Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.145
Filtrar
1.
Int J Rheum Dis ; 27(9): e15323, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39221886

RESUMEN

BACKGROUND: Osteoarthritis (OA) is a prevalent degenerative disease. We explored the role and regulatory mechanisms of lncRNA-FAS-AS1 in OA progression. METHODS: We exposed human immortalized chondrocytes to IL-1ß for 24 h to induce an OA cell model. The target molecule levels were assessed using western blot and quantitative real-time PCR (RT-qPCR). Cell viability and apoptosis were measured using CCK-8 and flow cytometry. The m6A modification of FAS-AS1 was determined using MeRIP. We examined the binding relationships between FAS-AS1, Fragile X mental retardation 1 (FMR1), and A disintegrin and metalloproteinase 8 (ADAM8) using RIP and RNA pull-down. The OA animal model was established by separating the medial collateral ligament and medial meniscus. Safranin-O staining and Mankin's scale were employed to evaluate pathological changes within the cartilage. RESULTS: FAS-AS1, METTL14, and ADAM8 were upregulated, and the JAK/STAT3 signaling pathway was activated in OA mice and IL-1ß-induced chondrocytes. FAS-AS1 knockdown inhibited extracellular matrix degradation in IL-1ß-induced chondrocytes; however, ADAM8 overexpression reversed this effect. FAS-AS1 maintained the stability of ADAM8 mRNA by recruiting FMR1. METTL14 knockdown repressed FAS-AS1 expression in an m6A-dependent manner. FAS-AS1 overexpression reversed the inhibitory effects of METTL14 knockdown on JAK/STAT3 signaling and cartilage damage in the OA model both in vitro and in vivo. CONCLUSION: METTL14-mediated FAS-AS1 promotes OA progression through the FMR1/ADAM8/JAK/STAT3 axis.


Asunto(s)
Proteínas ADAM , Condrocitos , Progresión de la Enfermedad , Proteínas de la Membrana , ARN Largo no Codificante , Factor de Transcripción STAT3 , Transducción de Señal , Regulación hacia Arriba , Animales , Humanos , Masculino , Ratones , Proteínas ADAM/metabolismo , Proteínas ADAM/genética , Adenosina/análogos & derivados , Apoptosis , Artritis Experimental/metabolismo , Artritis Experimental/genética , Artritis Experimental/patología , Cartílago Articular/metabolismo , Cartílago Articular/patología , Línea Celular , Condrocitos/metabolismo , Condrocitos/patología , Modelos Animales de Enfermedad , Interleucina-1beta/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Metiltransferasas/metabolismo , Metiltransferasas/genética , Ratones Endogámicos C57BL , Osteoartritis/metabolismo , Osteoartritis/genética , Osteoartritis/patología , Osteoartritis de la Rodilla/metabolismo , Osteoartritis de la Rodilla/genética , Osteoartritis de la Rodilla/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética
2.
Blood Cancer J ; 14(1): 156, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261477

RESUMEN

Multiple myeloma (MM) is a hematological malignancy whose curability is greatly challenged by recurrent patient relapses and therapy resistance. We have previously proposed the high expression of ADAM8, ADAM9 and ADAM15 (A Disintegrin And Metalloproteinase 8/9/15) as adverse prognostic markers in MM. This study focused on the so far scarcely researched role of ADAM8/9/15 in MM using two patient cohorts and seven human MM cell lines (HMCL). High ADAM8/9/15 expression was associated with high-risk cytogenetic abnormalities and extramedullary disease. Furthermore, ADAM8/15 expression increased with MM progression and in relapsed/refractory MM compared to untreated patient samples. RNA sequencing and gene set enrichment analysis comparing ADAM8/9/15high/low patient samples revealed an upregulation of proliferation markers and proliferation-associated gene sets in ADAM8/9/15high patient samples. High ADAM8/9/15 expression correlated with high Ki67 and high ADAM8/15 expression with high MYC protein expression in immunohistochemical stainings of patient tissue. Conversely, siRNA-mediated knockdown of ADAM8/9/15 in HMCL downregulated proliferation-related gene sets. Western blotting revealed that ADAM8 knockdown regulated IGF1R/AKT signaling and ADAM9 knockdown decreased mTOR activation. Lastly, high ADAM8/9/15 expression levels were verified as prognostic markers independent of Ki67/MYC expression and/or high-risk abnormalities. Overall, these findings suggest that ADAM8/9/15 play a role in MM progression and proliferation signaling.


Asunto(s)
Proteínas ADAM , Proliferación Celular , Progresión de la Enfermedad , Proteínas de la Membrana , Mieloma Múltiple , Transducción de Señal , Humanos , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Mieloma Múltiple/metabolismo , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Masculino , Femenino , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Persona de Mediana Edad , Biomarcadores de Tumor , Anciano
3.
Front Immunol ; 15: 1403104, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39100683

RESUMEN

Background: Early diagnosis and treatment of Systemic lupus erythematosus (SLE) and Systemic sclerosis (SSc) present significant challenges for clinicians. Although various studies have observed changes in serum levels of selectins between healthy donors and patients with autoimmune diseases, including SLE and SSc, their potential as biomarkers has not been thoroughly explored. We aimed to investigate serum profiles of PSGL-1 (sPSGL-1), ADAM8 (sADAM8) and P-, E- and L-selectins (sP-, sE- and sL-selectins) in defined SLE and SSc patient cohorts to identify disease-associated molecular patterns. Methods: We collected blood samples from 64 SLE patients, 58 SSc patients, and 81 healthy donors (HD). Levels of sPSGL-1, sADAM8 and selectins were analyzed by ELISA and leukocyte membrane expression of L-selectin and ADAM8 by flow cytometry. Results: Compared to HD, SLE and SSc patients exhibited elevated sE-selectin and reduced sL-selectin levels. Additionally, SLE patients exhibited elevated sPSGL-1 and sADAM8 levels. Compared to SSc, SLE patients had decreased sL-selectin and increased sADAM8 levels. Furthermore, L-selectin membrane expression was lower in SLE and SSc leukocytes than in HD leukocytes, and ADAM8 membrane expression was lower in SLE neutrophils compared to SSc neutrophils. These alterations associated with some clinical characteristics of each disease. Using logistic regression analysis, the sL-selectin/sADAM8 ratio in SLE, and a combination of sL-selectin/sE-selectin and sE-selectin/sPSGL-1 ratios in SSc were identified and cross-validated as potential serum markers to discriminate these patients from HD. Compared to available diagnostic biomarkers for each disease, both sL-selectin/sADAM8 ratio for SLE and combined ratios for SSc provided higher sensitivity (98% SLE and and 67% SSc correctly classified patients). Importantly, the sADAM8/% ADAM8(+) neutrophils ratio discriminated between SSc and SLE patients with the same sensitivity and specificity than current disease-specific biomarkers. Conclusion: SLE and SSc present specific profiles of sPSGL-1, sE-, sL-selectins, sADAM8 and neutrophil membrane expression which are potentially relevant to their pathogenesis and might aid in their early diagnosis.


Asunto(s)
Proteínas ADAM , Biomarcadores , Lupus Eritematoso Sistémico , Glicoproteínas de Membrana , Proteínas de la Membrana , Esclerodermia Sistémica , Humanos , Esclerodermia Sistémica/sangre , Esclerodermia Sistémica/diagnóstico , Esclerodermia Sistémica/inmunología , Lupus Eritematoso Sistémico/diagnóstico , Lupus Eritematoso Sistémico/sangre , Lupus Eritematoso Sistémico/inmunología , Femenino , Biomarcadores/sangre , Masculino , Proteínas ADAM/sangre , Adulto , Persona de Mediana Edad , Glicoproteínas de Membrana/sangre , Proteínas de la Membrana/sangre , Anciano
4.
Ann Clin Lab Sci ; 54(3): 363-370, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-39048163

RESUMEN

OBJECTIVE: During the progression of chronic idiopathic pulmonary fibrosis (IPF), maladaptive tissue remodeling including excessive extracellular matrix (ECM) deposition occurs, which eventually leads to architectural distortion and loss of organ function in organ fibrosis. ADAM15, which is highly expressed in the developing lungs and kidneys, is a transmembrane-anchored multidomain protein belonging to the family of metalloproteinases. Compared to the extensive studies about functions of matrix metalloproteinases (MMPs), less are discussed about ADAM15, particularly in function and mechanism involving fibrogenesis. Our study aims to fill in this gap. METHODS: We identified ADAM15 as a novel antifibrotic mediator in lung fibrosis. We found that ADAM15 has cross-talks with transforming growth factor-ß1 (TGF-ß1), which is the most potent profibrotic mediator. We provided molecular and translational evidence that knockdown of ADAM15 accelerated fibrogenic response induced by TGF-ß1 and upregulation of ADAM15 rescued TGF-ß1-induced myofibroblast activation in part. RESULTS: Overexpression of ADAM15 ameliorates fibrotic changes and ADAM15 deficiency exacerbates changes from fibroblast to myofibroblast in NIH/3T3. Results were also presented and identified by the intuitive immunofluorescence staining. CONCLUSION: In this study, we uncover a new molecular mechanism of tissue fibrogenesis and identify ADAM15 as a potential therapeutic target in the treatment of fibrotic diseases.


Asunto(s)
Proteínas ADAM , Matriz Extracelular , Fibroblastos , Proteínas de la Membrana , Factor de Crecimiento Transformador beta1 , Animales , Humanos , Ratones , Proteínas ADAM/metabolismo , Proteínas ADAM/genética , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Miofibroblastos/metabolismo , Miofibroblastos/patología , Células 3T3 NIH , Factor de Crecimiento Transformador beta1/metabolismo
6.
Skin Res Technol ; 30(7): e13630, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38988131

RESUMEN

OBJECTIVE: To investigate the role of NEAT1 targeted regulation of miR-125/ADAM9 mediated NF-κB pathway in inflammatory response in rosacea. METHOD: HaCaT cell rosacea phenotype was induced by LL37. The connection targeted by NEAT1 and miR-125a-5p was confirmed by Double-Luciferase report analysis. qPCR was employed to assess the levels of expression for NEAT1, miR-125a-5p, and ADAM9 genes. The levels of expression for ADAM9/TLR2/NF-κB P65 pathway proteins in each batch of cells were determined by Western blotting. The levels of expression for inflammatory factors, including TNF-α, IL-1ß, IL-6, and IL-18, were measured through ELISA experimentation. RESULTS: LL37 could successfully induce HaCaT cells to exhibit rosacea phenotype. The luciferase report experiment confirmed that NEAT1 could target and bind miR-125a-5p and inhibit its expression. ADAM9 exhibited increased expression in LL37-induced HaCaT cells, showing a positive association with NEAT1 expression and inverse relationship with miR-125a-5p activation. LL37 treatment promoted the expression of ADAM9/TLR2/NF-κB P65 pathway proteins. Silencing ADAM9 can inhibit the inflammatory signaling pathway and reduce the level of TNF-α, IL-1ß, IL-6, and IL-18 in HaCaT cells. CONCLUSION: NEAT1 can suppress the production of miR-125a-5p and activate the TLR2/NF-κB inflammatory pathway mediated by ADAM9, thereby promoting the inflammatory response in rosacea.


Asunto(s)
Proteínas ADAM , Proteínas de la Membrana , MicroARNs , FN-kappa B , ARN Largo no Codificante , Rosácea , Humanos , MicroARNs/metabolismo , MicroARNs/genética , Rosácea/metabolismo , Rosácea/genética , Proteínas ADAM/metabolismo , Proteínas ADAM/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , FN-kappa B/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Transducción de Señal , Células HaCaT , Catelicidinas , Péptidos Catiónicos Antimicrobianos/metabolismo , Péptidos Catiónicos Antimicrobianos/genética , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 2/genética
7.
Prostaglandins Other Lipid Mediat ; 174: 106862, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38936541

RESUMEN

Atherosclerosis is a chronic inflammatory disease forming plaques in medium and large-sized arteries. ADAMTS-4 (a disintegrin and metalloproteinase with thrombospondin motifs-4) is an extracellular-matrix remodelling enzyme involved in the degradation of versican in the arterial wall. Recent reports indicated that increased expression of ADAMTS-4 is associated with plaque progression and vulnerability. Bioactive components of dietary oil, like sesame oil, are reported to have anti-inflammatory and antioxidant properties. Here, we studied the effect of sesame oil on regulating ADAMTS-4 in high-fat diet-induced atherosclerosis rat model. Our results indicated that sesame oil supplementation improved the anti-inflammatory and anti-oxidative status of the body. It also reduced atherosclerotic plaque formation in high-fat diet-fed rats. Our results showed that the sesame oil supplementation significantly down-regulated the expression of ADAMTS-4 in serum and aortic samples. The versican, the large proteoglycan substrate of ADAMTS-4 in the aorta, was downregulated to normal control level on sesame oil supplementation. This study, for the first time, reveals that sesame oil could down-regulate the expression of ADAMTS-4 in high-fat diet-induced atherosclerosis, imparting a new therapeutic potential for sesame oil in the management of atherosclerosis.


Asunto(s)
Proteína ADAMTS4 , Aterosclerosis , Dieta Alta en Grasa , Regulación hacia Abajo , Aceite de Sésamo , Animales , Aceite de Sésamo/farmacología , Proteína ADAMTS4/metabolismo , Proteína ADAMTS4/genética , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Dieta Alta en Grasa/efectos adversos , Regulación hacia Abajo/efectos de los fármacos , Ratas , Masculino , Versicanos/metabolismo , Versicanos/genética , Ratas Sprague-Dawley , Proteínas ADAM/metabolismo , Proteínas ADAM/genética , Aorta/metabolismo , Aorta/efectos de los fármacos , Aorta/patología
8.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38928352

RESUMEN

Prostate cancer (PC) is the most common cancer diagnosed in men worldwide. Currently, castration-resistant prostate cancer (CRPC), which is resistant to androgen deprivation therapy, has a poor prognosis and is a therapeutic problem. We investigated the antitumor effects on PC of an antibody neutralizing secreted disintegrin and metalloproteinase domain-containing protein 9 (sADAM9), which is a blood-soluble form. We performed proliferation assays, wound healing assays, invasion assays, Western blot (WB), and an in vivo study in which a sADAM9 neutralizing antibody was administered intratumorally to PC-bearing mice. In invasion assays, the sADAM9 neutralizing antibody significantly inhibited invasion in all cell lines (TRAMP-C2: p = 0.00776, LNCaP: p = 0.000914, PC-3: p = 0.0327, and DU145: p = 0.0254). We examined epithelial-mesenchymal transition (EMT) markers, one of the metastatic mechanisms, in WB and showed downregulation of Slug in TRAMP-C2, LNCaP, and DU145 and upregulation of E-cadherin in TRAMP-C2 and PC-3 by sADAM9 neutralization. In mouse experiments, the sADAM9 neutralizing antibody significantly suppressed tumor growth compared to controls (1.68-fold in TRAMP-C2, 1.89-fold in LNCaP, and 2.67-fold in PC-3). These results suggested that the sADAM9 neutralizing antibody inhibits invasion, migration, and tumor growth in PC. Previous studies examined the anti-tumor effect of knockdown of total ADAM9 or sADAM9, but this study used the new technology of neutralizing antibodies for sADAM9. This may be novel because there was no animal study using a neutralizing antibody for sADAM9 to see the relationship between ADAM9 expression and prostate cancer.


Asunto(s)
Proteínas ADAM , Movimiento Celular , Transición Epitelial-Mesenquimal , Neoplasias de la Próstata , Masculino , Transición Epitelial-Mesenquimal/efectos de los fármacos , Animales , Humanos , Movimiento Celular/efectos de los fármacos , Proteínas ADAM/metabolismo , Ratones , Línea Celular Tumoral , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Anticuerpos Neutralizantes/farmacología , Proliferación Celular/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
9.
10.
BMJ Case Rep ; 17(6)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862189

RESUMEN

We present a case of a child with congenital thrombotic thrombocytopenic purpura found to have a compound heterozygous variant in the ADAMTS13 gene with a novel variant resulting in a large duplication of exons 9-11 of ADAMTS13 This variant was identified through additional molecular testing via a chromosomal microarray analysis. To our knowledge, this assay had not previously been utilised to identify an ADAMTS13 variant and the additional testing was possible through the involvement of a genetic counsellor.


Asunto(s)
Proteína ADAMTS13 , Púrpura Trombocitopénica Trombótica , Humanos , Proteína ADAMTS13/genética , Púrpura Trombocitopénica Trombótica/genética , Púrpura Trombocitopénica Trombótica/diagnóstico , Análisis por Micromatrices/métodos , Duplicación de Gen , Masculino , Femenino , Exones/genética , Proteínas ADAM/genética
11.
Nat Commun ; 15(1): 4153, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755212

RESUMEN

Viral myocarditis, an inflammatory disease of the heart, causes significant morbidity and mortality. Type I interferon (IFN)-mediated antiviral responses protect against myocarditis, but the mechanisms are poorly understood. We previously identified A Disintegrin And Metalloproteinase domain 9 (ADAM9) as an important factor in viral pathogenesis. ADAM9 is implicated in a range of human diseases, including inflammatory diseases; however, its role in viral infection is unknown. Here, we demonstrate that mice lacking ADAM9 are more susceptible to encephalomyocarditis virus (EMCV)-induced death and fail to mount a characteristic type I IFN response. This defect in type I IFN induction is specific to positive-sense, single-stranded RNA (+ ssRNA) viruses and involves melanoma differentiation-associated protein 5 (MDA5)-a key receptor for +ssRNA viruses. Mechanistically, ADAM9 binds to MDA5 and promotes its oligomerization and thereby downstream mitochondrial antiviral-signaling protein (MAVS) activation in response to EMCV RNA stimulation. Our findings identify a role for ADAM9 in the innate antiviral response, specifically MDA5-mediated IFN production, which protects against virus-induced cardiac damage, and provide a potential therapeutic target for treatment of viral myocarditis.


Asunto(s)
Proteínas ADAM , Infecciones por Cardiovirus , Virus de la Encefalomiocarditis , Inmunidad Innata , Interferón Tipo I , Helicasa Inducida por Interferón IFIH1 , Proteínas de la Membrana , Miocarditis , Animales , Ratones , Proteínas ADAM/metabolismo , Proteínas ADAM/genética , Proteínas ADAM/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/inmunología , Infecciones por Cardiovirus/inmunología , Infecciones por Cardiovirus/virología , Virus de la Encefalomiocarditis/inmunología , Células HEK293 , Interferón Tipo I/metabolismo , Interferón Tipo I/inmunología , Helicasa Inducida por Interferón IFIH1/metabolismo , Helicasa Inducida por Interferón IFIH1/genética , Helicasa Inducida por Interferón IFIH1/inmunología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Ratones Endogámicos C57BL , Ratones Noqueados , Miocarditis/inmunología , Miocarditis/virología , Transducción de Señal/inmunología
12.
Cell Mol Biol Lett ; 29(1): 75, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755530

RESUMEN

BACKGROUND: Mechanical spinal cord injury (SCI) is a deteriorative neurological disorder, causing secondary neuroinflammation and neuropathy. ADAM8 is thought to be an extracellular metalloproteinase, which regulates proteolysis and cell adherence, but whether its intracellular region is involved in regulating neuroinflammation in microglia after SCI is unclear. METHODS: Using animal tissue RNA-Seq and clinical blood sample examinations, we found that a specific up-regulation of ADAM8 in microglia was associated with inflammation after SCI. In vitro, microglia stimulated by HMGB1, the tail region of ADAM8, promoted microglial inflammation, migration and proliferation by directly interacting with ERKs and Fra-1 to promote activation, then further activated Map3k4/JNKs/p38. Using SCI mice, we used BK-1361, a specific inhibitor of ADAM8, to treat these mice. RESULTS: The results showed that administration of BK-1361 attenuated the level of neuroinflammation and reduced microglial activation and recruitment by inhibiting the ADAM8/Fra-1 axis. Furthermore, treatment with BK-1361 alleviated glial scar formation, and also preserved myelin and axonal structures. The locomotor recovery of SCI mice treated with BK-1361 was therefore better than those without treatment. CONCLUSIONS: Taken together, the results showed that ADAM8 was a critical molecule, which positively regulated neuroinflammatory development and secondary pathogenesis by promoting microglial activation and migration. Mechanically, ADAM8 formed a complex with ERK and Fra-1 to further activate the Map3k4/JNK/p38 axis in microglia. Inhibition of ADAM8 by treatment with BK-1361 decreased the levels of neuroinflammation, glial formation, and neurohistological loss, leading to favorable improvement in locomotor functional recovery in SCI mice.


Asunto(s)
Proteínas ADAM , Sistema de Señalización de MAP Quinasas , Proteínas de la Membrana , Microglía , Enfermedades Neuroinflamatorias , Traumatismos de la Médula Espinal , Animales , Ratones , Proteínas ADAM/metabolismo , Proteínas ADAM/antagonistas & inhibidores , Proteínas ADAM/genética , Antígenos CD , Movimiento Celular/efectos de los fármacos , Inflamación/patología , Inflamación/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Microglía/metabolismo , Microglía/efectos de los fármacos , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Proteínas Proto-Oncogénicas c-fos/efectos de los fármacos , Proteínas Proto-Oncogénicas c-fos/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/tratamiento farmacológico
13.
Cell Rep ; 43(5): 114186, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38700985

RESUMEN

The fine control of synaptic function requires robust trans-synaptic molecular interactions. However, it remains poorly understood how trans-synaptic bridges change to reflect the functional states of the synapse. Here, we develop optical tools to visualize in firing synapses the molecular behavior of two trans-synaptic proteins, LGI1 and ADAM23, and find that neuronal activity acutely rearranges their abundance at the synaptic cleft. Surprisingly, synaptic LGI1 is primarily not secreted, as described elsewhere, but exo- and endocytosed through its interaction with ADAM23. Activity-driven translocation of LGI1 facilitates the formation of trans-synaptic connections proportionally to the history of activity of the synapse, adjusting excitatory transmission to synaptic firing rates. Accordingly, we find that patient-derived autoantibodies against LGI1 reduce its surface fraction and cause increased glutamate release. Our findings suggest that LGI1 abundance at the synaptic cleft can be acutely remodeled and serves as a critical control point for synaptic function.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Sinapsis , Transmisión Sináptica , Animales , Humanos , Proteínas ADAM/metabolismo , Autoanticuerpos/inmunología , Ácido Glutámico/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones Endogámicos C57BL , Neuronas/metabolismo , Transporte de Proteínas , Sinapsis/metabolismo , Transmisión Sináptica/fisiología , Ratas , Ratas Sprague-Dawley
14.
Clin Immunol ; 263: 110228, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663494

RESUMEN

Asthma is a heterogeneous disease characterized by chronic airway inflammation, reversible airflow limitation, and airway remodeling. Eosinophil peroxidase (EPX) is the most abundant secondary granule protein unique to activated eosinophils. In this study, we aimed to illustrate the effect of EPX on the epithelial-mesenchymal transition (EMT) in BEAS-2B cells. Our research found that both EPX and ADAM33 were negatively correlated with FEV1/FVC and FEV1%pred, and positively correlated with IL-5 levels. Asthma patients had relatively higher levels of ADAM33 and EPX compared to the healthy control group. The expression of TSLP, TGF-ß1 and ADAM33 in the EPX intervention group was significantly higher. Moreover, EPX could promote the proliferation, migration and EMT of BEAS-2B cells, and the effect of EPX on various factors was significantly improved by the PI3K inhibitor LY294002. The findings from this study could potentially offer a novel therapeutic target for addressing airway remodeling in bronchial asthma, particularly focusing on EMT.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Asma , Bronquios , Peroxidasa del Eosinófilo , Células Epiteliales , Transición Epitelial-Mesenquimal , Factor de Crecimiento Transformador beta1 , Humanos , Asma/metabolismo , Asma/patología , Asma/fisiopatología , Asma/inmunología , Masculino , Femenino , Células Epiteliales/metabolismo , Peroxidasa del Eosinófilo/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Persona de Mediana Edad , Adulto , Bronquios/patología , Interleucina-5/metabolismo , Cromonas/farmacología , Citocinas/metabolismo , Línea Celular , Linfopoyetina del Estroma Tímico , Proliferación Celular , Movimiento Celular , Morfolinas/farmacología , Proteínas ADAM
15.
Technol Cancer Res Treat ; 23: 15330338241239139, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38613350

RESUMEN

BACKGROUND: Cuproptosis is a novel type of mediated cell death strongly associated with the progression of several cancers and has been implicated as a potential therapeutic target. However, the role of cuproptosis in cholangiocarcinoma for prognostic prediction, subgroup classification, and therapeutic strategies remains largely unknown. METHODS: A systematic analysis was conducted among 146 cuproptosis-related genes and clinical information based on independent mRNA and protein datasets to elucidate the potential mechanisms and prognostic prediction value of cuproptosis-related genes. A 10-cuproptosis-related gene prediction model was constructed, and its effects on cholangiocarcinoma prognosis were significantly connected to poor patient survival. Additionally, the expression patterns of our model included genes that were validated with several cholangiocarcinoma cancer cell lines and a normal biliary epithelial cell line. RESULTS: First, a 10-cuproptosis-related gene signature (ADAM9, ADAM17, ALB, AQP1, CDK1, MT2A, PAM, SOD3, STEAP3, and TMPRSS6) displayed excellent predictive performance for the overall survival of cholangiocarcinoma. The low-cuproptosis group had a significantly better prognosis than the high-cuproptosis group with transcriptome and protein cohorts. Second, compared with the high-risk and low-risk groups, the 2 groups displayed distinct tumor microenvironments, reduced proportions of endothelial cells, and increased levels of cancer-associated fibroblasts based on CIBERSORTx and EPIC analyses. Third, patients' sensitivities to chemotherapeutic drugs and immune checkpoints revealed distinctive differences between the 2 groups. Finally, in replicating the expression patterns of the 10 genes, these results were validated with quantitative real-time polymerase chain reaction results validating the abnormal expression pattern of the target genes in cholangiocarcinoma. CONCLUSIONS: Collectively, we established and verified an effective prognostic model that could separate cholangiocarcinoma patients into 2 heterogeneous cuproptosis subtypes based on the molecular or protein characteristics of 10 cuproptosis-related genes. These findings may provide potential benefits for unveiling molecular characteristics and defining subgroups could improve the early diagnosis and individualized treatment of cholangiocarcinoma patients.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Células Endoteliales , Pronóstico , Colangiocarcinoma/genética , Neoplasias de los Conductos Biliares/genética , Conductos Biliares Intrahepáticos , Microambiente Tumoral/genética , Proteínas de la Membrana , Proteínas ADAM
16.
Sci Rep ; 14(1): 9073, 2024 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643218

RESUMEN

ADAMTS13, a disintegrin and metalloprotease with a thrombospondin type 1 motif, member 13, regulates the length of Von Willebrand factor (VWF) multimers and their platelet-binding activity. ADAMTS13 is constitutively secreted as an active protease and is not inhibited by circulating protease inhibitors. Therefore, the mechanisms that regulate ADAMTS13 protease activity are unknown. We performed an unbiased proteomics screen to identify ligands of ADAMTS13 by optimizing the application of BioID to plasma. Plasma BioID identified 5 plasma proteins significantly labeled by the ADAMTS13-birA* fusion, including VWF and plasminogen. Glu-plasminogen, Lys-plasminogen, mini-plasminogen, and apo(a) bound ADAMTS13 with high affinity, whereas micro-plasminogen did not. None of the plasminogen variants or apo(a) bound to a C-terminal truncation variant of ADAMTS13 (MDTCS). The binding of plasminogen to ADAMTS13 was attenuated by tranexamic acid or ε-aminocaproic acid, and tranexamic acid protected ADAMTS13 from plasmin degradation. These data demonstrate that plasminogen is an important ligand of ADAMTS13 in plasma by binding to the C-terminus of ADAMTS13. Plasmin proteolytically degrades ADAMTS13 in a lysine-dependent manner, which may contribute to its regulation. Adapting BioID to identify protein-interaction networks in plasma provides a powerful new tool to study protease regulation in the cardiovascular system.


Asunto(s)
Fibrinolisina , Ácido Tranexámico , Fibrinolisina/metabolismo , Factor de von Willebrand/metabolismo , Proteína ADAMTS13 , Proteínas ADAM/metabolismo , Ligandos , Plasminógeno/metabolismo
17.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 532-540, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38660863

RESUMEN

OBJECTIVE: To investigate the molecular mechanism of proteolytic cleavage of unusually large von Willebrand Factor(ULVWF) on endothelial cells by ADAMTS13 (a disintegrin and metalloprotease with thrombospondin type 1 repeats-13) in the absence of fluid shear stress, so as to provide a theoretical basis for the pathogenesis of thrombotic thrombocytopenic purpura (TTP) and other thrombotic disorders. METHODS: The ADAMTS13-mediated proteolysis of ULVWF on the surface of endothelial cells in the absence of fluid shear stress was observed through immunofluorescence microscopy. The variation in VWF antigen levels in the conditioned media were determined by ELISA assay. The levels of VWF and the proteolytic fragments released into the conditioned media were determined by ELISA assay and Western blot in the absence and presence of fluid shear stress or FVIII. The effect of ADAMTS13-mediated ULVWF cleavage on the normal distribution of plasma VWF multimers was evaluated by multimer analysis. Histamine stimulated human umbilical vein endothelial cells (HUVECs) were incubated with ADAMTS13 and various N- and C-terminally truncated mutants. Then the ULVWF that maintained binding to the cells were observed through immunofluorescence microscopy and the soluble ULVWF released from endothelial cells was determined by ELISA, so as to demonstrate the domains of ADAMTS13 required for proteolysis of ULVWF on endothelial cells. RESULTS: The ULVWF strings on the endothelial cell surface were rapidly proteolyzed by recombinant and plasma ADAMTS13 in the absence of fluid shear stress. This proteolytic processing of ULVWF depended on incubation time and ADAMTS13 concentration, but not shear stress and FVIII. The distribution of VWF releaseded by ADAMTS13-mediated proteolysis was quite similar to that secreted by endothelial cells under histamine stimulation, suggesting the ULVWF cleavage occured at the cell surface. The proteolysis of the ULVWF on endothelial cells required the Cys-rich(CysR) and spacer domains, but not the TSP1 2-8 and CUB domains of ADAMTS13. CONCLUSION: The ULVWF polymers on endothelial cells are sensitive to ADAMTS13-mediated cleavage even in the absence of fluid shear stress. The findings provide novel insight into the molecular mechanism of ADAMTS13-mediated ULVWF cleavage at the cellular level and may contribute to understanding of the pathogenesis of TTP and other thrombotic disorders.


Asunto(s)
Proteína ADAMTS13 , Células Endoteliales , Estrés Mecánico , Factor de von Willebrand , Humanos , Proteínas ADAM/metabolismo , Proteína ADAMTS13/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Proteolisis , Púrpura Trombocitopénica Trombótica/metabolismo , Factor de von Willebrand/química , Factor de von Willebrand/metabolismo
18.
Am J Physiol Heart Circ Physiol ; 327(2): H409-H416, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-38607341

RESUMEN

Cardiac hypertrophy is a common feature in several cardiomyopathies. We previously reported that loss of ADAM15 (disintegrin and metalloproteinase 15) worsened cardiac hypertrophy and dilated cardiomyopathy following cardiac pressure overload. Here, we investigated the impact of ADAM15 loss in female mice following cardiac pressure overload induced by transverse aortic constriction (TAC). Female Adam15-/- mice developed the same degree of cardiac hypertrophy, dilation, and dysfunction as the parallel female wild-type (WT) mice at 6 wk post-TAC. To determine if this is due to the protective effects of estrogen, which could mask the negative impact of Adam15 loss, WT and Adam15-/- mice underwent ovariectomy (OVx) 2 wk before TAC. Cardiac structure and function analyses were performed at 6 wk post-TAC. OVx similarly impacted females of both genotypes post-TAC. Calcineurin (Cn) activity was increased post-OVx-TAC, and more in Adam15-/- mice; however, this increase was not reflected in the total-to-phospho-NFAT levels. Integrin-α7 expression, which was upstream of Cn activation in male Adam15-/- -TAC mice, remained unchanged in female mice. However, activation of the mitogen-activated protein kinases (ERK, JNK, P38) was greater in Adam15-/--OVx-TAC than in WT-OVx-TAC mice. In addition, ADAM15 protein levels were significantly increased post-TAC in male but not in female WT mice. Myocardial fibrosis was comparable in non-OVx WT-TAC and Adam15-/- -TAC mice. OVx increased the perivascular fibrosis more in Adam15-/- compared with WT mice post-TAC. Our data demonstrate that loss of ovarian hormones did not fully replicate the male phenotype in the female Adam15-/- mice post-TAC. As ADAM15 levels were increased in males but not in females post-TAC, it is plausible that ADAM15 does not play a prominent role in post-TAC events in female mice. Our findings highlight the significance of factors other than sex hormones in mediating cardiomyopathies in females, which require a more thorough understanding.NEW & NOTEWORTHY Loss of ADAM15 in female mice, unlike the male mice, does not worsen the cardiomyopathy following cardiac pressure overload. Ovariectomy does not worsen the post-TAC cardiomyopathy in female Adam15-/- mice compared with female WT mice. Lack of deleterious impact of Adam15 deficiency in female mice is not because of the protective effects of ovarian hormones but could be due to a less prominent role of ADAM15 in cardiac response to post-TAC remodeling in female mice.


Asunto(s)
Proteínas ADAM , Proteínas de la Membrana , Ratones Noqueados , Ovariectomía , Animales , Femenino , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Proteínas ADAM/deficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Masculino , Ratones Endogámicos C57BL , Calcineurina/metabolismo , Calcineurina/genética , Modelos Animales de Enfermedad , Ratones , Remodelación Ventricular , Factores de Transcripción NFATC/metabolismo , Factores de Transcripción NFATC/genética , Miocardio/metabolismo , Miocardio/patología , Fibrosis , Cardiomiopatías/fisiopatología , Cardiomiopatías/metabolismo , Cardiomiopatías/genética , Cardiomiopatías/etiología , Cardiomiopatías/patología , Factores Sexuales , Transducción de Señal , Función Ventricular Izquierda , Hipertrofia Ventricular Izquierda/fisiopatología , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/genética , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/etiología
19.
Clin Immunol ; 262: 110168, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38458301

RESUMEN

Systemic lupus erythematosus (SLE) is a complex autoimmune disorder impacting various organs, notably prevalent in women of reproductive age. This review explores the involvement of a disintegrin and metalloproteinases (ADAMs) in SLE pathogenesis. Despite advancements in understanding SLE through genome and transcriptome studies, the role of ADAMs in post-translational regulations remains insufficiently explored. ADAMs, transmembrane proteins with diverse functions, impact cell adhesion, migration, and inflammation by shedding cell surface proteins, growth factors, and receptors. Notably, ADAM9 is implicated in Th17 cell differentiation, which is crucial in SLE pathology. ADAM10 and ADAM17 play pivotal roles in T-cell biology, influencing immune cell development and differentiation. Elevated soluble ADAM substrates in SLE patients serve as potential biomarkers correlating with disease activity. Targeting ADAMs or their substrates offers promising therapeutic avenues for SLE management and treatment enhancement.


Asunto(s)
Desintegrinas , Lupus Eritematoso Sistémico , Humanos , Femenino , Desintegrinas/metabolismo , Proteína ADAM10/metabolismo , Inflamación , Diferenciación Celular , Proteínas de la Membrana , Proteínas ADAM
20.
Pathol Res Pract ; 256: 155264, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38518731

RESUMEN

BACKGROUND: Nasopharyngeal carcinoma (NPC) is a type of epithelial malignancy known for its high likelihood of metastasizing to distant organs, which remains the primary obstacle in the treatment of NPC. The present study aimed to identify potential intervention target for NPC metastasis. METHODS: The differentially expressed genes (DEGs) were firstly analyzed and intersected across various NPC related datasets in the Gene Expression Omnibus database. Subsequently, various techniques including quantitative polymerase chain reaction (qPCR), western blotting, immunohistochemistry, migration and invasion assays, in conjunction with bioinformatics and prognostic modeling, were utilized to elucidate the role of candidate genes in NPC metastasis. RESULTS: We discerned the gene a disintegrin and metalloprotease 22 (ADAM22) as a distinct and significant factor in the progression and metastasis of NPC through five datasets. The elevated expression of ADAM22 was observed in clinical tissue and plasma samples with advanced NPC, as well as in high metastatic cells. Furthermore, we highlighted its essential role in a prognostic model that demonstrated strong prediction performance for NPC. Notably, overexpression of ADAM22 was found to enhance the aggressiveness and epithelial-mesenchymal transition (EMT) of low metastatic NPC cells, whereas the downregulation of ADAM22 resulted in suppressed effect in high metastatic cells. Delving into the mechanism, ADAM22 activated the PI3K/Akt signaling pathway through the mediation of Rac Family Small GTPase 2 (RAC2), thereby facilitating EMT and metastasis in NPC. CONCLUSIONS: The study provided pioneering insights that ADAM22 had the potential to act as an oncogene by promoting EMT and metastasis of NPC through the RAC2-mediated PI3K/Akt signaling pathway. Thus, ADAM22 could serve as a novel prognostic indicator in NPC.


Asunto(s)
Carcinoma , Neoplasias Nasofaríngeas , Humanos , Proteínas ADAM/genética , Biomarcadores , Carcinoma/patología , Línea Celular Tumoral , Movimiento Celular , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Carcinoma Nasofaríngeo/patología , Neoplasias Nasofaríngeas/patología , Proteínas del Tejido Nervioso/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Pronóstico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA