Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 993
Filtrar
1.
Autoimmunity ; 57(1): 2345919, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38721693

RESUMEN

Dual-specificity phosphatase 12 (DUSP12) is abnormally expressed under various pathological conditions and plays a crucial role in the pathological progression of disorders. However, the role of DUSP12 in cerebral ischaemia/reperfusion injury has not yet been investigated. This study explored the possible link between DUSP12 and cerebral ischaemia/reperfusion injury using an oxygen-glucose deprivation/reoxygenation (OGD/R) model. Marked decreases in DUSP12 levels have been observed in cultured neurons exposed to OGD/R. DUSP12-overexpressed neurons were resistant to OGD/R-induced apoptosis and inflammation, whereas DUSP12-deficient neurons were vulnerable to OGD/R-evoked injuries. Further investigation revealed that DUSP12 overexpression or deficiency affects the phosphorylation of apoptosis signal-regulating kinase 1 (ASK1), c-Jun NH2-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) in neurons under OGD/R conditions. Moreover, blockade of ASK1 diminished the regulatory effect of DUSP12 deficiency on JNK and p38 MAPK activation. In addition, DUSP12-deficiency-elicited effects exacerbating neuronal OGD/R injury were reversed by ASK1 blockade. In summary, DUSP12 protects against neuronal OGD/R injury by reducing apoptosis and inflammation through inactivation of the ASK1-JNK/p38 MAPK pathway. These findings imply a neuroprotective function for DUSP12 in cerebral ischaemia/reperfusion injury.


Asunto(s)
Apoptosis , Fosfatasas de Especificidad Dual , Glucosa , Inflamación , MAP Quinasa Quinasa Quinasa 5 , Neuronas , Oxígeno , Daño por Reperfusión , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Ratones , Células Cultivadas , Fosfatasas de Especificidad Dual/metabolismo , Fosfatasas de Especificidad Dual/genética , Glucosa/metabolismo , Inflamación/metabolismo , Inflamación/patología , MAP Quinasa Quinasa Quinasa 5/metabolismo , Sistema de Señalización de MAP Quinasas , Neuronas/metabolismo , Neuronas/patología , Oxígeno/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Transducción de Señal , Proteína Quinasa 14 Activada por Mitógenos
2.
Cell Death Dis ; 15(5): 366, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806469

RESUMEN

Glioblastoma (GBM) is the most aggressive and lethal brain tumor in adults. This study aimed to investigate the functional significance of aryl hydrocarbon receptor nuclear translocator (ARNT) in the pathogenesis of GBM. Analysis of public datasets revealed ARNT is upregulated in GBM tissues compared to lower grade gliomas or normal brain tissues. Higher ARNT expression correlated with the mesenchymal subtype and poorer survival in GBM patients. Silencing ARNT using lentiviral shRNAs attenuated the proliferative, invasive, and stem-like capabilities of GBM cell lines, while ARNT overexpression enhanced these malignant phenotypes. Single-cell RNA sequencing uncovered that ARNT is highly expressed in a stem-like subpopulation and is involved in regulating glycolysis, hypoxia response, and stress pathways. Mechanistic studies found ARNT activates p38 mitogen-activated protein kinase (MAPK) signaling to promote chemoresistance in GBM cells. Disrupting the ARNT/p38α protein interaction via the ARNT PAS-A domain restored temozolomide sensitivity. Overall, this study demonstrates ARNT functions as an oncogenic driver in GBM pathogenesis and represents a promising therapeutic target.


Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo , Resistencia a Antineoplásicos , Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Línea Celular Tumoral , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Animales , Proliferación Celular/efectos de los fármacos , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/genética , Ratones , Regulación Neoplásica de la Expresión Génica , Temozolomida/farmacología , Temozolomida/uso terapéutico , Ratones Desnudos , Transducción de Señal/efectos de los fármacos
3.
Cells ; 13(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38727308

RESUMEN

Bisindole alkaloids are a source of inspiration for the design and discovery of new-generation anticancer agents. In this study, we investigated the cytotoxic and antiproliferative activities of three spirobisindole alkaloids from the traditional anticancer Philippine medicinal plant Voacanga globosa, along with their mechanisms of action. Thus, the alkaloids globospiramine (1), deoxyvobtusine (2), and vobtusine lactone (3) showed in vitro cytotoxicity and antiproliferative activities against the tested cell lines (L929, KB3.1, A431, MCF-7, A549, PC-3, and SKOV-3) using MTT and CellTiter-Blue assays. Globospiramine (1) was also screened against a panel of breast cancer cell lines using the sulforhodamine B (SRB) assay and showed moderate cytotoxicity. It also promoted the activation of apoptotic effector caspases 3 and 7 using Caspase-Glo 3/7 and CellEvent-3/7 apoptosis assays. Increased expressions of cleaved caspase 3 and PARP in A549 cells treated with 1 were also observed. Apoptotic activity was also confirmed when globospiramine (1) failed to promote the rapid loss of membrane integrity according to the HeLa cell membrane permeability assay. Network pharmacology analysis, molecular docking, and molecular dynamics simulations identified MAPK14 (p38α), a pharmacological target leading to cancer cell apoptosis, as a putative target. Low toxicity risks and favorable drug-likeness were also predicted for 1. Overall, our study demonstrated the anticancer potentials and apoptotic mechanisms of globospiramine (1), validating the traditional medicinal use of Voacanga globosa.


Asunto(s)
Apoptosis , Proliferación Celular , Alcaloides Indólicos , Proteína Quinasa 14 Activada por Mitógenos , Simulación del Acoplamiento Molecular , Humanos , Células A549 , Apoptosis/efectos de los fármacos , Caspasas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Alcaloides Indólicos/farmacología , Alcaloides Indólicos/química , Simulación de Dinámica Molecular , Proteína Quinasa 14 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 14 Activada por Mitógenos/metabolismo
4.
Mol Autism ; 15(1): 14, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570876

RESUMEN

BACKGROUND: SH3 and multiple ankyrin repeat domains protein 3 (SHANK3) monogenic mutations or deficiency leads to excessive stereotypic behavior and impaired sociability, which frequently occur in autism cases. To date, the underlying mechanisms by which Shank3 mutation or deletion causes autism and the part of the brain in which Shank3 mutation leads to the autistic phenotypes are understudied. The hypothalamus is associated with stereotypic behavior and sociability. p38α, a mediator of inflammatory responses in the brain, has been postulated as a potential gene for certain cases of autism occurrence. However, it is unclear whether hypothalamus and p38α are involved in the development of autism caused by Shank3 mutations or deficiency. METHODS: Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and immunoblotting were used to assess alternated signaling pathways in the hypothalamus of Shank3 knockout (Shank3-/-) mice. Home-Cage real-time monitoring test was performed to record stereotypic behavior and three-chamber test was used to monitor the sociability of mice. Adeno-associated viruses 9 (AAV9) were used to express p38α in the arcuate nucleus (ARC) or agouti-related peptide (AgRP) neurons. D176A and F327S mutations expressed constitutively active p38α. T180A and Y182F mutations expressed inactive p38α. RESULTS: We found that Shank3 controls stereotypic behavior and sociability by regulating p38α activity in AgRP neurons. Phosphorylated p38 level in hypothalamus is significantly enhanced in Shank3-/- mice. Consistently, overexpression of p38α in ARC or AgRP neurons elicits excessive stereotypic behavior and impairs sociability in wild-type (WT) mice. Notably, activated p38α in AgRP neurons increases stereotypic behavior and impairs sociability. Conversely, inactivated p38α in AgRP neurons significantly ameliorates autistic behaviors of Shank3-/- mice. In contrast, activated p38α in pro-opiomelanocortin (POMC) neurons does not affect stereotypic behavior and sociability in mice. LIMITATIONS: We demonstrated that SHANK3 regulates the phosphorylated p38 level in the hypothalamus and inactivated p38α in AgRP neurons significantly ameliorates autistic behaviors of Shank3-/- mice. However, we did not clarify the biochemical mechanism of SHANK3 inhibiting p38α in AgRP neurons. CONCLUSIONS: These results demonstrate that the Shank3 deficiency caused autistic-like behaviors by activating p38α signaling in AgRP neurons, suggesting that p38α signaling in AgRP neurons is a potential therapeutic target for Shank3 mutant-related autism.


Asunto(s)
Trastorno Autístico , Animales , Ratones , Proteína Relacionada con Agouti/genética , Proteína Relacionada con Agouti/metabolismo , Núcleo Arqueado del Hipotálamo/metabolismo , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Hipotálamo/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/metabolismo
5.
Cell Mol Immunol ; 21(6): 561-574, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38570588

RESUMEN

Hyperactivation of the NLRP3 inflammasome has been implicated in the pathogenesis of numerous diseases. However, the precise molecular mechanisms that modulate the transcriptional regulation of NLRP3 remain largely unknown. In this study, we demonstrated that S-nitrosoglutathione reductase (GSNOR) deficiency in macrophages leads to significant increases in the Nlrp3 and Il-1ß expression levels and interleukin-1ß (IL-1ß) secretion in response to NLRP3 inflammasome stimulation. Furthermore, in vivo experiments utilizing Gsnor-/- mice revealed increased disease severity in both lipopolysaccharide (LPS)-induced septic shock and dextran sodium sulfate (DSS)-induced colitis models. Additionally, we showed that both LPS-induced septic shock and DSS-induced colitis were ameliorated in Gsnor-/- Nlrp3-/- double-knockout (DKO) mice. Mechanistically, GSNOR deficiency increases the S-nitrosation of mitogen-activated protein kinase 14 (MAPK14) at the Cys211 residue and augments MAPK14 kinase activity, thereby promoting Nlrp3 and Il-1ß transcription and stimulating NLRP3 inflammasome activity. Our findings suggested that GSNOR is a regulator of the NLRP3 inflammasome and that reducing the level of S-nitrosylated MAPK14 may constitute an effective strategy for alleviating diseases associated with NLRP3-mediated inflammation.


Asunto(s)
Colitis , Sulfato de Dextran , Inflamasomas , Interleucina-1beta , Lipopolisacáridos , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Ratones , Aldehído Oxidorreductasas/metabolismo , Aldehído Oxidorreductasas/genética , Colitis/inducido químicamente , Colitis/patología , Colitis/inmunología , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Macrófagos/inmunología , Nitrosación , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Choque Séptico/metabolismo , Choque Séptico/inducido químicamente , Proteína Quinasa 14 Activada por Mitógenos/metabolismo
6.
J Ethnopharmacol ; 328: 117900, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38432577

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Polygonatum cyrtonema Hua (Huangjing) is a Chinese herb that is considered by ancient Chinese healers to have the effect of nourishing yin and moisturizing the lungs. It is clinically used to treat diseases of the pulmonary system, including non-small cell lung cancer. However, the precise active components and underlying mechanisms of Huangjing in the context of treating NSCLC remain uncertain. AIM OF THE STUDY: This study aimed to explore the active components and mechanisms of Huangjing for the treatment of NSCLC by means of data mining, network pharmacology, and in vitro and vivo experiments. MATERIALS AND METHODS: First, the main active compounds and key targets of Huangjing were predicted by network pharmacology. The potential key targets of Huangjing were molecularly docked with the main active compounds using Pymol. In vivo, we verified whether Huangjing and its main active compound have anti-lung cancer effects. Key targets were verified by PCR and immunohistochemistry. In vitro, we verified the effects of Huangjing's main active compound on the proliferation, apoptosis, and migration of A549 cells by CCK-8, colony formation, wound healing assay, and flow cytometry. Key targets and signaling pathway were validated by PCR and Western blot. RESULTS: The network pharmacology results suggested that ß-sitosterol was the main active substance. TP53, JUN, AKT1, MAPK14, ESR1, RELA, HIF1A, and RXRA were potential targets of Huangjing. Molecular docking results suggested that MAPK14, HIF-1α, and RXRA docked well with ß-sitosterol. In vivo tests also confirmed that Huangjing could significantly inhibit the growth of lung cancer tumors, while PCR and immunohistochemistry results suggested that the expression of HIF-1α was significantly decreased. Critically, KEGG analysis indicated that the PI3K/Akt/HIF-1α signaling pathway was recommended as one of the main pathways related to the anti-NSCLC effect of Huangjing. We conducted in vitro experiments to confirm the significant impact of ß-sitosterol on the proliferation, apoptosis, migration, and colony formation of A549 cells. Furthermore, our findings indicate that a high dosage of ß-sitosterol may effectively decrease the expression of HIF-1α, AKT1, JUN and RELA in A549 cells. Similarly, in vitro experiments also revealed that high doses of ß-sitosterol could inhibit the PI3K/Akt/HIF-1α signaling pathway. CONCLUSIONS: We discovered Huangjing and its main active ingredient, ß-sitosterol, can reduce HIF-1α, AKT1, JUN and RELA expression and decrease non-small cell lung cancer growth through the PI3K/Akt/HIF-1α signaling pathway.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Medicamentos Herbarios Chinos , Neoplasias Pulmonares , Proteína Quinasa 14 Activada por Mitógenos , Polygonatum , Sitoesteroles , Simulación del Acoplamiento Molecular , Neoplasias Pulmonares/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Farmacología en Red , Transducción de Señal , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
7.
Biochem Biophys Res Commun ; 704: 149707, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38428305

RESUMEN

Mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase 2 (ERK2) and p38α MAP kinase (p38α MAPK), regulate various cellular responses. ERK2 is a drug target for treating many diseases, such as cancer, whereas p38α has attracted much attention as a promising drug target for treating inflammatory disorders. ERK2 is a critical off-target for p38α MAPK and vice versa. In this study, an allosteric ERK2 inhibitor with a benzothiazole moiety (compound 1) displayed comparable inhibitory activity against p38α MAPK. Crystal structures of these MAPKs showed that compound 1 bound to the allosteric site of ERK2 and p38α MAPK in distinct manners. Compound 1 formed a covalent bond with Cys162 of p38α MAPK, whereas this covalent bond was absent in the ERK2 complex even though the corresponding cysteine is conserved in ERK2. Structural dissection combined with computational simulations indicated that an amino acid difference in the allosteric site is responsible for the distinct binding modes of compound 1 with ERK2 and p38α MAPK. These structural insights underline the feasibility of developing highly selective and potent ERK2 and p38α MAPK inhibitors.


Asunto(s)
Proteína Quinasa 14 Activada por Mitógenos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Benzotiazoles/farmacología
8.
Life Sci Alliance ; 7(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38467420

RESUMEN

Kinases are key players in endothelial barrier regulation, yet their temporal function and regulatory phosphosignaling networks are incompletely understood. We developed a novel methodology, Temporally REsolved KInase Network Generation (TREKING), which combines a 28-kinase inhibitor screen with machine learning and network reconstruction to build time-resolved, functional phosphosignaling networks. We demonstrated the utility of TREKING for identifying pathways mediating barrier integrity after activation by thrombin with or without TNF preconditioning in brain endothelial cells. TREKING predicted over 100 kinases involved in barrier regulation and discerned complex condition-specific pathways. For instance, the MAPK-activated protein kinase 2 (MAPKAPK2/MK2) had early barrier-weakening activity in both inflammatory conditions but late barrier-strengthening activity exclusively with thrombin alone. Using temporal Western blotting, we confirmed that MAPKAPK2/MK2 was differentially phosphorylated under the two inflammatory conditions. We further showed with lentivirus-mediated knockdown of MAPK14/p38α and drug targeting the MAPK14/p38α-MAPKAPK2/MK2 complex that a MAP3K20/ZAK-MAPK14/p38α axis controlled the late activation of MAPKAPK2/MK2 in the thrombin-alone condition. Beyond the MAPKAPK2/MK2 switch, TREKING predicts extensive interconnected networks that control endothelial barrier dynamics.


Asunto(s)
Células Endoteliales , Proteína Quinasa 14 Activada por Mitógenos , Células Endoteliales/metabolismo , Trombina/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Inhibidores de Proteínas Quinasas
9.
J Clin Invest ; 134(10)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38512415

RESUMEN

Fibrosis following tissue injury is distinguished from normal repair by the accumulation of pathogenic and apoptosis-resistant myofibroblasts (MFs), which arise primarily by differentiation from resident fibroblasts. Endogenous molecular brakes that promote MF dedifferentiation and clearance during spontaneous resolution of experimental lung fibrosis may provide insights that could inform and improve the treatment of progressive pulmonary fibrosis in patients. MAPK phosphatase 1 (MKP1) influences the cellular phenotype and fate through precise and timely regulation of MAPK activity within various cell types and tissues, yet its role in lung fibroblasts and pulmonary fibrosis has not been explored. Using gain- and loss-of-function studies, we found that MKP1 promoted lung MF dedifferentiation and restored the sensitivity of these cells to apoptosis - effects determined to be mainly dependent on MKP1's dephosphorylation of p38α MAPK (p38α). Fibroblast-specific deletion of MKP1 following peak bleomycin-induced lung fibrosis largely abrogated its subsequent spontaneous resolution. Such resolution was restored by treating these transgenic mice with the p38α inhibitor VX-702. We conclude that MKP1 is a critical antifibrotic brake whose inhibition of pathogenic p38α in lung fibroblasts is necessary for fibrosis resolution following lung injury.


Asunto(s)
Fosfatasa 1 de Especificidad Dual , Pulmón , Proteína Quinasa 14 Activada por Mitógenos , Miofibroblastos , Fibrosis Pulmonar , Animales , Ratones , Fosfatasa 1 de Especificidad Dual/metabolismo , Fosfatasa 1 de Especificidad Dual/genética , Miofibroblastos/patología , Miofibroblastos/metabolismo , Miofibroblastos/enzimología , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/genética , Proteína Quinasa 14 Activada por Mitógenos/antagonistas & inhibidores , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/enzimología , Fibrosis Pulmonar/inducido químicamente , Pulmón/patología , Pulmón/metabolismo , Bleomicina/toxicidad , Humanos , Ratones Noqueados , Ratones Transgénicos , Apoptosis
10.
Chem Biol Drug Des ; 103(3): e14475, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38433560

RESUMEN

To explore the of Qufeng Tongqiao Prescription in the treatment of cerebral ischemia-reperfusion (CIR) and associated molecular network mechanism. Venny diagram, gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis, protein-protein interaction (PPI), hub genes mining, molecular docking, combined with animal experiments and Nissl stain were performed to determine the molecular network mechanism of Qufeng Tongqiao Prescription for CIR treatment. Fifty three intersecting genes between Qufeng Tongqiao Prescription and cerebral ischemia reperfusion were acquired from Venny analysis. GO analysis showed that the main biological process (BP) was response to lipopolysaccharide, and the main cell localization (CC) process was membrane raft, while the most important molecular function (MF) process is Cytokine receptor binding. Moreover, AGE-RAGE signaling pathway in diabetic complications is the most important signaling pathway in KEGG pathway. Through molecular docking, it was found that Astragalus membranaceus was docked with MAPK14, IL4, FOS, IL6, and JUN; pueraria membranaceus was directly docked with JUN and IL4; Acorus acorus was linked to JUN and MAPK14; Ganoderma ganoderma and human were involved in JUN docking, and Ligusticum chuanqi and pueraria could not be docked with MAPK14, respectively. The results of animal experiments showed that Qufeng Tongqiao Prescription significantly improved behavioral performance and reduced the number of neuronal deaths in rats subjected to CIR, and molecular mechanisms are associated with FOS, IL-6, IL4, JUN, and MAPK14, of there, IL-6, as a vital candidator, which has been confirmed by immunostaining detection. Together, Qufeng Tongqiao Prescription has positive therapeutic effect on CIR, and the underlying mechanism is involved MAPK14, FOS, IL4, and JUN network, while IL-6 may be as a vital target.


Asunto(s)
Isquemia Encefálica , Proteína Quinasa 14 Activada por Mitógenos , Humanos , Animales , Ratas , Interleucina-4 , Interleucina-6 , Simulación del Acoplamiento Molecular , Isquemia Encefálica/tratamiento farmacológico
11.
Chem Biodivers ; 21(4): e202400077, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38359316

RESUMEN

New chalcones were synthesized and evaluated to serve as p38-α type of mitogen-activated protein kinase (MAPK) inhibitors. According to the National Cancer Institute, the findings indicated that at a 10 µM dosage, compounds 3a and 6 were the most active among all the compounds examined, with mean growth inhibition% of 94.83 and 58.49, respectively. In 5-dose testing, they showed anticancer activity in the micro-molar range with GI50 in the range of 1.41-46.1 and 2.07-31.3 µM, respectively. Besides, powerful activity, especially against the leukaemia cell lines and good selectivity to cancer cells compared to normal PCS-800-017 with a selectivity index=12.41 and 23.77, respectively. Compounds 3a and 6 inhibited p38α MAPK with IC50 values of 0.1462±0.0063 and 0.4356±0.0189 µM, correspondingly. 3a showed good inhibition for HL-60(TB) cells and induced cell cycle arrest in HL-60(TB) cells at the G2/M phase. Besides, it elevated the total apoptosis by 14.68-fold and increased the caspase-3 level by 3.52-fold compared with doxorubicin, which raised it by 4.30-fold, inducing apoptosis by acting as caspase-dependent inducers. These results suggest that 3a is a promising antiproliferative and p38α MAPK inhibitor, confirmed by molecular docking with high compatibility 3a with the p38α MAPK binding site.


Asunto(s)
Antineoplásicos , Chalconas , Proteína Quinasa 14 Activada por Mitógenos , Humanos , Proteína Quinasa 14 Activada por Mitógenos/química , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Simulación del Acoplamiento Molecular , Chalconas/farmacología , Puntos de Control del Ciclo Celular , Doxorrubicina/farmacología , Inhibidores de Proteínas Quinasas/química , Apoptosis , Estructura Molecular , Proliferación Celular , Antineoplásicos/química , Relación Estructura-Actividad , Línea Celular Tumoral
12.
Cell Commun Signal ; 22(1): 148, 2024 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-38395872

RESUMEN

BACKGROUND: Tubulointerstitial kidney disease associated microenvironmental dysregulation, like acidification, inflammation and fibrosis, affects tubule cells and fibroblasts. Micromilieu homeostasis influences intracellular signaling and intercellular crosstalk. Cell-cell communication in turn modulates the interstitial microenvironment. We assessed the impact of acidosis on inflammatory and fibrotic responses in proximal tubule cells and fibroblasts as a function of cellular crosstalk. Furthermore, cellular signaling pathways involved were identified. METHODS: HK-2 (human proximal tubule) and CCD-1092Sk (human fibroblasts), in mono and coculture, were exposed to acidic or control media for 3 or 48 h. Protein expression of inflammation markers (TNF, TGF-ß and COX-2), dedifferentiation markers (N-cadherin, vinculin, ß-catenin and vimentin), fibrosis markers (collagen III and fibronectin) and phospho- as well as total MAPK levels were determined by western blot. Secreted collagen III and fibronectin were measured by ELISA. The impact of MAPK activation was assessed by pharmacological intervention. In addition, necrosis, apoptosis and epithelial permeability were determined. RESULTS: Independent of culture conditions, acidosis caused a decrease of COX-2, vimentin and fibronectin expression in proximal tubule cells. Only in monoculture, ß-Catenin expression decreased and collagen III expression increased in tubule cells during acidosis. By contrast, in coculture collagen III protein expression of tubule cells was reduced. In fibroblasts acidosis led to an increase of TNF, COX-2, vimentin, vinculin, N-cadherin protein expression and a decrease of TGF-ß expression exclusively in coculture. In monoculture, expression of COX-2 and fibronectin was reduced. Collagen III expression of fibroblasts was reduced by acidosis independent of culture conditions. In coculture, acidosis enhanced phosphorylation of ERK1/2, JNK1/2 and p38 transiently in proximal tubule cells. In fibroblasts, acidosis enhanced phosphorylation of p38 in a sustained and very strong manner. ERK1/2 and JNK1/2 were not affected in fibroblasts. Inhibition of JNK1/2 and p38 under coculture conditions reduced acidosis-induced changes in fibroblasts significantly. CONCLUSIONS: Our data show that the crosstalk between proximal tubule cells and fibroblasts is crucial for acidosis-induced dedifferentiation of fibroblasts into an inflammatory phenotype. This dedifferentiation is at least in part mediated by p38 and JNK1/2. Thus, cell-cell communication is essential for the pathophysiological impact of tubulointerstitial acidosis.


Asunto(s)
Acidosis , Fibronectinas , Proteínas Quinasas p38 Activadas por Mitógenos , Humanos , Acidosis/metabolismo , Cadherinas/metabolismo , Cateninas/metabolismo , Colágeno/metabolismo , Ciclooxigenasa 2/metabolismo , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Fibrosis , Inflamación/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Vimentina/metabolismo , Vinculina/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/metabolismo
13.
Bioorg Chem ; 145: 107226, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38377818

RESUMEN

In pursuit of discovering novel scaffolds that demonstrate potential inhibitory activity against p38α MAPK and possess strong antitumor effects, we herein report the design and synthesis of new series of 17 final target 5-(2,6-dichlorophenyl)-3-oxo-2,3-dihydro-5H-thiazolo[3,2-a]pyrimidine-7-carboxylic acids (4-20). Chemical characterization of the compounds was performed using FT-IR, NMR, elemental analyses and mass spectra of some representative examples. With many compounds showing potential inhibitory activity against p38α MAPK, two derivatives, 8 and 9, demonstrated the highest activity (>70 % inhibition) among the series. Derivative 9 displayed IC50 value nearly 2.5 folds more potent than 8. As anticipated, they both showed explicit interactions inside the kinase active site with the key binding amino acid residues. Screening both compounds for cytotoxic effects, they exhibited strong antitumor activities against lung (A549), breast (MCF-7 and MDA MB-231), colon (HCT-116) and liver (Hep-G2) cancers more potent than reference 5-FU. Their noticeable strong antitumor activity pointed out to the possibility of an augmented DNA binding mechanism of antitumor action besides their kinase inhibition. Both 8 and 9 exhibited strong ctDNA damaging effects in nanomolar range. Further mechanistic antitumor studies revealed ability of compounds 8 and 9 to arrest cell cycle in MCF-7 cells at S phase, while in HCT-116 treated cells at G0-G1 and G2/M phases. They also displayed apoptotic induction effects in both MCF-7 and HCT-116 with total cell deaths more than control untreated cells in reference to 5-FU. Finally, the compounds were tested for their anti-migratory potential utilizing wound healing assay. They induced a significant decrease in wound closure percentage after 24 h treatment in the examined cancer cells when compared to untreated control MCF-7 and HCT-116 cells better than 5-FU. In silico computation of physicochemical parameters revealed the drug-like properties of 8 and 9 with no violation to Lipinski's rule of five as well as their tolerable ADMET parameters, thus suggesting their utilization as potential future drug leads amenable for further optimization and development.


Asunto(s)
Antineoplásicos , Proteína Quinasa 14 Activada por Mitógenos , Humanos , Antineoplásicos/química , Ácidos Carboxílicos/farmacología , Línea Celular Tumoral , Proliferación Celular , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Fluorouracilo/farmacología , Simulación del Acoplamiento Molecular , Estructura Molecular , Pirimidinas/química , Espectroscopía Infrarroja por Transformada de Fourier , Relación Estructura-Actividad , Tiazoles/química , Tiazoles/farmacología
14.
Cell Biochem Funct ; 42(1): e3915, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38269513

RESUMEN

Three types of adipocytes, white, brown, and beige, regulate the systemic energy balance through the storage and expenditure of chemical energy. In addition, adipocytes produce various bioactive molecules known as adipokines. In contrast to white adipocyte-derived molecules, less information is available on the adipokines produced by brown adipocytes (batokine). This study explored the regulatory expression of interleukin (IL)-6 in cell culture studies. Norepinephrine or a nonselective ß-adrenergic receptor agonist increased the expression of IL-6 in primary brown adipocytes and HB2 brown adipocytes. Treatment with forskolin (Fsk), an activator of the cAMP-dependent protein kinase (PKA) pathway (downstream signaling of the ß-adrenergic receptor), efficiently stimulated IL-6 expression in brown adipocytes and myotubes. Phosphorylated CREB and phosphorylated p38 MAP kinase levels were increased in Fsk-treated brown adipocytes within 5 min. In contrast, a long-term (∼60 min and ∼4 h) treatment with Fsk was required for increase in STAT3 phosphorylation and C/EBPß expression, respectively. The PKA, p38 MAP kinase, STAT3, and C/EBPß pathways are required for the maximal IL-6 expression induced by Fsk, which were verified by use of various inhibitors of these signal pathways. Vitamin C enhanced Fsk-induced IL-6 expression through the extracellular signal-regulated kinase activity. The present study provides basic information on the regulatory expression of IL-6 in activated brown adipocytes.


Asunto(s)
Adipocitos Marrones , Proteína Quinasa 14 Activada por Mitógenos , Animales , Ratones , Adipocitos Blancos , Adipoquinas , Colforsina/farmacología , Interleucina-6
15.
J Oral Biosci ; 66(1): 68-75, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38266705

RESUMEN

OBJECTIVES: Cellular differentiation is based on the effects of various growth factors. Transforming growth factor (TGF)-ß1 plays a pivotal role in inducing osteogenic differentiation of mesenchymal stem cells (MSCs). In this study, we investigated the influence of connective tissue growth factor (CTGF), known to function synergistically with TGF-ß1, on osteogenic differentiation in MSCs. METHODS: UE7T-13 cells were treated with TGF-ß1 and/or CTGF. Subsequently, protein levels of intracellular signaling pathway molecules were determined through western blot analysis. The mRNA expression levels of osteogenic differentiation markers were investigated using reverse transcription-quantitative polymerase chain reaction. Bone matrix mineralization was evaluated through alizarin red staining. RESULTS: Co-treatment with TGF-ß1 and CTGF resulted in the suppression of TGF-ß1-induced phosphorylation of extracellular signal-regulated kinase 1/2, an intracellular signaling pathway molecule in MSCs, while significantly enhancing the phosphorylation of p38 mitogen-activated protein kinase (MAPK). In MSCs, co-treatment with CTGF and TGF-ß1 led to increased expression levels of alkaline phosphatase and type I collagen, markers of osteogenic differentiation induced by TGF-ß1. Osteopontin expression was observed only after TGF-ß1 and CTGF co-treatment. Notably, bone sialoprotein and osteocalcin were significantly upregulated by treatment with CTGF alone. Furthermore, CTGF enhanced the TGF-ß1-induced mineralization in MSCs, with complete suppression observed after treatment with a p38 MAPK inhibitor. CONCLUSIONS: CTGF enhances TGF-ß1-induced osteogenic differentiation and subsequent mineralization in MSCs by predominantly activating the p38 MAPK-dependent pathway.


Asunto(s)
Células Madre Mesenquimatosas , Proteína Quinasa 14 Activada por Mitógenos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/farmacología , Factor de Crecimiento Transformador beta1/farmacología , Factor de Crecimiento del Tejido Conjuntivo/genética , Factor de Crecimiento del Tejido Conjuntivo/metabolismo , Factor de Crecimiento del Tejido Conjuntivo/farmacología , Osteogénesis , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo
16.
Life Sci Alliance ; 7(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38199846

RESUMEN

Microsporidia are difficult to be completely eliminated once infected, and the persistence disrupts host cell functions. Here in this study, we aimed to elucidate the impairing effects and consequences of microsporidia on host DCs. Enterocytozoon hellem, one of the most commonly diagnosed zoonotic microsporidia species, was applied. In vivo models demonstrated that E. hellem-infected mice were more susceptible to further pathogenic challenges, and DCs were identified as the most affected groups of cells. In vitro assays revealed that E. hellem infection impaired DCs' immune functions, reflected by down-regulated cytokine expressions, lower extent of maturation, phagocytosis ability, and antigen presentations. E. hellem infection also detained DCs' potencies to prime and stimulate T cells; therefore, host immunities were disrupted. We found that E. hellem Ser/Thr protein phosphatase PP1 directly interacts with host p38α (MAPK14) to manipulate the p38α(MAPK14)/NFAT5 axis of the MAPK pathway. Our study is the first to elucidate the molecular mechanisms of the impairing effects of microsporidia on host DCs' immune functions. The emergence of microsporidiosis may be of great threat to public health.


Asunto(s)
Proteína Quinasa 14 Activada por Mitógenos , Animales , Ratones , Presentación de Antígeno , Fagocitosis , Citocinas , Factores de Transcripción , Fosfoproteínas Fosfatasas
17.
Inflammopharmacology ; 32(1): 461-494, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37572137

RESUMEN

Acute lung injury (ALI) is a life-threatening syndrome that causes high morbidity and mortality worldwide. The aerial parts of Euphorbia grantii Oliv. were extracted with methanol to give a total methanolic extract (TME), which was further fractionated into dichloromethane (DCMF) and the remaining mother liquor (MLF) fractions. Biological guided anti-inflammatory assays in vitro revealed that the DCMF showed the highest activity (IC50 6.9 ± 0.2 µg/mL and 0.29 ± 0.01 µg/mL) compared to. celecoxib (IC50 of 88.0 ± 1 µg/mL and 0.30 ± 0.01 µg/mL) on COX-1 and COX-2, respectively. Additionally, anti-LOX activity was IC50 = 24.0 ± 2.5 µg/mL vs. zileuton with IC50 of 40.0 ± 0.5 µg/mL. LC-DAD-QToF analysis of TME and the active DCMF resulted in the tentative identification and characterization of 56 phytochemical compounds, where the diterpenes were the dominated metabolites. An LPS-induced inflammatory model of ALI (10 mg/kg i.p) was used to assess the anti-inflammatory potential of DCMF in vivo at dose of 200 mg/kg and 300 mg/kg compared to dexamethasone (5 mg/kg i.p). Our treatments significantly reduced the pro-inflammatory cytokines (TNF-α, IL-1, IL-6, and MPO), increased the activity of antioxidant enzymes (SOD, CAT, and GSH), decreased the activity of oxidative stress enzyme (MDA), and reduced the expression of inflammatory genes (p38.MAPK14 and CY450P2E1). The western blotting of NF-κB p65 in lung tissues was inhibited after orally administration of the DCMF. Histopathological study of the lung tissues, scoring, and immunohistochemistry of transforming growth factor-beta 1 (TGF-ß1) were also assessed. In both dose regimens, DCMF of E. grantii prevented further lung damage and reduced the side effects of LPS on acute lung tissue injury.


Asunto(s)
Lesión Pulmonar Aguda , Euphorbia , Proteína Quinasa 14 Activada por Mitógenos , Neumonía , Animales , Ratas , FN-kappa B , Lipopolisacáridos/farmacología , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Antiinflamatorios/farmacología
18.
Exp Brain Res ; 242(1): 109-121, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37973625

RESUMEN

Accumulating evidence indicates that microglia-mediated neuroinflammation in the hippocampus contributes to the development of perioperative neurocognitive disorder (PND). P38MAPK, a point of convergence for different signaling processes involved in inflammation, can be activated by various stresses. This study aims to investigate the role of the P38MAPK/ATF2 signaling pathway in the development of PND in mice. Aged C57BL/6 mice were subjected to tibial fracture surgery under isoflurane anesthesia to establish a PND animal model. The open field test was used to evaluate the locomotor activity of the mice. Neurocognitive function was assessed with the Morris water maze (MWM) and fear conditioning test (FCT) on postoperative days 1, 3 and 7. The mice exhibited cognitive impairment accompanied by increased expression of proinflammatory factors (IL-1ß, TNF-α), proapoptotic molecules (caspase-3, bax) and microglial activation in the hippocampus 1, 3 and 7 days after surgery. Treatment with SB239063 (a P38MAPK inhibitor) decreased the expression of proinflammatory factors, proapoptotic molecules and Iba-1 in the CA1 region of the hippocampus. The number of surviving neurons was significantly increased. Inhibition of the P38MAPK/ATF2 signaling pathway attenuates hippocampal neuroinflammation and neuronal apoptosis in aged mice with PND, thus improving the perioperative cognitive function of the mice.


Asunto(s)
Disfunción Cognitiva , Enfermedades Neuroinflamatorias , Animales , Ratones , Disfunción Cognitiva/metabolismo , Hipocampo/metabolismo , Ratones Endogámicos C57BL , Trastornos Neurocognitivos/metabolismo , Transducción de Señal/fisiología , Proteína Quinasa 14 Activada por Mitógenos
19.
Chin J Integr Med ; 30(3): 230-242, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37815727

RESUMEN

OBJECTIVE: To examine the therapeutic effect of Fangji Fuling Decoction (FFD) on sepsis through network pharmacological analysis combined with in vitro and in vivo experiments. METHODS: A sepsis mouse model was constructed through intraperitoneal injection of 20 mg/kg lipopolysaccharide (LPS). RAW264.7 cells were stimulated by 250 ng/mL LPS to establish an in vitro cell model. Network pharmacology analysis identified the key molecular pathway associated with FFD in sepsis. Through ectopic expression and depletion experiments, the effect of FFD on multiple organ damage in septic mice, as well as on cell proliferation and apoptosis in relation to the mitogen-activated protein kinase 14/Forkhead Box O 3A (MAPK14/FOXO3A) signaling pathway, was analyzed. RESULTS: FFD reduced organ damage and inflammation in LPS-induced septic mice and suppressed LPS-induced macrophage apoptosis and inflammation in vitro (P<0.05). Network pharmacology analysis showed that FFD could regulate the MAPK14/FOXO signaling pathway during sepsis. As confirmed by in vitro cell experiments, FFD inhibited the MAPK14 signaling pathway or FOXO3A expression to relieve LPS-induced macrophage apoptosis and inflammation (P<0.05). Furthermore, FFD inhibited the MAPK14/FOXO3A signaling pathway to inhibit LPS-induced macrophage apoptosis in the lung tissue of septic mice (P<0.05). CONCLUSION: FFD could ameliorate the LPS-induced inflammatory response in septic mice by inhibiting the MAPK14/FOXO3A signaling pathway.


Asunto(s)
Proteína Quinasa 14 Activada por Mitógenos , Radioisótopos de Oxígeno , Sepsis , Wolfiporia , Ratones , Animales , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Lipopolisacáridos/farmacología , Sepsis/complicaciones , Transducción de Señal , Inflamación/tratamiento farmacológico
20.
Arch Pharm (Weinheim) ; 357(1): e2300301, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37847883

RESUMEN

A new series of quinoxaline derivatives possessing the hydrazone moiety were designed, synthesized, and screened for in-vitro anti-inflammatory activity by the bovine serum albumin (BSA) denaturation technique, and for antioxidant activity, by the (2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. The synthesized compounds were also tested for p38α mitogen-activated protein (MAP) kinase inhibition. The in-vivo anti-inflammatory activity was assessed by the carrageenan-induced rat paw edema inhibition method. All the compounds (4a-n) exhibited moderate to high in-vitro anti-inflammatory activity. Compound 4a displayed the highest inhibitory activity in the BSA assay (83.42%) in comparison to the standard drug diclofenac sodium (82.90%), while 4d exhibited comparable activity (81.87%). The DPPH assay revealed that compounds 4a and 4d have free radical scavenging potential (74.70% and 74.34%, respectively) comparable to the standard butylated hydroxyanisole (74.09%). Furthermore, the p38α MAP kinase inhibition assay demonstrated that compound 4a is highly selective against p38α MAP kinase (IC50 = 0.042) in comparison to the standard SB203580 (IC50 = 0.044). The five most active compounds (4a-4d and 4f) with good in-vitro profiles were selected for in-vivo anti-inflammatory studies. Compounds 4a and 4d were found to display the highest activity (83.61% and 82.92% inhibition, respectively) in comparison to the standard drug diclofenac sodium (82.65% inhibition). These compounds (4a and 4d) also exhibited better ulcerogenic and lipid peroxidation profiles than diclofenac sodium. The molecular docking and molecular dynamics simulation studies were also performed and found to be in agreement with the p38α MAP kinase inhibitory activity.


Asunto(s)
Antiinflamatorios no Esteroideos , Proteína Quinasa 14 Activada por Mitógenos , Ratas , Animales , Antiinflamatorios no Esteroideos/farmacología , Diclofenaco/farmacología , Estructura Molecular , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Quinoxalinas/farmacología , Antiinflamatorios/farmacología , Inhibidores de Proteínas Quinasas/química , Diseño de Fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA