2C genes proved that they differed significantly in gene expression under salt stress. It has been observed that the PP2C genes in A. venetum and A. hendersonii exhibit different expression patterns. Specifically, AvPP2C2, 6, 24, 27, 41 and AhPP2C2, 6, 24, 27, 42 have shown significant differences in expression under salt stress. This indicates that these genes may play a crucial role in the salt tolerance mechanism of A. venetum and A. hendersonii. CONCLUSIONS: In this study, we conducted a genome-wide analysis of the AvPP2C and AhPP2C gene families in Apocynum, which provided a reference for further understanding the functional characteristics of these genes.


Asunto(s)
Apocynum , Filogenia , Apocynum/genética , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Proteína Fosfatasa 2C/genética , Proteína Fosfatasa 2C/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Tolerancia a la Sal/genética , Genes de Plantas , Perfilación de la Expresión Génica
2.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(3): 731-738, 2024 May 20.
Artículo en Chino | MEDLINE | ID: mdl-38948282

RESUMEN

Objective: To explore the effects of microRNA-342-3p/Mg2+Mn2+-dependent protein phosphatase 1E (miR-342-3p/PPM1E) on the proliferation, migration, and invasion of clear cell renal cell carcinoma (ccRCC) cells. Methods: The gene chips GSE12105, GSE23085, GSE66271, and GSE66270 were searched, and the relationship between miR-342-3p, PPM1E, and the clinical malignant phenotypes of ccRCC was analyzed. ACHN and 769-P cells were transfected with miR-342-3p inhibitor. The effects of miR-342-3p on cell proliferation, migration, and invasion were examined. ACHN cell line with stable and high expression of miR-342-3p was constructed, and the tumorigenicity of the cell line in BALB/c nude mice was observed. The targeted relationship between miR-342-3p and PPM1E was verified by dual-luciferase reporter gene assay. The cells were transfected with miR-342-3p mimic and pcDNA-PPM1E plasmids to observe whether PPM1E could reverse the effects of miR-342-3p overexpression on the proliferation, migration, and invasion of the cells. Results: The expression of miR-342-3p was upregulated in ccRCC, and there were significant differences among patients with tumors of different T stages and G stages and those with different prognoses (P<0.05). The overall survival in the miR-342-3p high-expression group was significantly shorter than that in the low-expression group (P<0.05). Compared with those in the miR-NC group, the miR-342-3p level was significantly downregulated in the inhibitor group, and the cell proliferation ability and the numbers of migrating and invading cells were also significantly decreased (P<0.05). Compared with the miR-NC group, miR-342-3p group had significantly increased volume and mass of tumor tissues and miR-342-3p level, but significantly decreased level of PPM1E mRNA (P<0.05). The expression of PPM1E was downregulated in ccRCC, and there were significant differences among patients with tumors of different M stages, N stages, and G stages, and different recurrence statuses (P<0.05). The miR-342-3p could inhibit the expression of PPM1E in a targeted way. Compared with the miR-NC group, the miR-342-3p group had significantly increased cell proliferation ability and increased numbers of migrating and invading cells (P<0.05). However, PPM1E could reverse the promotion effect of miR-342-3p mimic on ccRCC cells (P<0.05). Conclusion: The miR-342-3p can inhibit PPM1E expression in a targeted way, and thus promotes the proliferation, migration, and invasion of ccRCC cells.


Asunto(s)
Carcinoma de Células Renales , Movimiento Celular , Proliferación Celular , Neoplasias Renales , Ratones Endogámicos BALB C , Ratones Desnudos , MicroARNs , Invasividad Neoplásica , Proteína Fosfatasa 2C , MicroARNs/genética , MicroARNs/metabolismo , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/metabolismo , Proliferación Celular/genética , Movimiento Celular/genética , Humanos , Animales , Neoplasias Renales/genética , Neoplasias Renales/patología , Ratones , Proteína Fosfatasa 2C/genética , Proteína Fosfatasa 2C/metabolismo , Línea Celular Tumoral
3.
Elife ; 122024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38896450

RESUMEN

The DNA damage response is critical for maintaining genome integrity and is commonly disrupted in the development of cancer. PPM1D (protein phosphatase Mg2+/Mn2+-dependent 1D) is a master negative regulator of the response; gain-of-function mutations and amplifications of PPM1D are found across several human cancers making it a relevant pharmacological target. Here, we used CRISPR/Cas9 screening to identify synthetic-lethal dependencies of PPM1D, uncovering superoxide dismutase-1 (SOD1) as a potential target for PPM1D-mutant cells. We revealed a dysregulated redox landscape characterized by elevated levels of reactive oxygen species and a compromised response to oxidative stress in PPM1D-mutant cells. Altogether, our results demonstrate a role for SOD1 in the survival of PPM1D-mutant leukemia cells and highlight a new potential therapeutic strategy against PPM1D-mutant cancers.


Asunto(s)
Proteína Fosfatasa 2C , Superóxido Dismutasa-1 , Proteína Fosfatasa 2C/metabolismo , Proteína Fosfatasa 2C/genética , Humanos , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo , Línea Celular Tumoral , Leucemia/genética , Sistemas CRISPR-Cas , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Mutaciones Letales Sintéticas , Mutación
4.
Plant Physiol Biochem ; 212: 108782, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38850728

RESUMEN

Drought is a major environmental stress that limits plant growth, so it's important to identify drought-responsive genes to understand the mechanism of drought response and breed drought-tolerant roses. Protein phosphatase 2C (PP2C) plays a crucial role in plant abiotic stress response. In this study, we identified 412 putative PP2Cs from six Rosaceae species. These genes were divided into twelve clades, with clade A containing the largest number of PP2Cs (14.1%). Clade A PP2Cs are known for their important role in ABA-mediated drought stress response; therefore, the analysis focused on these specific genes. Conserved motif analysis revealed that clade A PP2Cs in these six Rosaceae species shared conserved C-terminal catalytic domains. Collinearity analysis indicated that segmental duplication events played a significant role in the evolution of clade A PP2Cs in Rosaceae. Analysis of the expression of 11 clade A RcPP2Cs showed that approximately 60% of these genes responded to drought, high temperature, and salt stress. Among them, RcPP2C24 exhibited the highest responsiveness to both drought and ABA. Furthermore, overexpression of RcPP2C24 significantly reduced drought tolerance in transgenic tobacco by increasing stomatal aperture after exposure to drought stress. The transient overexpression of RcPP2C24 weakened the dehydration tolerance of rose petal discs, while its silencing increased their dehydration tolerance. In summary, our study identified PP2Cs in six Rosaceae species and highlighted the negative role of RcPP2C24 on rose's drought tolerance by inhibiting stomatal closure. Our findings provide valuable insights into understanding the mechanism behind rose's response to drought.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Proteína Fosfatasa 2C , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteína Fosfatasa 2C/genética , Proteína Fosfatasa 2C/metabolismo , Rosa/genética , Rosa/enzimología , Rosa/metabolismo , Plantas Modificadas Genéticamente , Rosaceae/genética , Rosaceae/metabolismo , Nicotiana/genética , Nicotiana/fisiología , Filogenia , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Estrés Fisiológico/genética , Deshidratación/genética , Resistencia a la Sequía
5.
J Agric Food Chem ; 72(22): 12445-12458, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38771652

RESUMEN

Global water deficit is a severe abiotic stress threatening the yielding and quality of crops. Abscisic acid (ABA) is a phytohormone that mediates drought tolerance. Protein kinases and phosphatases function as molecular switches in eukaryotes. Protein phosphatases type 2C (PP2Cs) are a major family that play essential roles in ABA signaling and stress responses. However, the role and underlying mechanism of PP2C in rapeseed (Brassica napus L.) mediating drought response has not been reported yet. Here, we characterized a PP2C family member, BnaPP2C37, and its expression level was highly induced by ABA and dehydration treatments. It negatively regulates drought tolerance in rapeseed. We further identified that BnaPP2C37 interacted with multiple PYR/PYL receptors and a drought regulator BnaCPK5 (calcium-dependent protein kinase 5) through yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays. Specifically, BnaPYL1 and BnaPYL9 repress BnaPP2C37 phosphatase activity. Moreover, the pull-down assay and phosphatase assays show BnaPP2C37 interacts with BnaCPK5 to dephosphorylate BnaCPK5 and its downstream BnaABF3. Furthermore, a dual-luciferase assay revealed BnaPP2C37 transcript level was enhanced by BnaABF3 and BnaABF4, forming a negative feedback regulation to ABA response. In summary, we identified that BnaPP2C37 functions negatively in drought tolerance of rapeseed, and its phosphatase activity is repressed by BnaPYL1/9 whereas its transcriptional level is upregulated by BnaABF3/4.


Asunto(s)
Ácido Abscísico , Brassica napus , Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Ácido Abscísico/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Brassica napus/genética , Brassica napus/metabolismo , Proteína Fosfatasa 2C/metabolismo , Proteína Fosfatasa 2C/genética , Estrés Fisiológico , Reguladores del Crecimiento de las Plantas/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Fosfoproteínas Fosfatasas/genética , Resistencia a la Sequía
6.
Plant J ; 119(2): 1073-1090, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38795008

RESUMEN

Abscisic acid (ABA) signaling interacts frequently with auxin signaling when it regulates plant development, affecting multiple physiological processes; however, to the best of our knowledge, their interaction during tomato development has not yet been reported. Here, we found that type 2C protein phosphatase (SlPP2C2) interacts with both flavin monooxygenase FZY, an indole-3-acetic acid (IAA) biosynthetic enzyme, and small auxin upregulated RNA (SAUR) of an IAA signaling protein and regulates their activity, thereby affecting the expression of IAA-responsive genes. The expression level of SlPP2C2 was increased by exogenous ABA, IAA, NaCl, or dehydration treatment of fruits, leaves, and seeds, and it decreased in imbibed seeds. Manipulating SlPP2C2 with overexpression, RNA interference, and CRISPR/Cas9-mediated genome editing resulted in pleiotropic changes, such as morphological changes in leaves, stem trichomes, floral organs and fruits, accompanied by alterations in IAA and ABA levels. Furthermore, the RNA-seq analysis indicated that SlPP2C2 regulates the expression of auxin-/IAA-responsive genes in different tissues of tomato. The results demonstrate that SlPP2C2-mediated ABA signaling regulates the development of both vegetative and reproductive organs via interaction with FZY/SAUR, which integrates the cross-talk of ABA and auxin signals during development and affects the expressions of development-related genes in tomato.


Asunto(s)
Ácido Abscísico , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Proteínas de Plantas , Transducción de Señal , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteína Fosfatasa 2C/metabolismo , Proteína Fosfatasa 2C/genética , Plantas Modificadas Genéticamente , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Semillas/genética
7.
Plant Sci ; 344: 112086, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38599246

RESUMEN

Low-temperature storage can facilitate to the preservation of postharvest fruits. However, tomato fruit are vulnerable to chilling injury (CI) throughout refrigerated storage, resulting in economic losses. Abscisic acid (ABA) treatment weakened the CI progression in tomato fruit. Protein phosphatase 2 C 29 (SlPP2C29) acted as the negative regulator in the ABA-enhanced chilling tolerance. The gene expression of SlPP2C29 and activity of PP2C were down regulated by ABA treatment. Furthermore, SlPP2C29 was shown to be the negative downstream messenger in the ABA-alleviated oxidative damage. Moreover, basic helix-loop-helix 1 (SlbHLH1) bound to the E-box element within SlPP2C29 promoter, and negatively modulated its expression. SlbHLH1 mediated the ABA-boosted chilling tolerance. It turned out that SlbHLH1 was the positive modulator involved in the ABA-inhibited SlPP2C29 expression and PP2C activity. SlbHLH1 was furtherly found to work as the positive regulator in the ABA-lowered oxidative damage. Thus, SlbHLH1 alleviated the CI severity by repressing SlPP2C29 under ABA treatment in tomato fruit.


Asunto(s)
Ácido Abscísico , Frío , Frutas , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Frutas/genética , Frutas/fisiología , Frutas/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Proteína Fosfatasa 2C/genética , Proteína Fosfatasa 2C/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo
8.
Arch Gerontol Geriatr ; 123: 105424, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38565071

RESUMEN

BACKGROUND: Lipid metabolism disorders appear to play an important role in the ageing process, thus understanding the cellular and molecular mechanisms underlying the association of ageing with elevated vulnerability to lipid metabolism related diseases is crucial towards promoting quality of life in old age. MicroRNAs (miRNAs) have emerged as crucial regulators of lipid metabolism, and some miRNAs have key roles in ageing. METHODS: In this study, we investigated changes in liver lipid metabolism of ageing mice and the mechanisms of the altered expression of miRNAs in the ageing liver which contributes to the age-dependent increase in lipid synthesis. Here we found that miR-743b-3p was higher expressed in the liver tissues of ageing mice through the small RNA sequencing and bioinformatics analysis, and its target PPM1K was predicted and confirmed the target relationship of miR-743b-3p with PPM1K in the aged mouse liver tissues and the cultured senescent hepatocytes in vitro. Moreover, using the transfected miR-743b-3p mimics/inhibitors into the senescent hepatocyte AML12. RESULTS: We found that miR-743b-3p inhibition reversed the hepatocyte senescence, and finally decreased the expression of genes involved in lipid synthesis(Chrebp, Fabp4, Acly and Pparγ) through increasing the target gene expression of PPM1K which regulated the expression of branched-chain amino acids (BCAA) metabolism-related genes (Bckdhα, Bckdk, Bcat2, Dbt). CONCLUSIONS: These results identify that age-induced expression of miR-743b-3p inhibits its target PPM1K which induces BCAA metabolic disorder and regulates hepatocyte lipid accumulation during ageing.


Asunto(s)
Envejecimiento , Aminoácidos de Cadena Ramificada , Lipogénesis , Hígado , MicroARNs , Animales , Masculino , Ratones , Envejecimiento/metabolismo , Envejecimiento/genética , Aminoácidos de Cadena Ramificada/metabolismo , Senescencia Celular , Hepatocitos/metabolismo , Metabolismo de los Lípidos/genética , Lipogénesis/genética , Hígado/metabolismo , Ratones Endogámicos C57BL , MicroARNs/metabolismo , MicroARNs/genética , Proteína Fosfatasa 2C/genética , Proteína Fosfatasa 2C/metabolismo
9.
Leukemia ; 38(6): 1266-1274, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38684821

RESUMEN

Therapy-related myeloid neoplasms (tMN) are complications of cytotoxic therapies. Risk of tMN is high in recipients of autologous hematopoietic stem cell transplantation (aHSCT). Acquisition of genomic mutations represents a key pathogenic driver but the origins, timing and dynamics, particularly in the context of preexisting or emergent clonal hematopoiesis (CH), have not been sufficiently clarified. We studied a cohort of 1507 patients undergoing aHSCT and a cohort of 263 patients who developed tMN without aHSCT to determine clinico-molecular features unique to post-aHSCT tMN. We show that tMN occurs in up to 2.3% of patients at median of 2.6 years post-AHSCT. Age ≥ 60 years, male sex, radiotherapy, high treatment burden ( ≥ 3 lines of chemotherapy), and graft cellularity increased the risk of tMN. Time to evolution and overall survival were shorter in post-aHSCT tMN vs. other tMN, and the earlier group's mutational pattern was enriched in PPM1D and TP53 lesions. Preexisting CH increased the risk of adverse outcomes including post-aHSCT tMN. Particularly, antecedent lesions affecting PPM1D and TP53 predicted tMN evolution post-transplant. Notably, CH-derived tMN had worse outcomes than non CH-derived tMN. As such, screening for CH before aHSCT may inform individual patients' prognostic outcomes and influence their prospective treatment plans. Presented in part as an oral abstract at the 2022 American Society of Hematology Annual Meeting, New Orleans, LA, 2022.


Asunto(s)
Hematopoyesis Clonal , Trasplante de Células Madre Hematopoyéticas , Mutación , Neoplasias Primarias Secundarias , Trasplante Autólogo , Humanos , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Masculino , Persona de Mediana Edad , Femenino , Trasplante Autólogo/efectos adversos , Adulto , Neoplasias Primarias Secundarias/etiología , Neoplasias Primarias Secundarias/genética , Neoplasias Primarias Secundarias/terapia , Anciano , Pronóstico , Trastornos Mieloproliferativos/terapia , Trastornos Mieloproliferativos/etiología , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/patología , Adulto Joven , Adolescente , Proteína Fosfatasa 2C/genética , Proteína p53 Supresora de Tumor/genética , Estudios de Seguimiento , Linfoma/terapia , Linfoma/etiología , Linfoma/genética , Tasa de Supervivencia
10.
Stem Cell Res ; 77: 103420, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643711

RESUMEN

PPM1A is a member of the serine/threonine protein phosphatase family. It can bind to a variety of proteins to dephosphorylate them, and extensively regulates many life activities such as cell growth, cell stress, immune response, and tumor formation. Here we constructed a human induced pluripotent stem cell (hiPSC) line with knockout of PPM1A using CRISPR/Cas9-mediated gene targeting. This cell line exhibits normal karyotype, pluripotency, and trilineage differentiation potential, which could provide a useful cellular resource for exploring the mechanism of PPM1A in regulating downstream signaling pathways and explore the application of PPM1A in anti-tumor and anti-infection.


Asunto(s)
Sistemas CRISPR-Cas , Células Madre Pluripotentes Inducidas , Proteína Fosfatasa 2C , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Proteína Fosfatasa 2C/metabolismo , Proteína Fosfatasa 2C/genética , Diferenciación Celular , Línea Celular
11.
J Clin Oncol ; 42(20): 2415-2424, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38635938

RESUMEN

PURPOSE: Therapy-related myeloid neoplasm (t-MN) is a life-threatening complication of autologous peripheral blood stem cell transplantation (aPBSCT) for Hodgkin lymphoma (HL). Although previous studies have reported an association between clonal hematopoiesis (CH) in the infused PBSC product and subsequent post-aPBSCT risk of t-MN in patients with non-HL, information about patients with HL treated with aPBSCT is not available. METHODS: We constructed a retrospective cohort of 321 patients with HL transplanted at a median age of 34 years (range, 18-71). Targeted DNA sequencing of PBSC products performed for CH-associated or myeloid malignancy-associated genes identified pathogenic mutations in these patients. RESULTS: CH was identified in the PBSC product of 46 patients (14.3%) with most prominent representation of DNMT3A (n = 25), PPM1D (n = 7), TET2 (n = 7), and TP53 (n = 5) mutations. Presence of CH in the PBSC product was an independent predictor of t-MN (adjusted hazard ratio [aHR], 4.50 [95% CI, 1.54 to 13.19]). Notably all patients with TP53 mutations in the PBSC product developed t-MN, whereas none of the patients with DNMT3A mutations alone (without co-occurring TP53 or PPM1D mutations) did. Presence of TP53 and/or PPM1D mutations was associated with a 7.29-fold higher hazard of t-MN when compared with individuals carrying no CH mutations (95% CI, 1.72 to 30.94). The presence of TP53 and/or PPM1D mutations was also associated with a 4.17-fold higher hazard of nonrelapse mortality (95% CI, 1.25 to 13.87). There was no association between CH and relapse-related mortality. CONCLUSION: The presence of TP53 and/or PPM1D mutations in the PBSC product increases the risk of post-aPBSCT t-MN and nonrelapse mortality among patients with HL and may support alternative therapeutic strategies.


Asunto(s)
Hematopoyesis Clonal , Enfermedad de Hodgkin , Mutación , Neoplasias Primarias Secundarias , Trasplante Autólogo , Humanos , Enfermedad de Hodgkin/terapia , Enfermedad de Hodgkin/genética , Adulto , Femenino , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Adolescente , Trasplante Autólogo/efectos adversos , Hematopoyesis Clonal/genética , Adulto Joven , Anciano , Neoplasias Primarias Secundarias/genética , Neoplasias Primarias Secundarias/etiología , Trasplante de Células Madre de Sangre Periférica/efectos adversos , Proteína p53 Supresora de Tumor/genética , ADN Metiltransferasa 3A , Proteína Fosfatasa 2C/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Dioxigenasas , Proteínas de Unión al ADN/genética , Proteínas Proto-Oncogénicas/genética
12.
Plant J ; 119(2): 1112-1133, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38613775

RESUMEN

Phytohormones are essential signaling molecules regulating various processes in growth, development, and stress responses. Genetic and molecular studies, especially using Arabidopsis thaliana (Arabidopsis), have discovered many important players involved in hormone perception, signal transduction, transport, and metabolism. Phytohormone signaling pathways are extensively interconnected with other endogenous and environmental stimuli. However, our knowledge of the huge and complex molecular network governed by a hormone remains limited. Here we report a global overview of downstream events of an abscisic acid (ABA) receptor, REGULATORY COMPONENTS OF ABA RECEPTOR (RCAR) 6 (also known as PYRABACTIN RESISTANCE 1 [PYR1]-LIKE [PYL] 12), by integrating phosphoproteomic, proteomic and metabolite profiles. Our data suggest that the RCAR6 overexpression constitutively decreases the protein levels of its coreceptors, namely clade A protein phosphatases of type 2C, and activates sucrose non-fermenting-1 (SNF1)-related protein kinase 1 (SnRK1) and SnRK2, the central regulators of energy and ABA signaling pathways. Furthermore, several enzymes in sugar metabolism were differentially phosphorylated and expressed in the RCAR6 line, and the metabolite profile revealed altered accumulations of several organic acids and amino acids. These results indicate that energy- and water-saving mechanisms mediated by the SnRK1 and SnRK2 kinases, respectively, are under the control of the ABA receptor-coreceptor complexes.


Asunto(s)
Ácido Abscísico , Proteínas de Arabidopsis , Arabidopsis , Reguladores del Crecimiento de las Plantas , Proteínas Serina-Treonina Quinasas , Proteómica , Transducción de Señal , Arabidopsis/genética , Arabidopsis/metabolismo , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Estrés Fisiológico , Regulación de la Expresión Génica de las Plantas , Metabolismo Energético , Proteína Fosfatasa 2C/metabolismo , Proteína Fosfatasa 2C/genética , Multiómica
13.
PLoS One ; 19(3): e0298543, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38507444

RESUMEN

Plant protein phosphatase 2C (PP2C) plays vital roles in responding to various stresses, stimulating growth factors, phytohormones, and metabolic activities in many important plant species. However, the PP2C gene family has not been investigated in the economically valuable plant species sunflower (Helianthus annuus L.). This study used comprehensive bioinformatics tools to identify and characterize the PP2C gene family members in the sunflower genome (H. annuus r1.2). Additionally, we analyzed the expression profiles of these genes using RNA-seq data under four different stress conditions in both leaf and root tissues. A total of 121 PP2C genes were identified in the sunflower genome distributed unevenly across the 17 chromosomes, all containing the Type-2C phosphatase domain. HanPP2C genes are divided into 15 subgroups (A-L) based on phylogenetic tree analysis. Analyses of conserved domains, gene structures, and motifs revealed higher structural and functional similarities within various subgroups. Gene duplication and collinearity analysis showed that among the 53 HanPP2C gene pairs, 48 demonstrated segmental duplications under strong purifying selection pressure, with only five gene pairs showing tandem duplications. The abundant segmental duplication was observed compared to tandem duplication, which was the major factor underlying the dispersion of the PP2C gene family in sunflowers. Most HanPP2C proteins were localized in the nucleus, cytoplasm, and chloroplast. Among the 121 HanPP2C genes, we identified 71 miRNAs targeting 86 HanPP2C genes involved in plant developmental processes and response to abiotic stresses. By analyzing cis-elements, we identified 63 cis-regulatory elements in the promoter regions of HanPP2C genes associated with light responsiveness, tissue-specificity, phytohormone, and stress responses. Based on RNA-seq data from two sunflower tissues (leaf and root), 47 HanPP2C genes exhibited varying expression levels in leaf tissue, while 49 HanPP2C genes showed differential expression patterns in root tissue across all stress conditions. Transcriptome profiling revealed that nine HanPP2C genes (HanPP2C12, HanPP2C36, HanPP2C38, HanPP2C47, HanPP2C48, HanPP2C53, HanPP2C54, HanPP2C59, and HanPP2C73) exhibited higher expression in leaf tissue, and five HanPP2C genes (HanPP2C13, HanPP2C47, HanPP2C48, HanPP2C54, and HanPP2C95) showed enhanced expression in root tissue in response to the four stress treatments, compared to the control conditions. These results suggest that these HanPP2C genes may be potential candidates for conferring tolerance to multiple stresses and further detailed characterization to elucidate their functions. From these candidates, 3D structures were predicted for six HanPP2C proteins (HanPP2C47, HanPP2C48, HanPP2C53, HanPP2C54, HanPP2C59, and HanPP2C73), which provided satisfactory models. Our findings provide valuable insights into the PP2C gene family in the sunflower genome, which could play a crucial role in responding to various stresses. This information can be exploited in sunflower breeding programs to develop improved cultivars with increased abiotic stress tolerance.


Asunto(s)
Helianthus , Proteína Fosfatasa 2C/genética , Helianthus/genética , Genoma de Planta , Filogenia , Fitomejoramiento , Familia de Multigenes , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética
14.
Haematologica ; 109(7): 2144-2156, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38328859

RESUMEN

Hematopoietic stem cells (HSC) are primarily dormant in a cell-cycle quiescence state to preserve their self-renewal capacity and long-term maintenance. How HSC maintain the balance between activation and quiescence remains largely unknown. Herein, we found that phosphatase, Mg2+/Mn2+ dependent 1B (Ppm1b) is required for the expansion of phenotypic HSC in vitro. By using a conditional knockout mouse model in which Ppm1b was specifically depleted in hematopoietic cells, we demonstrated that loss of Ppm1b impaired the HSC homeostasis and hematopoietic reconstitution. Ppm1b deficiency mice also exhibited B-cell leukocytopenia, which is due to the compromised commitment and proliferation of B-biased lymphoid progenitor cells from common lymphoid progenitors. With the aid of a small molecular inhibitor, we confirmed the roles of Ppm1b in adult hematopoiesis that phenocopied the effects with loss of Ppm1b. Furthermore, transcriptome profiling of Ppm1b-deficient HSC revealed the disruptive quiescence of HSC. Mechanistically, Ppm1b interacted with ß-catenin and mediated its dephosphorylation. Loss of Ppm1b led to the decrease in the active ß-catenin (non-phosphorylated) that interrupted the Wnt/ß-catenin signaling in HSC, which consequently suppressed HSC expansion. Together, our study identified an indispensable role for Ppm1b in regulating HSC homeostasis via the Wnt/ß-catenin pathway.


Asunto(s)
Células Madre Hematopoyéticas , Homeostasis , Ratones Noqueados , Proteína Fosfatasa 2C , Vía de Señalización Wnt , Animales , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Ratones , Proteína Fosfatasa 2C/metabolismo , Proteína Fosfatasa 2C/genética , beta Catenina/metabolismo , Hematopoyesis
15.
Exp Cell Res ; 435(2): 113932, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38246397

RESUMEN

RNA binding protein RBM10 participates in various RNA metabolism, and its decreased expression or loss of function by mutation has been identified in many human cancers. However, how its dysregulation contributes to human cancer pathogenesis remains to be determined. Here, we found that RBM10 expression was decreased in breast tumors, and breast cancer patients with low RBM10 expression presented poorer survival rates. RBM10 depletion in breast cancer cells significantly promotes the cellular proliferation and migration. We further demonstrated that RBM10 forms a triple complex with YBX1 and phosphatase 1B (PPM1B), in which PPM1B serves as the phosphatase of YBX1. RBM10 knock-down markedly attenuated association between YBX1 and PPM1B, leading to elevated levels of YBX1 phosphorylation and its nuclear translocation. Furthermore, cancer cells with RBM10 depletion had a significantly accelerated tumor growth in nude mice. Importantly, these enhanced tumorigenic phenotypes can be reversed by overexpression of PPM1B. Our findings provide the mechanistic bases for functional loss of RBM10 in promoting tumorigenicity, and are potentially useful in the development of combined therapeutic strategies for cancer patients with defective RBM10.


Asunto(s)
Neoplasias de la Mama , Carcinogénesis , Animales , Ratones , Humanos , Femenino , Ratones Desnudos , Carcinogénesis/genética , Fosforilación , Proliferación Celular/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Proteína 1 de Unión a la Caja Y/genética , Proteína 1 de Unión a la Caja Y/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteína Fosfatasa 2C/genética , Proteína Fosfatasa 2C/metabolismo
16.
Mol Oncol ; 18(1): 6-20, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37067201

RESUMEN

Oncogene-induced replication stress has been recognized as a major cause of genome instability in cancer cells. Increased expression of cyclin E1 caused by amplification of the CCNE1 gene is a common cause of replication stress in various cancers. Protein phosphatase magnesium-dependent 1 delta (PPM1D) is a negative regulator of p53 and has been implicated in termination of the cell cycle checkpoint. Amplification of the PPM1D gene or frameshift mutations in its final exon promote tumorigenesis. Here, we show that PPM1D activity further increases the replication stress caused by overexpression of cyclin E1. In particular, we demonstrate that cells expressing a truncated mutant of PPM1D progress faster from G1 to S phase and fail to complete licensing of the replication origins. In addition, we show that transcription-replication collisions and replication fork slowing caused by CCNE1 overexpression are exaggerated in cells expressing the truncated PPM1D. Finally, replication speed and accumulation of focal DNA copy number alterations caused by induction of CCNE1 expression was rescued by pharmacological inhibition of PPM1D. We propose that increased activity of PPM1D suppresses the checkpoint function of p53 and thus promotes genome instability in cells expressing the CCNE1 oncogene.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ciclina E/genética , Ciclina E/metabolismo , Inestabilidad Genómica , Proteína Fosfatasa 2C/genética , Proteína Fosfatasa 2C/metabolismo
17.
Plant Physiol Biochem ; 206: 108291, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38141400

RESUMEN

Abscisic acid (ABA) signaling plays a crucial role in plant development and response to abiotic/biotic stress. However, the function and regulation of protein phosphatase 2C (PP2C), a key component of abscisic acid signaling, under abiotic stress are still unknown in cassava, a drought-tolerant crop. In this study, a cassava PP2C gene (MePP2C24) was cloned and characterized. The MePP2C24 transcripts increased in response to mannitol, NaCl, and ABA. Overexpression of MePP2C24 in Arabidopsis resulted in increased sensitivity to drought stress and decreased sensitivity to exogenous ABA. This was demonstrated by transgenic lines having higher levels of malondialdehyde (MDA), ion leakage (IL), and reactive oxygen species (ROS), lower activities of catalase (CAT) and peroxidase (POD), and lower proline content than wild type (WT) under drought stress. Moreover, MePP2C24 overexpression caused decrease in expression of drought-responsive genes related to ABA signaling pathway. In addition, MePP2C24 was localized in the cell nucleus and showed self-activation. Furthermore, many MePYLs (MePYL1, MePYL4, MePYL7-9, and MePYL11-13) could interact with MePP2C24 in the presence of ABA, and MePYL1 interacted with MePP2C24 in both the presence and absence of ABA. Additionally, MebZIP11 interacted with the promoter of MePP2C24 and exerted a suppressive effect. Taken together, our results suggest that MePP2C24 acts as a negative regulator of drought tolerance and ABA response.


Asunto(s)
Arabidopsis , Manihot , Arabidopsis/metabolismo , Ácido Abscísico/metabolismo , Proteína Fosfatasa 2C/genética , Proteína Fosfatasa 2C/metabolismo , Manihot/metabolismo , Proteínas de Plantas/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Plantas Modificadas Genéticamente/metabolismo
19.
Curr Oncol ; 30(12): 10463-10476, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38132396

RESUMEN

Chimeric antigen receptor T (CAR T)-cell therapy has become a standard treatment option for patients with relapsed or refractory diffuse large B-cell lymphoma (r/r DLBCL). Mutations in the PPM1D gene, a frequent driver alteration in clonal hematopoiesis (CH), lead to a gain of function of PPM1D/Wip1 phosphatase, impairing p53-dependent G1 checkpoint and promoting cell proliferation. The presence of PPM1D mutations has been correlated with reduced response to standard chemotherapy in lymphoma patients. In this study, we analyzed the impact of low-frequency PPM1D mutations on the safety and efficacy of CD19-targeted CAR T-cell therapy in a cohort of 85 r/r DLBCL patients. In this cohort, the prevalence of PPM1D gene mutations was 20% with a mean variant allele frequency (VAF) of 0.052 and a median VAF of 0.036. CAR T-induced cytokine release syndrome (CRS) and immune effector cell-associated neuro-toxicities (ICANS) occurred at similar frequencies in patients with and without PPM1D mutations. Clinical outcomes were globally worse in the PPM1D mutated (PPM1Dmut) vs. PPM1D wild type (PPM1Dwt) subset. While the prevalent treatment outcome within the PPM1Dwt subgroup was complete remission (56%), the majority of patients within the PPM1Dmut subgroup had only partial remission (60%). Median progression-free survival (PFS) was 3 vs. 12 months (p = 0.07) and median overall survival (OS) was 5 vs. 37 months (p = 0.004) for the PPM1Dmut and PPM1Dwt cohort, respectively. Our data suggest that the occurrence of PPM1D mutations in the context of CH may predict worse outcomes after CD19-targeted CAR T-cell therapy in patients with r/r DLBCL.


Asunto(s)
Linfoma de Células B Grandes Difuso , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia Adoptiva/efectos adversos , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/uso terapéutico , Linfoma de Células B Grandes Difuso/terapia , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Resultado del Tratamiento , Antígenos CD19/genética , Antígenos CD19/uso terapéutico , Proteína Fosfatasa 2C/genética
20.
mBio ; 14(5): e0097723, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37754565

RESUMEN

IMPORTANCE: Aspergillus flavus is a model filamentous fungus that can produce aflatoxins when it infects agricultural crops. This study evaluated the protein phosphatase 2C (PP2C) family as a potential drug target with important physiological functions and pathological significance in A. flavus. We found that two redundant PP2C phosphatases, Ptc1 and Ptc2, regulate conidia development, aflatoxin synthesis, autophagic vesicle formation, and seed infection. The target protein phosphoglycerate kinase 1 (PGK1) that interacts with Ptc1 and Ptc2 is essential to regulate metabolism and the autophagy process. Furthermore, Ptc1 and Ptc2 regulate the phosphorylation level of PGK1 S203, which is important for influencing aflatoxin synthesis. Our results provide a potential target for interdicting the toxicity of A. flavus.


Asunto(s)
Aflatoxinas , Aspergillus flavus , Aspergillus flavus/metabolismo , Proteína Fosfatasa 2C/genética , Proteína Fosfatasa 2C/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Aflatoxinas/metabolismo , Autofagia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA