Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208.134
Filtrar
2.
Proc Natl Acad Sci U S A ; 121(21): e2400260121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38743624

RESUMEN

We introduce ZEPPI (Z-score Evaluation of Protein-Protein Interfaces), a framework to evaluate structural models of a complex based on sequence coevolution and conservation involving residues in protein-protein interfaces. The ZEPPI score is calculated by comparing metrics for an interface to those obtained from randomly chosen residues. Since contacting residues are defined by the structural model, this obviates the need to account for indirect interactions. Further, although ZEPPI relies on species-paired multiple sequence alignments, its focus on interfacial residues allows it to leverage quite shallow alignments. ZEPPI can be implemented on a proteome-wide scale and is applied here to millions of structural models of dimeric complexes in the Escherichia coli and human interactomes found in the PrePPI database. PrePPI's scoring function is based primarily on the evaluation of protein-protein interfaces, and ZEPPI adds a new feature to this analysis through the incorporation of evolutionary information. ZEPPI performance is evaluated through applications to experimentally determined complexes and to decoys from the CASP-CAPRI experiment. As we discuss, the standard CAPRI scores used to evaluate docking models are based on model quality and not on the ability to give yes/no answers as to whether two proteins interact. ZEPPI is able to detect weak signals from PPI models that the CAPRI scores define as incorrect and, similarly, to identify potential PPIs defined as low confidence by the current PrePPI scoring function. A number of examples that illustrate how the combination of PrePPI and ZEPPI can yield functional hypotheses are provided.


Asunto(s)
Proteoma , Proteoma/metabolismo , Humanos , Mapeo de Interacción de Proteínas/métodos , Modelos Moleculares , Escherichia coli/metabolismo , Escherichia coli/genética , Bases de Datos de Proteínas , Unión Proteica , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas/química , Proteínas/metabolismo , Alineación de Secuencia
3.
Molecules ; 29(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731411

RESUMEN

Fullerenes, particularly C60, exhibit unique properties that make them promising candidates for various applications, including drug delivery and nanomedicine. However, their interactions with biomolecules, especially proteins, remain not fully understood. This study implements both explicit and implicit C60 models into the UNRES coarse-grained force field, enabling the investigation of fullerene-protein interactions without the need for restraints to stabilize protein structures. The UNRES force field offers computational efficiency, allowing for longer timescale simulations while maintaining accuracy. Five model proteins were studied: FK506 binding protein, HIV-1 protease, intestinal fatty acid binding protein, PCB-binding protein, and hen egg-white lysozyme. Molecular dynamics simulations were performed with and without C60 to assess protein stability and investigate the impact of fullerene interactions. Analysis of contact probabilities reveals distinct interaction patterns for each protein. FK506 binding protein (1FKF) shows specific binding sites, while intestinal fatty acid binding protein (1ICN) and uteroglobin (1UTR) exhibit more generalized interactions. The explicit C60 model shows good agreement with all-atom simulations in predicting protein flexibility, the position of C60 in the binding pocket, and the estimation of effective binding energies. The integration of explicit and implicit C60 models into the UNRES force field, coupled with recent advances in coarse-grained modeling and multiscale approaches, provides a powerful framework for investigating protein-nanoparticle interactions at biologically relevant scales without the need to use restraints stabilizing the protein, thus allowing for large conformational changes to occur. These computational tools, in synergy with experimental techniques, can aid in understanding the mechanisms and consequences of nanoparticle-biomolecule interactions, guiding the design of nanomaterials for biomedical applications.


Asunto(s)
Fulerenos , Simulación de Dinámica Molecular , Muramidasa , Unión Proteica , Fulerenos/química , Muramidasa/química , Muramidasa/metabolismo , Sitios de Unión , Proteínas de Unión a Tacrolimus/química , Proteínas de Unión a Tacrolimus/metabolismo , Proteínas de Unión a Ácidos Grasos/química , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas/química , Proteínas/metabolismo , Proteasa del VIH
4.
Molecules ; 29(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38731506

RESUMEN

The mechanism of ammonia formation during the pyrolysis of proteins in biomass is currently unclear. To further investigate this issue, this study employed the AMS 2023.104 software to select proteins (actual proteins) as the model compounds and the amino acids contained within them (assembled amino acids) as the comparative models. ReaxFF molecular dynamics simulations were conducted to explore the nitrogen transformation and NH3 generation mechanisms in three-phase products (char, tar, and gas) during protein pyrolysis. The research results revealed several key findings. Regardless of whether the model compounds are actual proteins or assembled amino acids, NH3 is the primary nitrogen-containing product during pyrolysis. However, as the temperature rises to higher levels, such as 2000 K and 2500 K, the amount of NH3 decreases significantly in the later stages of pyrolysis, indicating that it is being converted into other nitrogen-bearing species, such as HCN and N2. Simultaneously, we also observed significant differences between the pyrolysis processes of actual proteins and assembled amino acids. Notably, at 2000 K, the amount of NH3 generated from the pyrolysis of assembled amino acids was twice that of actual proteins. This discrepancy mainly stems from the inherent structural differences between proteins and amino acids. In proteins, nitrogen is predominantly present in a network-like structure (NH-N), which shields it from direct external exposure, thus requiring more energy for nitrogen to participate in pyrolysis reactions, making it more difficult for NH3 to form. Conversely, assembled amino acids can release NH3 through a simpler deamination process, leading to a significant increase in NH3 production during their pyrolysis.


Asunto(s)
Amoníaco , Simulación de Dinámica Molecular , Proteínas , Pirólisis , Amoníaco/química , Proteínas/química , Aminoácidos/química , Nitrógeno/química
5.
AAPS J ; 26(3): 60, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730115

RESUMEN

Subcutaneous (SC) administration of therapeutic proteins is perceived to pose higher risk of immunogenicity when compared with intravenous (IV) route of administration (RoA). However, systematic evaluations of clinical data to support this claim are lacking. This meta-analysis was conducted to compare the immunogenicity of the same therapeutic protein by IV and SC RoA. Anti-drug antibody (ADA) data and controlling variables for 7 therapeutic proteins administered by both IV and SC routes across 48 treatment groups were analyzed. RoA was the primary independent variable of interest while therapeutic protein, patient population, adjusted dose, and number of ADA samples were controlling variables. Analysis of variance was used to compare the ADA incidence between IV and SC RoA, while accounting for controlling variables and potential interactions. Subsequently, 10 additional therapeutic proteins with ADA data published for both IV and SC administration were added to the above 7 therapeutic proteins and were evaluated for ADA incidence. RoA had no statistically significant effect on ADA incidence for the initial dataset of 7 therapeutic proteins (p = 0.55). The only variable with a significant effect on ADA incidence was the therapeutic protein. None of the other controlling variables, including their interactions with RoA, was significant. When all data from the 17 therapeutic proteins were pooled, there was no statistically significant effect of RoA on ADA incidence (p = 0.81). In conclusion, there is no significant difference in ADA incidence between the IV and SC RoA, based on analysis of clinical ADA data from 17 therapeutic proteins.


Asunto(s)
Administración Intravenosa , Humanos , Inyecciones Subcutáneas , Anticuerpos/administración & dosificación , Anticuerpos/inmunología , Proteínas/administración & dosificación , Proteínas/inmunología
6.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38739759

RESUMEN

Proteins interact with diverse ligands to perform a large number of biological functions, such as gene expression and signal transduction. Accurate identification of these protein-ligand interactions is crucial to the understanding of molecular mechanisms and the development of new drugs. However, traditional biological experiments are time-consuming and expensive. With the development of high-throughput technologies, an increasing amount of protein data is available. In the past decades, many computational methods have been developed to predict protein-ligand interactions. Here, we review a comprehensive set of over 160 protein-ligand interaction predictors, which cover protein-protein, protein-nucleic acid, protein-peptide and protein-other ligands (nucleotide, heme, ion) interactions. We have carried out a comprehensive analysis of the above four types of predictors from several significant perspectives, including their inputs, feature profiles, models, availability, etc. The current methods primarily rely on protein sequences, especially utilizing evolutionary information. The significant improvement in predictions is attributed to deep learning methods. Additionally, sequence-based pretrained models and structure-based approaches are emerging as new trends.


Asunto(s)
Biología Computacional , Ácidos Nucleicos , Proteínas , Ácidos Nucleicos/metabolismo , Ácidos Nucleicos/química , Proteínas/química , Proteínas/metabolismo , Biología Computacional/métodos , Ligandos , Unión Proteica , Humanos
7.
Biochem Biophys Res Commun ; 716: 150000, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38701554

RESUMEN

Here we report two phase modulated NMR experiments: PM-2D HN(CACBHB) and PM-2D HN(HB), that use 1Hß chemical shifts to rapidly identify amino acid type in proteins. The magnetization on the 1Hß spins during the experiments is allowed to evolve for a fixed evolution period that results in phase modulation (positive or negative) of the cross peaks corresponding to various amino acid residues on their 2D HN projections, resembling a typical 2D [1H-15N]-HSQC spectrum. All amino acids except glycine can be categorized into three discernible groups based on their 1Hß chemical shifts, resulting in unique phase patterns at different fixed evolution periods for 1Hß, thus facilitating their identification. Remarkably, the PM-2D HN(HB) stands out among all amino acid type identification NMR techniques for its applicability with cost-effective and most routinely employed 15N-labeled protein samples for NMR studies. Furthermore, when combined effectively with the 13Cß chemical shift-based phase modulated NMR method (PM-2D HN(CACB)), these methods resolved the identification of large groups of amino acids into relatively smaller groups. Moreover, these techniques can accelerate the sequence-specific sequential resonance assignment (SSRA) process and would help in fast tracking of assigned NMR signals exhibiting chemical shift perturbation on the 2D [1H-15N]-HSQC spectrum of proteins during various experiments (e.g., temperature change, pH change, and protein or ligand or cofactor binding) as well as in site-directed mutagenesis.


Asunto(s)
Aminoácidos , Resonancia Magnética Nuclear Biomolecular , Proteínas , Aminoácidos/química , Resonancia Magnética Nuclear Biomolecular/métodos , Proteínas/química
8.
Commun Biol ; 7(1): 529, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704509

RESUMEN

Intra-organism biodiversity is thought to arise from epigenetic modification of constituent genes and post-translational modifications of translated proteins. Here, we show that post-transcriptional modifications, like RNA editing, may also contribute. RNA editing enzymes APOBEC3A and APOBEC3G catalyze the deamination of cytosine to uracil. RNAsee (RNA site editing evaluation) is a computational tool developed to predict the cytosines edited by these enzymes. We find that 4.5% of non-synonymous DNA single nucleotide polymorphisms that result in cytosine to uracil changes in RNA are probable sites for APOBEC3A/G RNA editing; the variant proteins created by such polymorphisms may also result from transient RNA editing. These polymorphisms are associated with over 20% of Medical Subject Headings across ten categories of disease, including nutritional and metabolic, neoplastic, cardiovascular, and nervous system diseases. Because RNA editing is transient and not organism-wide, future work is necessary to confirm the extent and effects of such editing in humans.


Asunto(s)
Desaminasas APOBEC , Citidina Desaminasa , Edición de ARN , Humanos , Citidina Desaminasa/metabolismo , Citidina Desaminasa/genética , Polimorfismo de Nucleótido Simple , Citosina/metabolismo , Desaminasa APOBEC-3G/metabolismo , Desaminasa APOBEC-3G/genética , Uracilo/metabolismo , Proteínas/genética , Proteínas/metabolismo , Citosina Desaminasa/genética , Citosina Desaminasa/metabolismo
9.
ACS Appl Mater Interfaces ; 16(19): 24398-24409, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38712727

RESUMEN

Low-molecular weight proteins (LWPs) are important sources of biological information in biomarkers, signaling molecules, and pathology. However, the separation and analysis of LWPs in complex biological samples are challenging, mainly due to their low abundance and the complex sample pretreatment procedure. Herein, trypsin modified by poly(acrylic acid) (PAA) was encapsulated by a zeolitic imidazolate framework (ZIF-L). Mesopores were formed on the ZIF-L with the introduction of PAA. An alternative strategy for separation and pretreatment of LWPs was developed based on the prepared ZIF-L-encapsulated trypsin with adjustable pore size. The mesoporous structure of the prepared materials selectively excluded high-molecular weight proteins from the reaction system, allowing LWPs to enter the pores and react with the internal trypsin, resulting in an improved separation efficiency. The hydrophobicity of the ZIF-L simplified the digestion process by inducing significant structural changes in substrate proteins. In addition, the enzymatic activity was significantly enhanced by the developed encapsulation method that maintained the enzyme conformation, allowed low mass transfer resistance, and possessed a high enzyme-to-substrate ratio. As a result, the ZIF-L-encapsulated trypsin can achieve highly selective separation, valid denaturation, and efficient digestion of LWPs in a short time by simply mixing with substrate proteins, greatly simplifying the separation and pretreatment process of the traditional hydrolysis method. The prepared materials and the developed strategy demonstrated an excellent size-selective assay performance in model protein mixtures, showing great potential in the application of proteomics analysis.


Asunto(s)
Imidazoles , Tripsina , Zeolitas , Tripsina/química , Tripsina/metabolismo , Zeolitas/química , Imidazoles/química , Peso Molecular , Resinas Acrílicas/química , Porosidad , Proteínas/química
10.
Anal Biochem ; 691: 115553, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38697592

RESUMEN

We describe a microwave-assisted, methanol and acetic acid-free, inexpensive method for rapid staining of SDS-PAGE proteins. Only citric acid, benzoic acid, and Coomassie brilliant blue G-250 (CBG) were used. Microwave irradiation reduced the detection duration, and proteins in a clear background were visualized within 30 min of destaining, after 2 min of fixing and 12 min of staining. By using this protocol, comparable band intensities were obtained to the conventional methanol/acetic acid method.


Asunto(s)
Ácido Acético , Electroforesis en Gel de Poliacrilamida , Metanol , Microondas , Proteínas , Electroforesis en Gel de Poliacrilamida/métodos , Metanol/química , Proteínas/análisis , Ácido Acético/química , Coloración y Etiquetado/métodos , Colorantes de Rosanilina/química
11.
Protein Sci ; 33(6): e5001, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723111

RESUMEN

De novo protein design expands the protein universe by creating new sequences to accomplish tailor-made enzymes in the future. A promising topology to implement diverse enzyme functions is the ubiquitous TIM-barrel fold. Since the initial de novo design of an idealized four-fold symmetric TIM barrel, the family of de novo TIM barrels is expanding rapidly. Despite this and in contrast to natural TIM barrels, these novel proteins lack cavities and structural elements essential for the incorporation of binding sites or enzymatic functions. In this work, we diversified a de novo TIM barrel by extending multiple ßα-loops using constrained hallucination. Experimentally tested designs were found to be soluble upon expression in Escherichia coli and well-behaved. Biochemical characterization and crystal structures revealed successful extensions with defined α-helical structures. These diversified de novo TIM barrels provide a framework to explore a broad spectrum of functions based on the potential of natural TIM barrels.


Asunto(s)
Modelos Moleculares , Escherichia coli/genética , Escherichia coli/metabolismo , Cristalografía por Rayos X , Pliegue de Proteína , Ingeniería de Proteínas/métodos , Proteínas/química , Proteínas/metabolismo
12.
BMC Genomics ; 25(1): 406, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724906

RESUMEN

Most proteins exert their functions by interacting with other proteins, making the identification of protein-protein interactions (PPI) crucial for understanding biological activities, pathological mechanisms, and clinical therapies. Developing effective and reliable computational methods for predicting PPI can significantly reduce the time-consuming and labor-intensive associated traditional biological experiments. However, accurately identifying the specific categories of protein-protein interactions and improving the prediction accuracy of the computational methods remain dual challenges. To tackle these challenges, we proposed a novel graph neural network method called GNNGL-PPI for multi-category prediction of PPI based on global graphs and local subgraphs. GNNGL-PPI consisted of two main components: using Graph Isomorphism Network (GIN) to extract global graph features from PPI network graph, and employing GIN As Kernel (GIN-AK) to extract local subgraph features from the subgraphs of protein vertices. Additionally, considering the imbalanced distribution of samples in each category within the benchmark datasets, we introduced an Asymmetric Loss (ASL) function to further enhance the predictive performance of the method. Through evaluations on six benchmark test sets formed by three different dataset partitioning algorithms (Random, BFS, DFS), GNNGL-PPI outperformed the state-of-the-art multi-category prediction methods of PPI, as measured by the comprehensive performance evaluation metric F1-measure. Furthermore, interpretability analysis confirmed the effectiveness of GNNGL-PPI as a reliable multi-category prediction method for predicting protein-protein interactions.


Asunto(s)
Algoritmos , Biología Computacional , Redes Neurales de la Computación , Mapeo de Interacción de Proteínas , Mapeo de Interacción de Proteínas/métodos , Biología Computacional/métodos , Mapas de Interacción de Proteínas , Humanos , Proteínas/metabolismo
13.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38725156

RESUMEN

Protein acetylation is one of the extensively studied post-translational modifications (PTMs) due to its significant roles across a myriad of biological processes. Although many computational tools for acetylation site identification have been developed, there is a lack of benchmark dataset and bespoke predictors for non-histone acetylation site prediction. To address these problems, we have contributed to both dataset creation and predictor benchmark in this study. First, we construct a non-histone acetylation site benchmark dataset, namely NHAC, which includes 11 subsets according to the sequence length ranging from 11 to 61 amino acids. There are totally 886 positive samples and 4707 negative samples for each sequence length. Secondly, we propose TransPTM, a transformer-based neural network model for non-histone acetylation site predication. During the data representation phase, per-residue contextualized embeddings are extracted using ProtT5 (an existing pre-trained protein language model). This is followed by the implementation of a graph neural network framework, which consists of three TransformerConv layers for feature extraction and a multilayer perceptron module for classification. The benchmark results reflect that TransPTM has the competitive performance for non-histone acetylation site prediction over three state-of-the-art tools. It improves our comprehension on the PTM mechanism and provides a theoretical basis for developing drug targets for diseases. Moreover, the created PTM datasets fills the gap in non-histone acetylation site datasets and is beneficial to the related communities. The related source code and data utilized by TransPTM are accessible at https://www.github.com/TransPTM/TransPTM.


Asunto(s)
Redes Neurales de la Computación , Procesamiento Proteico-Postraduccional , Acetilación , Biología Computacional/métodos , Bases de Datos de Proteínas , Programas Informáticos , Algoritmos , Humanos , Proteínas/química , Proteínas/metabolismo
14.
Proc Natl Acad Sci U S A ; 121(22): e2319094121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38768341

RESUMEN

Protein-protein and protein-water hydrogen bonding interactions play essential roles in the way a protein passes through the transition state during folding or unfolding, but the large number of these interactions in molecular dynamics (MD) simulations makes them difficult to analyze. Here, we introduce a state space representation and associated "rarity" measure to identify and quantify transition state passage (transit) events. Applying this representation to a long MD simulation trajectory that captured multiple folding and unfolding events of the GTT WW domain, a small protein often used as a model for the folding process, we identified three transition categories: Highway (faster), Meander (slower), and Ambiguous (intermediate). We developed data sonification and visualization tools to analyze hydrogen bond dynamics before, during, and after these transition events. By means of these tools, we were able to identify characteristic hydrogen bonding patterns associated with "Highway" versus "Meander" versus "Ambiguous" transitions and to design algorithms that can identify these same folding pathways and critical protein-water interactions directly from the data. Highly cooperative hydrogen bonding can either slow down or speed up transit. Furthermore, an analysis of protein-water hydrogen bond dynamics at the surface of WW domain shows an increase in hydrogen bond lifetime from folded to unfolded conformations with Ambiguous transitions as an outlier. In summary, hydrogen bond dynamics provide a direct window into the heterogeneity of transits, which can vary widely in duration (by a factor of 10) due to a complex energy landscape.


Asunto(s)
Enlace de Hidrógeno , Simulación de Dinámica Molecular , Pliegue de Proteína , Proteínas , Proteínas/química , Proteínas/metabolismo , Agua/química , Dominios WW , Conformación Proteica , Algoritmos
15.
JCI Insight ; 9(10)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775157

RESUMEN

Redundant tumor microenvironment (TME) immunosuppressive mechanisms and epigenetic maintenance of terminal T cell exhaustion greatly hinder functional antitumor immune responses in chronic lymphocytic leukemia (CLL). Bromodomain and extraterminal (BET) proteins regulate key pathways contributing to CLL pathogenesis and TME interactions, including T cell function and differentiation. Herein, we report that blocking BET protein function alleviates immunosuppressive networks in the CLL TME and repairs inherent CLL T cell defects. The pan-BET inhibitor OPN-51107 reduced exhaustion-associated cell signatures resulting in improved T cell proliferation and effector function in the Eµ-TCL1 splenic TME. Following BET inhibition (BET-i), TME T cells coexpressed significantly fewer inhibitory receptors (IRs) (e.g., PD-1, CD160, CD244, LAG3, VISTA). Complementary results were witnessed in primary CLL cultures, wherein OPN-51107 exerted proinflammatory effects on T cells, regardless of leukemic cell burden. BET-i additionally promotes a progenitor T cell phenotype through reduced expression of transcription factors that maintain terminal differentiation and increased expression of TCF-1, at least in part through altered chromatin accessibility. Moreover, direct T cell effects of BET-i were unmatched by common targeted therapies in CLL. This study demonstrates the immunomodulatory action of BET-i on CLL T cells and supports the inclusion of BET inhibitors in the management of CLL to alleviate terminal T cell dysfunction and potentially enhance tumoricidal T cell activity.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Linfocitos T , Microambiente Tumoral , Leucemia Linfocítica Crónica de Células B/inmunología , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Microambiente Tumoral/inmunología , Microambiente Tumoral/efectos de los fármacos , Humanos , Animales , Ratones , Linfocitos T/inmunología , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Factor Nuclear 1-alfa del Hepatocito/genética , Proliferación Celular/efectos de los fármacos , Proteínas que Contienen Bromodominio , Proteínas
16.
Chem Rev ; 124(10): 6592-6642, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38691379

RESUMEN

Reversible phosphorylation is a fundamental mechanism for controlling protein function. Despite the critical roles phosphorylated proteins play in physiology and disease, our ability to study individual phospho-proteoforms has been hindered by a lack of versatile methods to efficiently generate homogeneous proteins with site-specific phosphoamino acids or with functional mimics that are resistant to phosphatases. Genetic code expansion (GCE) is emerging as a transformative approach to tackle this challenge, allowing direct incorporation of phosphoamino acids into proteins during translation in response to amber stop codons. This genetic programming of phospho-protein synthesis eliminates the reliance on kinase-based or chemical semisynthesis approaches, making it broadly applicable to diverse phospho-proteoforms. In this comprehensive review, we provide a brief introduction to GCE and trace the development of existing GCE technologies for installing phosphoserine, phosphothreonine, phosphotyrosine, and their mimics, discussing both their advantages as well as their limitations. While some of the technologies are still early in their development, others are already robust enough to greatly expand the range of biologically relevant questions that can be addressed. We highlight new discoveries enabled by these GCE approaches, provide practical considerations for the application of technologies by non-GCE experts, and also identify avenues ripe for further development.


Asunto(s)
Código Genético , Fosforilación , Ácidos Fosfoaminos/metabolismo , Ácidos Fosfoaminos/química , Ácidos Fosfoaminos/genética , Proteínas/metabolismo , Proteínas/química , Proteínas/genética , Humanos
17.
ACS Appl Mater Interfaces ; 16(19): 25236-25245, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38700668

RESUMEN

Constructing antifouling surfaces is a crucial technique for optimizing the performance of devices such as water treatment membranes and medical devices in practical environments. These surfaces are achieved by modification with hydrophilic polymers. Notably, zwitterionic (ZI) polymers have attracted considerable interest because of their ability to form a robust hydration layer and inhibit the adsorption of foulants. However, the importance of the molecular weight and density of the ZI polymer on the antifouling property is partially understood, and the surface design still retains an empirical flavor. Herein, we individually assessed the influence of the molecular weight and density of the ZI polymer on protein adsorption through machine learning. The results corroborated that protein adsorption is more strongly influenced by density than by molecular weight. Furthermore, the distribution of predicted protein adsorption against molecular weight and polymer density enabled us to determine conditions that enhanced (or weaken) antifouling. The relevance of this prediction method was also demonstrated by estimating the protein adsorption over a wide range of ionic strengths. Overall, this machine-learning-based approach is expected to contribute as a tool for the optimized functionalization of materials, extending beyond the applications of ZI polymer brushes.


Asunto(s)
Aprendizaje Automático , Polímeros , Adsorción , Polímeros/química , Proteínas/química , Propiedades de Superficie , Incrustaciones Biológicas/prevención & control , Interacciones Hidrofóbicas e Hidrofílicas , Animales , Peso Molecular
18.
J Phys Chem B ; 128(19): 4602-4620, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38711373

RESUMEN

Molecular dynamics simulations depend critically on the quality of the force field used to describe the interatomic interactions and the extent to which it has been validated for use in a specific application. Using a curated test set of 52 high-resolution structures, 39 derived from X-ray diffraction and 13 solved using NMR, we consider the extent to which different parameter sets of the GROMOS protein force field can be distinguished based on comparing a range of structural criteria, including the number of backbone hydrogen bonds, the number of native hydrogen bonds, polar and nonpolar solvent-accessible surface area, radius of gyration, the prevalence of secondary structure elements, J-coupling constants, nuclear Overhauser effect (NOE) intensities, positional root-mean-square deviations (RMSD), and the distribution of backbone ϕ and ψ dihedral angles. It is shown that while statistically significant differences between the average values of individual metrics could be detected, these were in general small. Furthermore, improvements in agreement in one metric were often offset by loss of agreement in another. The work establishes a framework and test set against which protein force fields can be validated. It also highlights the danger of inferring the relative quality of a given force field based on a small range of structural properties or small number of proteins.


Asunto(s)
Enlace de Hidrógeno , Proteínas , Proteínas/química , Simulación de Dinámica Molecular , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica
19.
Chem Rev ; 124(10): 6198-6270, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38717865

RESUMEN

Hybrid small-molecule/protein fluorescent probes are powerful tools for visualizing protein localization and function in living cells. These hybrid probes are constructed by diverse site-specific chemical protein labeling approaches through chemical reactions to exogenous peptide/small protein tags, enzymatic post-translational modifications, bioorthogonal reactions for genetically incorporated unnatural amino acids, and ligand-directed chemical reactions. The hybrid small-molecule/protein fluorescent probes are employed for imaging protein trafficking, conformational changes, and bioanalytes surrounding proteins. In addition, fluorescent hybrid probes facilitate visualization of protein dynamics at the single-molecule level and the defined structure with super-resolution imaging. In this review, we discuss development and the bioimaging applications of fluorescent probes based on small-molecule/protein hybrids.


Asunto(s)
Colorantes Fluorescentes , Proteínas , Colorantes Fluorescentes/química , Proteínas/química , Proteínas/metabolismo , Humanos , Animales , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/metabolismo
20.
Bioinformatics ; 40(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38718225

RESUMEN

MOTIVATION: Protein domains are fundamental units of protein structure and play a pivotal role in understanding folding, function, evolution, and design. The advent of accurate structure prediction techniques has resulted in an influx of new structural data, making the partitioning of these structures into domains essential for inferring evolutionary relationships and functional classification. RESULTS: This article presents Chainsaw, a supervised learning approach to domain parsing that achieves accuracy that surpasses current state-of-the-art methods. Chainsaw uses a fully convolutional neural network which is trained to predict the probability that each pair of residues is in the same domain. Domain predictions are then derived from these pairwise predictions using an algorithm that searches for the most likely assignment of residues to domains given the set of pairwise co-membership probabilities. Chainsaw matches CATH domain annotations in 78% of protein domains versus 72% for the next closest method. When predicting on AlphaFold models, expert human evaluators were twice as likely to prefer Chainsaw's predictions versus the next best method. AVAILABILITY AND IMPLEMENTATION: github.com/JudeWells/Chainsaw.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Dominios Proteicos , Proteínas , Proteínas/química , Bases de Datos de Proteínas , Biología Computacional/métodos , Programas Informáticos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA