Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 203
Filtrar
1.
Biomolecules ; 14(8)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39199427

RESUMEN

Src homology 3 (SH3) domains play a critical role in mediating protein-protein interactions (PPIs) involved in cell proliferation, migration, and the cytoskeleton. Despite their abundance in the human proteome, the functions and molecular interactions of many SH3 domains remain unknown, and this is in part due to the lack of SH3-domain-specific reagents available for their study. Affimer proteins have been developed as affinity reagents targeting a diverse range of targets, including those involved in PPIs. In this study, Affimer proteins were isolated against both the N- and C-terminal SH3 domains (NSH3 and CSH3) of growth-factor-receptor-bound protein 2 (Grb2), an adapter protein that provides a critical link between cell surface receptors and Ras signalling pathways. Targeting the CSH3 alone for the inhibition of PPIs appeared sufficient for curtailing Ras signalling in mammalian cell lines stimulated with human epidermal growth factor (EGF), which conflicts with the notion that the predominant interactions with Ras activating Son of sevenless (SOS) occur via the NSH3 domain. This result supports a model in which allosteric mechanisms involved in Grb2-SOS1 interaction modulate Ras activation.


Asunto(s)
Proteína Adaptadora GRB2 , Transducción de Señal , Proteínas ras , Dominios Homologos src , Proteína Adaptadora GRB2/metabolismo , Humanos , Transducción de Señal/efectos de los fármacos , Proteínas ras/metabolismo , Unión Proteica , Proteína SOS1/metabolismo , Proteína SOS1/química , Proteína SOS1/genética , Factor de Crecimiento Epidérmico/metabolismo
2.
BMC Plant Biol ; 24(1): 805, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39187766

RESUMEN

BACKGROUND: Salt Overly Sensitive 1 (SOS1), a plasma membrane Na+/H+ exchanger, is essential for plant salt tolerance. Salt damage is a significant abiotic stress that impacts plant species globally. All living organisms require copper (Cu), a necessary micronutrient and a protein cofactor for many biological and physiological processes. High Cu concentrations, however, may result in pollution that inhibits the growth and development of plants. The function and production of mangrove ecosystems are significantly impacted by rising salinity and copper contamination. RESULTS: A genome-wide analysis and bioinformatics techniques were used in this study to identify 20 SOS1 genes in the genome of Kandelia obovata. Most of the SOS1 genes were found on the plasma membrane and dispersed over 11 of the 18 chromosomes. Based on phylogenetic analysis, KoSOS1s can be categorized into four groups, similar to Solanum tuberosum. Kandelia obovata's SOS1 gene family expanded due to tandem and segmental duplication. These SOS1 homologs shared similar protein structures, according to the results of the conserved motif analysis. The coding regions of 20 KoSOS1 genes consist of amino acids ranging from 466 to 1221, while the exons include amino acids ranging from 3 to 23. In addition, we found that the 2.0 kb upstream promoter region of the KoSOS1s gene contains several cis-elements associated with phytohormones and stress responses. According to the expression experiments, seven randomly chosen genes experienced up- and down-regulation of their expression levels in response to copper (CuCl2) and salt stressors. CONCLUSIONS: For the first time, this work systematically identified SOS1 genes in Kandelia obovata. Our investigations also encompassed physicochemical properties, evolution, and expression patterns, thereby furnishing a theoretical framework for subsequent research endeavours aimed at functionally characterizing the Kandelia obovata SOS1 genes throughout the life cycle of plants.


Asunto(s)
Cobre , Filogenia , Proteínas de Plantas , Rhizophoraceae , Cobre/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rhizophoraceae/genética , Rhizophoraceae/fisiología , Estrés Salino/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Familia de Multigenes , Estrés Fisiológico/genética , Genes de Plantas , Tolerancia a la Sal/genética , Proteína SOS1/genética , Proteína SOS1/metabolismo
3.
Oncol Res ; 32(8): 1257-1264, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39055890

RESUMEN

The Kirsten rat sarcoma virus-son of sevenless 1 (KRAS-SOS1) axis drives tumor growth preferentially in pancreatic, colon, and lung cancer. Now, KRAS G12C mutated tumors can be successfully treated with inhibitors that covalently block the cysteine of the switch II binding pocket of KRAS. However, the range of other KRAS mutations is not amenable to treatment and the G12C-directed agents Sotorasib and Adragrasib show a response rate of only approximately 40%, lasting for a mean period of 8 months. One approach to increase the efficacy of inhibitors is their inclusion into proteolysis-targeting chimeras (PROTACs), which degrade the proteins of interest and exhibit much higher antitumor activity through multiple cycles of activity. Accordingly, PROTACs have been developed based on KRAS- or SOS1-directed inhibitors coupled to either von Hippel-Lindau (VHL) or Cereblon (CRBN) ligands that invoke the proteasomal degradation. Several of these PROTACs show increased activity in vitro and in vivo compared to their cognate inhibitors but their toxicity in normal tissues is not clear. The CRBN PROTACs containing thalidomide derivatives cannot be tested in experimental animals. Resistance to such PROTACS arises through downregulation or inactivation of CRBN or factors of the functional VHL E3 ubiquitin ligase. Although highly active KRAS and SOS1 PROTACs have been formulated their clinical application remains difficult.


Asunto(s)
Proteolisis , Proteínas Proto-Oncogénicas p21(ras) , Proteína SOS1 , Humanos , Proteína SOS1/metabolismo , Proteína SOS1/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Animales , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patología , Antineoplásicos/farmacología , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Quimera Dirigida a la Proteólisis
4.
Nat Commun ; 15(1): 6214, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043660

RESUMEN

Protein-protein interactions (PPIs) are central in cell metabolism but research tools for the structural and functional characterization of these PPIs are often missing. Here we introduce broadly applicable immunization (Cross-link PPIs and immunize llamas, ChILL) and selection strategies (Display and co-selection, DisCO) for the discovery of diverse nanobodies that either stabilize or disrupt PPIs in a single experiment. We apply ChILL and DisCO to identify competitive, connective, or fully allosteric nanobodies that inhibit or facilitate the formation of the SOS1•RAS complex and modulate the nucleotide exchange rate on this pivotal GTPase in vitro as well as RAS signalling in cellulo. One of these connective nanobodies fills a cavity that was previously identified as the binding pocket for a series of therapeutic lead compounds. The long complementarity-determining region (CDR3) that penetrates this binding pocket serves as pharmacophore for extending the repertoire of potential leads.


Asunto(s)
Unión Proteica , Proteína SOS1 , Anticuerpos de Dominio Único , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/inmunología , Anticuerpos de Dominio Único/metabolismo , Proteína SOS1/metabolismo , Proteína SOS1/química , Proteína SOS1/genética , Proteína SOS1/inmunología , Humanos , Animales , Regulación Alostérica , Proteínas ras/metabolismo , Proteínas ras/química , Regiones Determinantes de Complementariedad/química , Regiones Determinantes de Complementariedad/inmunología , Sitios de Unión , Camélidos del Nuevo Mundo/inmunología , Inmunización , Transducción de Señal , Modelos Moleculares
5.
Am J Chin Med ; 52(3): 885-904, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716619

RESUMEN

Polyphyllin VII is a biologically active herbal monomer extracted from the traditional Chinese herbal medicine Chonglou. Many studies have demonstrated the anticancer activity of polyphyllin VII against various types of cancers, such as colon, liver, and lung cancer, but its effect on breast cancer has not been elucidated. In this study, we demonstrate that polyphyllin VII inhibited proliferation, increased production of intracellular reactive oxygen species, and decreased mitochondrial membrane potential in breast cancer cells. Notably, polyphyllin VII also induced apoptosis via the mitochondrial pathway. Transcriptome sequencing was used to analyze the targets of PPVII in regulating breast cancer cells. Mechanistic studies showed that polyphyllin VII downregulated Son of Sevenless1 (SOS1) and inhibited the MAPK/ERK pathway. Furthermore, PPVII exerted strong antitumor effects in vivo in nude mice injected with breast cancer cells. Our results suggest that PPVII may promote apoptosis through regulating the SOS1/MAPK/ERK pathway, making it a possible candidate target for the treatment of breast cancer.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Regulación hacia Abajo , Sistema de Señalización de MAP Quinasas , Proteína SOS1 , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Animales , Humanos , Femenino , Regulación hacia Abajo/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteína SOS1/metabolismo , Proteína SOS1/genética , Ratones Desnudos , Saponinas/farmacología , Saponinas/uso terapéutico , Proliferación Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Ratones , Línea Celular Tumoral , Medicamentos Herbarios Chinos/farmacología , Fitoterapia , Antineoplásicos Fitogénicos/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones Endogámicos BALB C
6.
Cancer Res Commun ; 4(6): 1548-1560, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38727236

RESUMEN

KRAS inhibitors have demonstrated exciting preclinical and clinical responses, although resistance occurs rapidly. Here, we investigate the effects of KRAS-targeting therapies on the tumor microenvironment using a library of KrasG12D, p53-mutant, murine pancreatic ductal adenocarcinoma-derived cell lines (KPCY) to leverage immune-oncology combination strategies for long-term tumor efficacy. Our findings show that SOS1 and MEK inhibitors (SOS1i+MEKi) suppressed tumor growth in syngeneic models and increased intratumoral CD8+ T cells without durable responses. Single-cell RNA sequencing revealed an increase in inflammatory cancer-associated fibroblasts (iCAF), M2 macrophages, and a decreased dendritic cell (DC) quality that ultimately resulted in a highly immunosuppressive microenvironment driven by IL6+ iCAFs. Agonist CD40 treatment was effective to revert macrophage polarization and overcome the lack of mature antigen-presenting DCs after SOS1i+MEKi therapy. Treatment increased the overall survival of KPCY tumor-bearing mice. The addition of checkpoint blockade to SOS1i+MEKi combination resulted in tumor-free mice with established immune memory. Our data suggest that KRAS inhibition affects myeloid cell maturation and highlights the need for combining KRAS cancer-targeted therapy with myeloid activation to enhance and prolong antitumor effects. SIGNIFICANCE: Combination of SOS1 and MEK inhibitors increase T cell infiltration while blunting pro-immune myeloid cell maturation and highlights the need for combining KRAS cancer-targeted therapy with myeloid activation to enhance and prolong anti-tumor effects.


Asunto(s)
Carcinoma Ductal Pancreático , Inmunoterapia , Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas p21(ras) , Proteína SOS1 , Microambiente Tumoral , Animales , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/patología , Ratones , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Proteína SOS1/genética , Proteína SOS1/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Inmunoterapia/métodos , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Ratones Endogámicos C57BL , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Femenino
7.
Bioorg Chem ; 136: 106536, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37054529

RESUMEN

KRAS mutations (G12C, G12D, etc.) are implicated in the oncogenesis and progression of many deadliest cancers. Son of sevenless homolog 1 (SOS1) is a crucial regulator of KRAS to modulate KRAS from inactive to active states. We previously discovered tetra-cyclic quinazolines as an improved scaffold for inhibiting SOS1-KRAS interaction. In this work, we report the design of tetra-cyclic phthalazine derivatives for selectively inhibiting SOS1 against EGFR. The lead compound 6c displayed remarkable activity to inhibit the proliferation of KRAS(G12C)-mutant pancreas cells. 6c showed a favorable pharmacokinetic profile in vivo, with a bioavailability of 65.8% and exhibited potent tumor suppression in pancreas tumor xenograft models. These intriguing results suggested that 6c has the potential to be developed as a drug candidate for KRAS-driven tumors.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras) , Proteína SOS1 , Humanos , Proteína SOS1/genética , Proteína SOS1/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Mutación , Quinazolinas/farmacología , Receptores ErbB/genética
8.
Mol Carcinog ; 62(7): 1025-1037, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37042566

RESUMEN

It has been challenging to target mutant KRAS (mKRAS) in colorectal cancer (CRC) and other malignancies. Recent efforts have focused on developing inhibitors blocking molecules essential for KRAS activity. In this regard, SOS1 inhibition has arisen as an attractive approach for mKRAS CRC given its essential role as a guanine nucleotide exchange factor for this GTPase. Here, we demonstrated the translational value of SOS1 blockade in mKRAS CRC. We used CRC patient-derived organoids (PDOs) as preclinical models to evaluate their sensitivity to SOS1 inhibitor BI3406. A combination of in silico analyses and wet lab techniques was utilized to define potential predictive markers for SOS1 sensitivity and potential mechanisms of resistance in CRC. RNA-seq analysis of CRC PDOs revealed two groups of CRC PDOs with differential sensitivities to SOS1 inhibitor BI3406. The resistant group was enriched in gene sets involving cholesterol homeostasis, epithelial-mesenchymal transition, and TNF-α/NFκB signaling. Expression analysis identified a significant correlation between SOS1 and SOS2 mRNA levels (Spearman's ρ 0.56, p < 0.001). SOS1/2 protein expression was universally present with heterogeneous patterns in CRC cells but only minimal to none in surrounding nonmalignant cells. Only SOS1 protein expression was associated with worse survival in patients with RAS/RAF mutant CRC (p = 0.04). We also found that SOS1/SOS2 protein expression ratio >1 by immunohistochemistry (p = 0.03) instead of KRAS mutation (p = 1) was a better predictive marker to BI3406 sensitivity of CRC PDOs, concordant with the significant positive correlation between SOS1/SOS2 protein expression ratio and SOS1 dependency. Finally, we showed that GTP-bound RAS level underwent rebound even in BI3406-sensitive PDOs with no change of KRAS downstream effector genes, thus suggesting upregulation of guanine nucleotide exchange factor as potential cellular adaptation mechanisms to SOS1 inhibition. Taken together, our results show that high SOS1/SOS2 protein expression ratio predicts sensitivity to SOS1 inhibition and support further clinical development of SOS1-targeting agents in CRC.


Asunto(s)
Neoplasias Colorrectales , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal , Proteína SOS1/genética , Proteína SOS1/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Mutación , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética
9.
Bioorg Chem ; 135: 106500, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37003134

RESUMEN

Blocking the interaction between Ras and Son of Sevenless homolog 1 (SOS1) has been an attractive therapeutic strategy for treating cancers involving oncogenic Ras mutations. K-Ras mutation is the most common in Ras-driven cancers, accounting for 86%, with N-Ras mutation and H-Ras mutation accounting for 11% and 3%, respectively. Here, we report the design and synthesis of a series of hydrocarbon-stapled peptides to mimic the alpha-helix of SOS1 as pan-Ras inhibitors. Among these stapled peptides, SSOSH-5 was identified to maintain a well-constrained alpha-helical structure and bind to H-Ras with high affinity. SSOSH-5 was furthermore validated to bind with Ras similarly to the parent linear peptide through structural modeling analysis. This optimized stapled peptide was proven to be capable of effectively inhibiting the proliferation of pan-Ras-mutated cancer cells and inducing apoptosis in a dose-dependent manner by modulating downstream kinase signaling. Of note, SSOSH-5 exhibited a high capability of crossing cell membranes and strong proteolytic resistance. We demonstrated that the peptide stapling strategy is a feasible approach for developing peptide-based pan-Ras inhibitors. Furthermore, we expect that SSOSH-5 can be further characterized and optimized for the treatment of Ras-driven cancers.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Proteína SOS1/química , Proteína SOS1/genética , Proteína SOS1/metabolismo , Péptidos/farmacología , Transducción de Señal , Mutación , Antineoplásicos/farmacología
10.
J Mol Endocrinol ; 70(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36103132

RESUMEN

Estrogen accounts for several biological processes in the body; embryo implantation and pregnancy being one of the vital events. This manuscript aims to unearth the nuclear role of Son of sevenless1 (SOS1), its interaction with estrogen receptor alpha (ERα), and signal transducer and activator of transcription 3 (STAT3) in the uterine nucleus during embryo implantation. SOS1, a critical cytoplasmic linker between receptor tyrosine kinase and rat sarcoma virus signaling, translocates into the nucleus via its bipartite nuclear localization signal (NLS) during the 'window of implantation' in pregnant mice. SOS1 associates with chromatin, interacts with histones, and shows intrinsic histone acetyltransferase (HAT) activity specifically acetylating lysine 16 (K16) residue of histone H4. SOS1 is a coactivator of STAT3 and a co-repressor of ERα. SOS1 creates a partial mesenchymal-epithelial transition by acting as a transcriptional modulator. Finally, our phylogenetic tree reveals that the two bipartite NLS surface in reptiles and the second acetyl coenzymeA (CoA) (RDNGPG) important for HAT activity emerges in mammals. Thus, SOS1 has evolved into a moonlighting protein, the special class of multi-tasking proteins, by virtue of its newly identified nuclear functions in addition to its previously known cytoplasmic function.


Asunto(s)
Implantación del Embrión , Receptor alfa de Estrógeno , Proteína SOS1 , Factor de Transcripción STAT3 , Animales , Ratones , Receptor alfa de Estrógeno/genética , Filogenia , Factores de Intercambio de Guanina Nucleótido ras , Factor de Transcripción STAT3/genética , Proteína SOS1/genética
11.
BMC Pediatr ; 22(1): 734, 2022 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-36566191

RESUMEN

BACKGROUND: Noonan syndrome (NS) is a clinically and genetically heterogeneous disorder. Since its clinical phenotype is often mild and difficult to differentiate from other syndromes, its diagnosis can be challenging and its prevalence in the pediatric population is most certainly underestimated. The difficulty in identifying Noonan syndrome is also increased by the fact that genetic tests are currently not able to detect an underlying mutation in around 10% of the cases. METHODS: This is a retrospective, observational study conducted at the Institute for Maternal and Child "Burlo Garofolo" in Trieste, Italy. We recruited all the patients with clinical and/or genetic diagnosis of NS who were evaluated at the Department of Pediatrics between October 2015 and October 2020. Statistical analyses were performed with IBM SPSS Statistics software. The association between discrete variables has been evaluated through chi-squared test, indicating statistically significant p with Pearson test or Fischer test for variables less than 5. RESULTS: We recruited a total of 35 patients affected by Noonan syndrome. In 24 patients (75%) we identified an underlying genetic substrate: 17 patients had a mutation on PTPN11 (61%), 2 in SOS1, KRAS and SHOC2 (7% each) and only 1 in RAF1 (4%). 25% of the subjects did not receive a genetic confirm. As for the phenotype of the syndrome, our study identified the presence of some clinical features which were previously unrelated or poorly related to NS. For example, renal and central nervous system abnormalities were found at a higher rate compared to the current literature. On the contrary, some features that are considered very suggestive of NS (such as lymphatic abnormalities and the classical facial features) were not frequently found in our population. CONCLUSIONS: In our analysis, we focused on the main phenotypic features of NS, identifying various clinical manifestation that were not associated with this genetic condition before. This could be helpful in raising the knowledge of NS's clinical spectrum, facilitating its diagnosis.


Asunto(s)
Síndrome de Noonan , Niño , Humanos , Pruebas Genéticas , Péptidos y Proteínas de Señalización Intracelular/genética , Mutación , Síndrome de Noonan/diagnóstico , Síndrome de Noonan/genética , Fenotipo , Estudios Retrospectivos , Proteína SOS1/genética , Proteínas Proto-Oncogénicas p21(ras)/genética
12.
Lymphology ; 55(3): 129-134, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36446400

RESUMEN

We have studied the lymphatic phenotypes of 2 mutations, known to cause abnormalities of lymphatics in humans, in mice. The Cx47 R260C mutation (variably penetrant in humans heterozygous for it and causing limb lymphedema) had an adult mouse phenotype of hyperplasia and increased lymph nodes only in homozygous condition but we did not find any anatomical phenotype in day 16.5 homozygous embryos. Mice harboring the Sos1 mutation E846K (causing Noonan's in man which occasionally shows lymphatic dysplasia) had no adult heterozygous phenotype in lymphatic vessel appearance and drainage (homozygotes are early embryonic lethals) while day 16.5 heterozygous embryos also had no detectable anatomical phenotype.


Asunto(s)
Enfermedades Linfáticas , Vasos Linfáticos , Proteína SOS1 , Animales , Humanos , Ratones , Heterocigoto , Homocigoto , Vasos Linfáticos/anomalías , Vasos Linfáticos/embriología , Mutación , Fenotipo , Linfedema/embriología , Linfedema/genética , Enfermedades Linfáticas/embriología , Enfermedades Linfáticas/genética , Proteína SOS1/genética , Conexinas/genética
13.
Biochem Biophys Res Commun ; 637: 161-169, 2022 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-36403479

RESUMEN

The influence of son of sevenless homolog 1 (SOS1) on invasion and metastasis of hepatocellular carcinoma (HCC) cells was investigated. HCC cells were transfected with siRNA and lentivirus to achieve SOS1 knock down/overexpression and changes in RNA and protein levels analyzed by q-PCR and Western blotting (WB). Transwell assay was utilized to assess variations in cell invasion and migration in vitro and by a lung metastasis model of liver cancer in vivo. High expression of SOS1 was observed in most human liver cancers, which indicated a worse prognosis. SOS1 knockout in HepG2 cells significantly decreased cell invasion and migration. SOS1 knockout also reduced the number of metastatic foci in a lung metastasis model of HCC established in nude mice. SOS1 knockout inhibited the epithelial-mesenchymal transition (EMT) in HepG2 cells as well as the PI3K/AKT/mTOR pathway. Overexpression of SOS1 in Huh7 cells had the opposite effect. To conclude, SOS1 may induce the EMT by the activation of the PI3K/AKT/mTOR pathway, thereby enhancing invasion, migration and metastasis of HCC cells. These findings may expose SOS1 as a new HCC therapeutic target.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias Pulmonares , Proteína SOS1 , Animales , Humanos , Ratones , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Transición Epitelial-Mesenquimal , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Pulmonares/secundario , Ratones Desnudos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , ARN Interferente Pequeño , Proteína SOS1/genética , Serina-Treonina Quinasas TOR
14.
Bioengineered ; 13(2): 4271-4284, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35152853

RESUMEN

Osteosarcoma (OS) is a malignant tumor that occurs in children and adolescents. Previous studies reported a low expression of miR-148b-3p in OS, but its biological function in OS remains obscure. This study aimed to explore the role of miR-148b-3p in OS progression. Herein, the expression of miR-148b-3p and son of sevenless homolog 1 (SOS1) both in OS tissues and cells were examined using quantitative real-time polymerase chain reaction and Western blotting assay. miR-148b-3p mimic or inhibitor, pcDH-SOS1 plasmid or si-SOS1 and agomir-miR-148b-3p were constructed for cell transfection. In vitro, the biological effect of miR-148b-3p was determined employing MTT, EdU, colony formation, flow cytometry, transwell and wound healing assay, separately. The target relationship between SOS1 3'-untranslated region (3'-UTR) and miR-148b-3p was analyzed using dual-luciferase reporter gene. In vivo, the inhibition of agomir-miR-148b-3p in mice was evaluated via a xenograft mouse model. miR-148b-3p was noticeably low-expressed in OS tissues and cells, and miR-148b-3p over-expression in OS cells suppressed the growth, migration and invasion, induced apoptosis. The effect of miR-148b-3p-inhibitor on cell biological behavior is opposite to that of miR-148b-3p over-expression. Conversely, The expression of SOS1 was significant higher in OS tissues and cells, miR-148b-3p targeted and was negatively associated with the expression level of SOS1. In addition, the anti-tumor effect of miR-148b-3p was reversed by SOS1. Importantly, we demonstrated that the tumor growth of stably over-expressed miR-148b-3p human MG-63 cells was obviously reduced in tumor-bearing mice. These data highlighted that miR-148b-3p might be as a promising therapeutic target for OS.


Asunto(s)
Neoplasias Óseas , MicroARNs/genética , Osteosarcoma , Proteína SOS1/genética , Adolescente , Adulto , Animales , Apoptosis/genética , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Huesos/patología , Línea Celular Tumoral , Proliferación Celular/genética , Niño , Femenino , Genes Supresores de Tumor , Humanos , Ratones , Ratones Desnudos , Osteosarcoma/genética , Osteosarcoma/patología , Adulto Joven
16.
Biomolecules ; 11(8)2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34439794

RESUMEN

Recent breakthroughs have reignited interest in RAS GEFs as direct therapeutic targets. To search for new inhibitors of SOS GEF activity, a repository of known/approved compounds (NIH-NACTS) and a library of new marine compounds (Biomar Microbial Technologies) were screened by means of in vitro RAS-GEF assays using purified, bacterially expressed SOS and RAS constructs. Interestingly, all inhibitors identified in our screenings (two per library) shared related chemical structures belonging to the anthraquinone family of compounds. All our anthraquinone SOS inhibitors were active against the three canonical RAS isoforms when tested in our SOS GEF assays, inhibited RAS activation in mouse embryonic fibroblasts, and were also able to inhibit the growth of different cancer cell lines harboring WT or mutant RAS genes. In contrast to the commercially available anthraquinone inhibitors, our new marine anthraquinone inhibitors did not show in vivo cardiotoxicity, thus providing a lead for future discovery of stronger, clinically useful anthraquinone SOS GEF blockers.


Asunto(s)
Antraquinonas/farmacología , Antineoplásicos/farmacología , GTP Fosfohidrolasas/antagonistas & inhibidores , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Cardiotoxicidad/prevención & control , Línea Celular Transformada , Línea Celular Tumoral , Doxorrubicina/farmacología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Humanos , Idarrubicina/farmacología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteína SOS1/genética , Proteína SOS1/metabolismo , Proteínas Son Of Sevenless/deficiencia , Proteínas Son Of Sevenless/genética
17.
Biochem J ; 478(14): 2793-2809, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-34232285

RESUMEN

Growth factor receptor-bound protein 2 (GRB2) is a trivalent adaptor protein and a key element in signal transduction. It interacts via its flanking nSH3 and cSH3 domains with the proline-rich domain (PRD) of the RAS activator SOS1 and via its central SH2 domain with phosphorylated tyrosine residues of receptor tyrosine kinases (RTKs; e.g. HER2). The elucidation of structural organization and mechanistic insights into GRB2 interactions, however, remain challenging due to their inherent flexibility. This study represents an important advance in our mechanistic understanding of how GRB2 links RTKs to SOS1. Accordingly, it can be proposed that (1) HER2 pYP-bound SH2 potentiates GRB2 SH3 domain interactions with SOS1 (an allosteric mechanism); (2) the SH2 domain blocks cSH3, enabling nSH3 to bind SOS1 first before cSH3 follows (an avidity-based mechanism); and (3) the allosteric behavior of cSH3 to other domains appears to be unidirectional, although there is an allosteric effect between the SH2 and SH3 domains.


Asunto(s)
Proteína Adaptadora GRB2/química , Fosfotirosina/química , Dominios Proteicos , Proteína SOS1/química , Dominios Homologos src , Secuencia de Aminoácidos , Sitios de Unión/genética , Proteína Adaptadora GRB2/genética , Proteína Adaptadora GRB2/metabolismo , Humanos , Cinética , Ligandos , Modelos Moleculares , Fosfotirosina/metabolismo , Unión Proteica , Proteína SOS1/genética , Proteína SOS1/metabolismo
18.
J Med Chem ; 64(10): 6569-6580, 2021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-33719426

RESUMEN

KRAS, the most common oncogenic driver in human cancers, is controlled and signals primarily through protein-protein interactions (PPIs). The interaction between KRAS and SOS1, crucial for the activation of KRAS, is a typical, challenging PPI with a large contact surface area and high affinity. Here, we report that the addition of only one atom placed between Y884SOS1 and A73KRAS is sufficient to convert SOS1 activators into SOS1 inhibitors. We also disclose the discovery of BI-3406. Combination with the upstream EGFR inhibitor afatinib shows in vivo efficacy against KRASG13D mutant colorectal tumor cells, demonstrating the utility of BI-3406 to probe SOS1 biology. These findings challenge the dogma that large molecules are required to disrupt challenging PPIs. Instead, a "foot in the door" approach, whereby single atoms or small functional groups placed between key PPI interactions, can lead to potent inhibitors even for challenging PPIs such as SOS1-KRAS.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteína SOS1/metabolismo , Afatinib/química , Afatinib/metabolismo , Afatinib/uso terapéutico , Regulación Alostérica/efectos de los fármacos , Sitios de Unión , Dominio Catalítico , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Humanos , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Mapas de Interacción de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Quinazolinas/química , Quinazolinas/metabolismo , Quinazolinas/farmacología , Quinazolinas/uso terapéutico , Proteína SOS1/agonistas , Proteína SOS1/antagonistas & inhibidores , Proteína SOS1/genética
19.
Oncol Rep ; 45(5)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33760128

RESUMEN

Papillary thyroid carcinoma (PTC) is the most common type of cancer in the endocrine system. Long non­coding RNAs (lncRNAs) are associated with PTC progression. Therefore, the present study aimed to identify a novel lncRNA involved in PTC. Herein, dysregulated lncRNAs were analyzed in The Cancer Genome Atlas (TCGA)­thyroid cancer (THCA) data. Furthermore, the association between double homeobox A pseudogene 8 (DUXAP8) gene expression and disease stage, and prognosis of patients with PTC was evaluated using the GEPIA online database, while the correlation between DUXAP8 expression and the clinicopathological characteristics of patients with PTC was analyzed by Chi­square test. In addition, the biological effect of DUXAP8 expression on cell proliferation and apoptosis was also investigated. The protein and mRNA/microRNA (miRNA)/lncRNA expression levels were assessed by western blot analysis and reverse transcription­quantitative polymerase chain reaction (RT­qPCR), respectively. The interaction between miR­20b­5p and DUXAP8 was verified using bioinformatics analysis, RNA RIP assay, dual luciferase reporter assay, western blot analysis and RT­qPCR. The analysis of the TCGA­THCA data revealed that DUXAP8 was one of the most significantly upregulated lncRNAs in PTC. This finding was further confirmed in tissues from patients with PTC. Increased DUXAP8 expression was associated with higher grade and poorer prognosis in patients with PTC. In PTC cell lines, silencing of DUXAP8 expression with small interfering RNA­DUXAP8 (si­DUXAP8) induced cell apoptosis and attenuated cell proliferation. Additionally, transfection of PTC cells with si­DUXAP8 decreased the phosphorylation levels of MEK1/2 and ERK1/2, as well as downregulated the expression of son of sevenless 1 (SOS1), cyclin D1 (CCND1) and c­Myc. The results of the present study also revealed that miR­20b­5p could directly target DUXAP8. DUXAP8 expression was positively associated with that of SOS1, c­Myc and CCND1 in the TCGA­THCA data, and DUXAP8 level was positively correlated with that of SOS1 in PTC tumor tissues. Finally, transfection of PTC cells with the SOS1 overexpression plasmid, pcDNA3.1­SOS1, rescued the effects of si­DUXAP8 on cell proliferation and apoptosis. The present study was the first to identify DUXAP8 as a novel upregulated lncRNA in PTC, and provided new insights in understanding the effect of the lncRNA­miRNA­mRNA network in PTC.


Asunto(s)
MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , Proteína SOS1/genética , Cáncer Papilar Tiroideo/genética , Neoplasias de la Tiroides/genética , Adulto , Anciano , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular/genética , Biología Computacional , Conjuntos de Datos como Asunto , Regulación hacia Abajo , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Pronóstico , ARN Largo no Codificante/genética , Cáncer Papilar Tiroideo/mortalidad , Cáncer Papilar Tiroideo/patología , Cáncer Papilar Tiroideo/cirugía , Glándula Tiroides/patología , Glándula Tiroides/cirugía , Neoplasias de la Tiroides/mortalidad , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/cirugía , Tiroidectomía , Regulación hacia Arriba
20.
Exp Cell Res ; 400(1): 112508, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33549576

RESUMEN

Noonan syndrome (NS) is a dominant autosomal genetic disorder, associated with mutations in several genes that exhibit multisystem abnormal development including cardiac defects. NS associated with the Son of Sevenless homolog 1 (SOS1) gene mutation attributes to the development of cardiomyopathy and congenital heart defects. Since the treatment option for NS is very limited, an in vitro disease model with SOS1 gene mutation would be beneficial for exploring therapeutic possibilities for NS. We reprogrammed cardiac fibroblasts obtained from a NS patient and normal control skin fibroblasts (C-SF) into induced pluripotent stem cells (iPSCs). We identified NS-iPSCs carry a heterozygous single nucleotide variation in the SOS1 gene at the c.1654A > G. Furthermore, the control and NS-iPSCs were differentiated into induced cardiomyocytes (iCMCs), and the electron microscopic analysis showed that the sarcomeres of the NS-iCMCs were highly disorganized. FACS analysis showed that 47.5% of the NS-iCMCs co-expressed GATA4 and cardiac troponin T proteins, and the mRNA expression levels of many cardiac related genes, studied by qRT-PCR array, were significantly reduced when compared to the control C-iCMCs. We report for the first time that NS-iPSCs carry a single nucleotide variation in the SOS1 gene at the c.1654A>G were showing significantly reduced cardiac genes and proteins expression as well as structurally and functionally compromised when compared to C-iCMCs. These iPSCs and iCMCs can be used as a modeling platform to unravel the pathologic mechanisms and also the development of novel drug for the cardiomyopathy in patients with NS.


Asunto(s)
Células Madre Pluripotentes Inducidas/patología , Mutación , Miocitos Cardíacos/patología , Síndrome de Noonan/patología , Proteína SOS1/genética , Estudios de Casos y Controles , Células Cultivadas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Síndrome de Noonan/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA