Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 800
Filtrar
1.
J Gene Med ; 26(7): e3717, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38967915

RESUMEN

BACKGROUND: Synaptic Ras GTPase activating protein 1 (SYNGAP1)-related non-specific intellectual disability is a neurodevelopmental disorder caused by an insufficient level of SynGAP1 resulting in a dysfunction of neuronal synapses and presenting with a wide array of clinical phenotypes. Hematopoietic stem cell gene therapy has the potential to deliver therapeutic levels of functional SynGAP1 to affected neurons upon transduction of hematopoietic stem and progenitor cells with a lentiviral vector. METHODS: As a novel approach toward the treatment of SYNGAP1, we have generated a lentiviral vector expressing a modified form of SynGAP1 for transduction of human CD34+ hematopoietic stem and progenitor cells. The gene-modified cells were then transplanted into adult immunodeficient SYNGAP1+/- heterozygous mice and evaluated for improvement of SYNGAP1-related clinical phenotypes. Expression of SynGAP1 was also evaluated in the brain tissue of transplanted mice. RESULTS: In our proof-of-concept study, we have demonstrated significant improvement of SYNGAP1-related phenotypes including an improvement in motor abilities observed in mice transplanted with the vector transduced cells because they displayed decreased hyperactivity in an open field assay and an increased latency to fall in a rotarod assay. An increased level of SynGAP1 was also detected in the brains of these mice. CONCLUSIONS: These early-stage results highlight the potential of this stem cell gene therapy approach as a treatment strategy for SYNGAP1.


Asunto(s)
Terapia Genética , Vectores Genéticos , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas , Discapacidad Intelectual , Lentivirus , Proteínas Activadoras de ras GTPasa , Animales , Proteínas Activadoras de ras GTPasa/genética , Proteínas Activadoras de ras GTPasa/metabolismo , Terapia Genética/métodos , Humanos , Células Madre Hematopoyéticas/metabolismo , Ratones , Discapacidad Intelectual/terapia , Discapacidad Intelectual/genética , Vectores Genéticos/genética , Lentivirus/genética , Transducción Genética , Modelos Animales de Enfermedad , Encéfalo/metabolismo
2.
J Cell Biol ; 223(9)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38888895

RESUMEN

Macropinocytosis mediates the non-selective bulk uptake of extracellular fluid, enabling cells to survey the environment and obtain nutrients. A conserved set of signaling proteins orchestrates the actin dynamics that lead to membrane ruffling and macropinosome formation across various eukaryotic organisms. At the center of this signaling network are Ras GTPases, whose activation potently stimulates macropinocytosis. However, how Ras signaling is initiated and spatiotemporally regulated during macropinocytosis is not well understood. By using the model system Dictyostelium and a proteomics-based approach to identify regulators of macropinocytosis, we uncovered Leep2, consisting of Leep2A and Leep2B, as a RasGAP complex. The Leep2 complex specifically localizes to emerging macropinocytic cups and nascent macropinosomes, where it modulates macropinosome formation by regulating the activities of three Ras family small GTPases. Deletion or overexpression of the complex, as well as disruption or sustained activation of the target Ras GTPases, impairs macropinocytic activity. Our data reveal the critical role of fine-tuning Ras activity in directing macropinosome formation.


Asunto(s)
Dictyostelium , Pinocitosis , Proteínas Activadoras de ras GTPasa , Dictyostelium/citología , Dictyostelium/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo , Proteínas ras/metabolismo , Transducción de Señal
3.
Cell Death Differ ; 31(7): 844-854, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38902547

RESUMEN

The dynamic crosstalk between tumor and stromal cells is a major determinant of cancer aggressiveness. The tumor-suppressor DAB2IP (Disabled homolog 2 interacting protein) plays an important role in this context, since it modulates cell responses to multiple extracellular inputs, including inflammatory cytokines and growth factors. DAB2IP is a RasGAP and negatively controls Ras-dependent mitogenic signals. In addition, it modulates other major oncogenic pathways, including TNFα/NF-κB, WNT/ß-catenin, PI3K/AKT, and androgen receptor signaling. In line with its tumor-suppressive role, DAB2IP is frequently inactivated in cancer by transcriptional and post-transcriptional mechanisms, including promoter methylation, microRNA-mediated downregulation, and protein-protein interactions. Intriguingly, some observations suggest that downregulation of DAB2IP in cells of the tumor stroma could foster establishment of a pro-metastatic microenvironment. This review summarizes recent insights into the tumor-suppressive functions of DAB2IP and the consequences of its inactivation in cancer. In particular, we explore potential approaches aimed at reactivating DAB2IP, or augmenting its expression levels, as a novel strategy in cancer treatment. We suggest that reactivation or upregulation of DAB2IP would concurrently attenuate multiple oncogenic pathways in both cancer cells and the tumor microenvironment, with implications for improved treatment of a broad spectrum of tumors.


Asunto(s)
Neoplasias , Proteínas Activadoras de ras GTPasa , Humanos , Proteínas Activadoras de ras GTPasa/metabolismo , Proteínas Activadoras de ras GTPasa/genética , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Animales , Transducción de Señal
4.
J Transl Med ; 22(1): 602, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943117

RESUMEN

OBJECTIVE: This study aims to elucidate the functional role of IQGAP1 phosphorylation modification mediated by the SOX4/MAPK1 regulatory axis in developing pancreatic cancer through phosphoproteomics analysis. METHODS: Proteomics and phosphoproteomics data of pancreatic cancer were obtained from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database. Differential analysis, kinase-substrate enrichment analysis (KSEA), and independent prognosis analysis were performed on these datasets. Subtype analysis of pancreatic cancer patients was conducted based on the expression of prognostic-related proteins, and the prognosis of different subtypes was evaluated through prognosis analysis. Differential analysis of proteins in different subtypes was performed to identify differential proteins in the high-risk subtype. Clinical correlation analysis was conducted based on the expression of prognostic-related proteins, pancreatic cancer typing results, and clinical characteristics in the pancreatic cancer proteomics dataset. Functional pathway enrichment analysis was performed using GSEA/GO/KEGG, and most module proteins correlated with pancreatic cancer were selected using WGCNA analysis. In cell experiments, pancreatic cancer cells were grouped, and the expression levels of SOX4, MAPK1, and the phosphorylation level of IQGAP1 were detected by RT-qPCR and Western blot experiments. The effect of SOX4 on MAPK1 promoter transcriptional activity was assessed using a dual-luciferase assay, and the enrichment of SOX4 on the MAPK1 promoter was examined using a ChIP assay. The proliferation, migration, and invasion functions of grouped pancreatic cancer cells were assessed using CCK-8, colony formation, and Transwell assays. In animal experiments, the impact of SOX4 on tumor growth and metastasis through the regulation of MAPK1-IQGAP1 phosphorylation modification was studied by constructing subcutaneous and orthotopic pancreatic cancer xenograft models, as well as a liver metastasis model in nude mice. RESULTS: Phosphoproteomics and proteomics data analysis revealed that the kinase MAPK1 may play an important role in pancreatic cancer progression by promoting IQGAP1 phosphorylation modification. Proteomics analysis classified pancreatic cancer patients into two subtypes, C1 and C2, where the high-risk C2 subtype was associated with poor prognosis, malignant tumor typing, and enriched tumor-related pathways. SOX4 may promote the occurrence of the high-risk C2 subtype of pancreatic cancer by regulating MAPK1-IQGAP1 phosphorylation modification. In vitro cell experiments confirmed that SOX4 promoted IQGAP1 phosphorylation modification by activating MAPK1 transcription while silencing SOX4 inhibited the proliferation, migration, and invasion of pancreatic cancer cells by reducing the phosphorylation level of MAPK1-IQGAP1. In vivo, animal experiments further confirmed that silencing SOX4 suppressed the growth and metastasis of pancreatic cancer by reducing the phosphorylation level of MAPK1-IQGAP1. CONCLUSION: The findings of this study suggest that SOX4 promotes the phosphorylation modification of IQGAP1 by activating MAPK1 transcription, thereby facilitating the growth and metastasis of pancreatic cancer.


Asunto(s)
Progresión de la Enfermedad , Neoplasias Pancreáticas , Proteómica , Factores de Transcripción SOXC , Proteínas Activadoras de ras GTPasa , Animales , Humanos , Ratones , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Fosfoproteínas/metabolismo , Fosforilación , Pronóstico , Proteínas Activadoras de ras GTPasa/metabolismo , Proteínas Activadoras de ras GTPasa/genética , Transducción de Señal , Factores de Transcripción SOXC/metabolismo , Factores de Transcripción SOXC/genética
5.
Sci Rep ; 14(1): 12868, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834690

RESUMEN

Acute myeloid leukemia (AML) is fatal in the majority of adults. Identification of new therapeutic targets and their pharmacologic modulators are needed to improve outcomes. Previous studies had shown that immunization of rabbits with normal peripheral WBCs that had been incubated with fluorodinitrobenzene elicited high titer antibodies that bound to a spectrum of human leukemias. We report that proteomic analyses of immunoaffinity-purified lysates of primary AML cells showed enrichment of scaffolding protein IQGAP1. Immunohistochemistry and gene-expression analyses confirmed IQGAP1 mRNA overexpression in various cytogenetic subtypes of primary human AML compared to normal hematopoietic cells. shRNA knockdown of IQGAP1 blocked proliferation and clonogenicity of human leukemia cell-lines. To develop small molecules targeting IQGAP1 we performed in-silico screening of 212,966 compounds, selected 4 hits targeting the IQGAP1-GRD domain, and conducted SAR of the 'fittest hit' to identify UR778Br, a prototypical agent targeting IQGAP1. UR778Br inhibited proliferation, induced apoptosis, resulted in G2/M arrest, and inhibited colony formation by leukemia cell-lines and primary-AML while sparing normal marrow cells. UR778Br exhibited favorable ADME/T profiles and drug-likeness to treat AML. In summary, AML shows response to IQGAP1 inhibition, and UR778Br, identified through in-silico studies, selectively targeted AML cells while sparing normal marrow.


Asunto(s)
Proliferación Celular , Leucemia Mieloide Aguda , Proteínas Activadoras de ras GTPasa , Humanos , Proteínas Activadoras de ras GTPasa/metabolismo , Proteínas Activadoras de ras GTPasa/genética , Proteínas Activadoras de ras GTPasa/antagonistas & inhibidores , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/genética , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Simulación por Computador , Antineoplásicos/farmacología , Dominios Proteicos , Animales , Proteómica/métodos
6.
J Mol Biol ; 436(12): 168608, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38759928

RESUMEN

AIDA-1, encoded by ANKS1B, is an abundant postsynaptic scaffold protein essential for brain development. Mutations of ANKS1B are closely associated with various psychiatric disorders. However, very little is known regarding the molecular mechanisms underlying AIDA-1's involvements under physiological and pathophysiological conditions. Here, we discovered an interaction between AIDA-1 and the SynGAP family Ras-GTPase activating protein (GAP) via affinity purification using AIDA-1d as the bait. Biochemical studies showed that the PTB domain of AIDA-1 binds to an extended NPx[F/Y]-motif of the SynGAP family proteins with high affinities. The high-resolution crystal structure of AIDA-1 PTB domain in complex with the SynGAP NPxF-motif revealed the molecular mechanism governing the specific interaction between AIDA-1 and SynGAP. Our study not only explains why patients with ANKS1B or SYNGAP1 mutations share overlapping clinical phenotypes, but also allows identification of new AIDA-1 binding targets such as Ras and Rab interactors.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Unión Proteica , Proteínas Activadoras de ras GTPasa , Humanos , Cristalografía por Rayos X , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/química , Modelos Moleculares , Mutación , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas Activadoras de ras GTPasa/metabolismo , Proteínas Activadoras de ras GTPasa/química , Proteínas Activadoras de ras GTPasa/genética , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo
7.
J Cell Biol ; 223(9)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38787349

RESUMEN

Cell processes require precise regulation of actin polymerization that is mediated by plus-end regulatory proteins. Detailed mechanisms that explain plus-end dynamics involve regulators with opposing roles, including factors that enhance assembly, e.g., the formin mDia1, and others that stop growth (capping protein, CP). We explore IQGAP1's roles in regulating actin filament plus-ends and the consequences of perturbing its activity in cells. We confirm that IQGAP1 pauses elongation and interacts with plus ends through two residues (C756 and C781). We directly visualize the dynamic interplay between IQGAP1 and mDia1, revealing that IQGAP1 displaces the formin to influence actin assembly. Using four-color TIRF, we show that IQGAP1's displacement activity extends to formin-CP "decision complexes," promoting end-binding protein turnover at plus-ends. Loss of IQGAP1 or its plus-end activities disrupts morphology and migration, emphasizing its essential role. These results reveal a new role for IQGAP1 in promoting protein turnover on filament ends and provide new insights into how plus-end actin assembly is regulated in cells.


Asunto(s)
Proteínas de Capping de la Actina , Citoesqueleto de Actina , Forminas , Proteínas Activadoras de ras GTPasa , Animales , Humanos , Proteínas de Capping de la Actina/metabolismo , Proteínas de Capping de la Actina/genética , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Movimiento Celular , Forminas/metabolismo , Células HeLa , Unión Proteica , Proteínas Activadoras de ras GTPasa/metabolismo , Proteínas Activadoras de ras GTPasa/genética , Ratones , Células 3T3 NIH
8.
Int J Mol Sci ; 25(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38791282

RESUMEN

We previously found IQ motif containing GTPase activating protein (IQGAP1) to be consistently elevated in lung fibroblasts (LF) isolated from patients with scleroderma (systemic sclerosis, SSc)-associated interstitial lung disease (ILD) and reported that IQGAP1 contributed to SSc by regulating expression and organization of α-smooth muscle actin (SMA) in LF. The aim of this study was to compare the development of ILD in the presence and absence of IQGAP1. Pulmonary fibrosis was induced in IQGAP1 knockout (KO) and wild-type (WT) mice by a single-intratracheal instillation of bleomycin. Two and three weeks later, mice were euthanized and investigated. We observed that the IQGAP1 KO mouse was characterized by a reduced rate of actin polymerization with reduced accumulation of actin in the lung compared to the WT mouse. After exposure to bleomycin, the IQGAP1 KO mouse demonstrated decreased contractile activity of LF, reduced expression of SMA, TGFß, and collagen, and lowered overall fibrosis scores compared to the WT mouse. The numbers of inflammatory cells and expression of pro-inflammatory cytokines in lung tissue were not significantly different between IQGAP1 KO and WT mice. We conclude that IQGAP1 plays an important role in the development of lung fibrosis induced by bleomycin, and the absence of IQGAP1 reduces the contractile activity of lung fibroblast and bleomycin-induced pulmonary fibrosis. Thus, IQGAP1 may be a potential target for novel anti-fibrotic therapies for lung fibrosis.


Asunto(s)
Actinas , Bleomicina , Fibroblastos , Ratones Noqueados , Fibrosis Pulmonar , Proteínas Activadoras de ras GTPasa , Animales , Bleomicina/efectos adversos , Proteínas Activadoras de ras GTPasa/metabolismo , Proteínas Activadoras de ras GTPasa/genética , Actinas/metabolismo , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/genética , Ratones , Fibroblastos/metabolismo , Fibroblastos/patología , Pulmón/patología , Pulmón/metabolismo , Ratones Endogámicos C57BL , Polimerizacion , Modelos Animales de Enfermedad
9.
Methods Mol Biol ; 2797: 237-252, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38570464

RESUMEN

The activation level of RAS can be determined by GTP hydrolysis rate (khy) and GDP-GTP exchange rates (kex). Either impaired GTP hydrolysis or enhanced GDP-GTP exchange causes the aberrant activation of RAS in oncogenic mutants. Therefore, it is important to quantify the khy and kex for understanding the mechanisms of RAS oncogenesis and drug development. Conventional methods have individually measured the kex and khy of RAS. However, within the intracellular environment, GTP hydrolysis and GDP-GTP exchange reactions occur simultaneously under conditions where GTP concentration is kept constant. In addition, the intracellular activity of RAS is influenced by endogenous regulatory proteins, such as RAS GTPase activating proteins (GAPs) and the guanine-nucleotide exchange factors (GEFs). Here, we describe the in vitro and in-cell NMR methods to estimate the khy and kex simultaneously by measuring the time-dependent changes of the fraction of GTP-bound ratio under the condition of constant GTP concentration.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido , Proteínas Activadoras de ras GTPasa , Guanosina Trifosfato/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo , Hidrólisis , Factores de Intercambio de Guanina Nucleótido/metabolismo , Espectroscopía de Resonancia Magnética , Guanosina Difosfato/metabolismo
10.
Int J Mol Sci ; 25(8)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38674130

RESUMEN

IQGAP3 (IQ Motif Containing GTPase Activating Protein 3) is member of the IQGAP family of scaffold proteins, which are essential for assembling multiprotein complexes that coordinate various intracellular signaling pathways. Previous research has shown that IQGAP3 is overexpressed in psoriatic skin lesions. Given its involvement in processes like cell proliferation and chemokine signaling, we sought to explore its molecular role in driving the psoriatic phenotype of keratinocytes. By conducting transcriptome profiling of HaCaT keratinocytes, we identified numerous psoriasis-associated pathways that were affected when IQGAP3 was knocked down. These included alterations in NFkB signaling, EGFR signaling, activation of p38/MAPK and ERK1/ERK2, lipid metabolism, cytokine production, and the response to inflammatory cytokine stimulation. Real-time analysis further revealed changes in cell growth dynamics, including proliferation and wound healing. The balance between cell proliferation and apoptosis was altered, as were skin barrier functions and the production of IL-6 and IFNγ. Despite these significant findings, the diversity of the alterations observed in the knockdown cells led us to conclude that IQGAP3 may not be the best target for the therapeutic inhibition to normalize the phenotype of keratinocytes in psoriasis.


Asunto(s)
Proliferación Celular , Proteínas Activadoras de GTPasa , Queratinocitos , Psoriasis , Humanos , Queratinocitos/metabolismo , Queratinocitos/patología , Psoriasis/metabolismo , Psoriasis/patología , Psoriasis/genética , Proteínas Activadoras de ras GTPasa/metabolismo , Proteínas Activadoras de ras GTPasa/genética , Transducción de Señal , Células HaCaT , Citocinas/metabolismo , Apoptosis , Piel/metabolismo , Piel/patología , Línea Celular , Perfilación de la Expresión Génica
11.
J Cell Biol ; 223(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38536036

RESUMEN

Organelles of the endomembrane system contain Rab GTPases as identity markers. Their localization is determined by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs). It remains largely unclear how these regulators are specifically targeted to organelles and how their activity is regulated. Here, we focus on the GAP Gyp7, which acts on the Rab7-like Ypt7 protein in yeast, and surprisingly observe the protein exclusively in puncta proximal to the vacuole. Mistargeting of Gyp7 to the vacuole strongly affects vacuole morphology, suggesting that endosomal localization is needed for function. In agreement, efficient endolysosomal transport requires Gyp7. In vitro assays reveal that Gyp7 requires a distinct lipid environment for membrane binding and activity. Overexpression of Gyp7 concentrates Ypt7 in late endosomes and results in resistance to rapamycin, an inhibitor of the target of rapamycin complex 1 (TORC1), suggesting that these late endosomes are signaling endosomes. We postulate that Gyp7 is part of regulatory machinery involved in late endosome function.


Asunto(s)
Endosomas , Proteínas de Saccharomyces cerevisiae , Proteínas de Unión al GTP rab , Proteínas Activadoras de ras GTPasa , Transporte Biológico , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Vacuolas , Proteínas Activadoras de ras GTPasa/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Cell Rep ; 43(4): 113989, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38536816

RESUMEN

Attachment of circulating tumor cells to the endothelial cells (ECs) lining blood vessels is a critical step in cancer metastatic colonization, which leads to metastatic outgrowth. Breast and prostate cancers are common malignancies in women and men, respectively. Here, we observe that ß1-integrin is required for human prostate and breast cancer cell adhesion to ECs under shear-stress conditions in vitro and to lung blood vessel ECs in vivo. We identify IQGAP1 and neural Wiskott-Aldrich syndrome protein (NWASP) as regulators of ß1-integrin transcription and protein expression in prostate and breast cancer cells. IQGAP1 and NWASP depletion in cancer cells decreases adhesion to ECs in vitro and retention in the lung vasculature and metastatic lung nodule formation in vivo. Mechanistically, NWASP and IQGAP1 act downstream of Cdc42 to increase ß1-integrin expression both via extracellular signal-regulated kinase (ERK)/focal adhesion kinase signaling at the protein level and by myocardin-related transcription factor/serum response factor (SRF) transcriptionally. Our results identify IQGAP1 and NWASP as potential therapeutic targets to reduce early metastatic dissemination.


Asunto(s)
Integrina beta1 , Metástasis de la Neoplasia , Factor de Respuesta Sérica , Proteínas Activadoras de ras GTPasa , Humanos , Integrina beta1/metabolismo , Integrina beta1/genética , Proteínas Activadoras de ras GTPasa/metabolismo , Proteínas Activadoras de ras GTPasa/genética , Línea Celular Tumoral , Factor de Respuesta Sérica/metabolismo , Masculino , Femenino , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/genética , Animales , Transactivadores/metabolismo , Adhesión Celular , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo , Proteína Neuronal del Síndrome de Wiskott-Aldrich/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Ratones , Quinasa 1 de Adhesión Focal/metabolismo , Quinasa 1 de Adhesión Focal/genética , Regulación Neoplásica de la Expresión Génica , Proteína de Unión al GTP cdc42/metabolismo
13.
Aging (Albany NY) ; 16(7): 6054-6067, 2024 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-38546389

RESUMEN

Lower-grade gliomas (GBMLGG) are common, fatal, and difficult-to-treat cancers. The current treatment choices have impressive efficacy constraints. As a result, the development of effective treatments and the identification of new therapeutic targets are urgent requirements. Disulfide metabolism is the cause of the non-apoptotic programmed cell death known as disulfideptosis, which was only recently discovered. The mRNA expression data and related clinical information of GBMLGG patients downloaded from public databases were used in this study to investigate the prognostic significance of genes involved in disulfideptosis. In the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohort, our findings showed that many disulfidptosis-related genes were expressed differently in normal and GBMLGG tissues. It was discovered that IQ motif-containing GTPase-activating protein 1 (IQGAP1) is a key gene that influences the outcome of GBMLGG. Besides, a nomogram model was built to foresee the visualization of GBMLGG patients. In addition, in vivo and in vitro validation of IQGAP1's cancer-promoting function was done. In conclusion, we discovered a gene signature associated with disulfideptosis that can effectively predict OS in GBMLGG patients. As a result, treating disulfideptosis may be a viable alternative for GBMLGG patients.


Asunto(s)
Neoplasias Encefálicas , Disulfuros , Glioma , Humanos , Glioma/genética , Glioma/patología , Pronóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Proteínas Activadoras de ras GTPasa/genética , Proteínas Activadoras de ras GTPasa/metabolismo , Regulación Neoplásica de la Expresión Génica , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Animales , Nomogramas , Perfilación de la Expresión Génica , Femenino , Transcriptoma , Masculino , Clasificación del Tumor
14.
Clin Cancer Res ; 30(10): 2206-2224, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38470497

RESUMEN

PURPOSE: Microvascular invasion (MVI) is a major unfavorable prognostic factor for intrahepatic metastasis and postoperative recurrence of hepatocellular carcinoma (HCC). However, the intervention and preoperative prediction for MVI remain clinical challenges due to the absent precise mechanism and molecular marker(s). Herein, we aimed to investigate the mechanisms underlying vascular invasion that can be applied to clinical intervention for MVI in HCC. EXPERIMENTAL DESIGN: The histopathologic characteristics of clinical MVI+/HCC specimens were analyzed using multiplex immunofluorescence staining. The liver orthotopic xenograft mouse model and mechanistic experiments on human patient-derived HCC cell lines, including coculture modeling, RNA-sequencing, and proteomic analysis, were used to investigate MVI-related genes and mechanisms. RESULTS: IQGAP3 overexpression was correlated significantly with MVI status and reduced survival in HCC. Upregulation of IQGAP3 promoted MVI+-HCC cells to adopt an infiltrative vessel co-optive growth pattern and accessed blood capillaries by inducing detachment of activated hepatic stellate cells (HSC) from the endothelium. Mechanically, IQGAP3 overexpression contributed to HCC vascular invasion via a dual mechanism, in which IQGAP3 induced HSC activation and disruption of the HSC-endothelial interaction via upregulation of multiple cytokines and enhanced the trans-endothelial migration of MVI+-HCC cells by remodeling the cytoskeleton by sustaining GTPase Rac1 activity. Importantly, systemic delivery of IQGAP3-targeting small-interfering RNA nanoparticles disrupted the infiltrative vessel co-optive growth pattern and reduced the MVI of HCC. CONCLUSIONS: Our results revealed a plausible mechanism underlying IQGAP3-mediated microvascular invasion in HCC, and provided a potential target to develop therapeutic strategies to treat HCC with MVI.


Asunto(s)
Carcinoma Hepatocelular , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , Invasividad Neoplásica , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Humanos , Animales , Ratones , Línea Celular Tumoral , Proteínas Activadoras de ras GTPasa/genética , Proteínas Activadoras de ras GTPasa/metabolismo , Microvasos/patología , Microvasos/metabolismo , Masculino , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Neovascularización Patológica/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Femenino , Proliferación Celular , Pronóstico , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Movimiento Celular/genética
15.
Science ; 383(6686): eadk1291, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38422154

RESUMEN

SynGAP is an abundant synaptic GTPase-activating protein (GAP) critical for synaptic plasticity, learning, memory, and cognition. Mutations in SYNGAP1 in humans result in intellectual disability, autistic-like behaviors, and epilepsy. Heterozygous Syngap1-knockout mice display deficits in synaptic plasticity, learning, and memory and exhibit seizures. It is unclear whether SynGAP imparts structural properties at synapses independently of its GAP activity. Here, we report that inactivating mutations within the GAP domain do not inhibit synaptic plasticity or cause behavioral deficits. Instead, SynGAP modulates synaptic strength by physically competing with the AMPA-receptor-TARP excitatory receptor complex in the formation of molecular condensates with synaptic scaffolding proteins. These results have major implications for developing therapeutic treatments for SYNGAP1-related neurodevelopmental disorders.


Asunto(s)
Cognición , Plasticidad Neuronal , Proteínas Activadoras de ras GTPasa , Animales , Humanos , Ratones , Trastorno Autístico/genética , Proteínas Activadoras de GTPasa/genética , Aprendizaje , Ratones Noqueados , Plasticidad Neuronal/genética , Proteínas Activadoras de ras GTPasa/genética , Proteínas Activadoras de ras GTPasa/metabolismo , Catálisis
16.
J Virol ; 98(2): e0189923, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38294245

RESUMEN

After Epstein-Barr virus (EBV) genome replication and encapsidation in the nucleus, nucleocapsids are translocated into the cytoplasm for subsequent tegumentation and maturation. The EBV BGLF4 kinase, which induces partial disassembly of the nuclear lamina, and the nuclear egress complex BFRF1/BFLF2 coordinately facilitate the nuclear egress of nucleocapsids. Here, we demonstrate that within EBV reactivated epithelial cells, viral capsids, tegument proteins, and glycoproteins are clustered in the juxtanuclear concave region, accompanied by redistributed cytoplasmic organelles and the cytoskeleton regulator IQ-domain GTPase-activation protein 1 (IQGAP1), close to the microtubule-organizing center (MTOC). The assembly compartment (AC) structure was diminished in BGLF4-knockdown TW01-EBV cells and BGLF4-knockout bacmid-carrying TW01 cells, suggesting that the formation of AC structure is BGLF4-dependent. Notably, glycoprotein gp350/220 was observed by confocal imaging to be distributed in the perinuclear concave region and surrounded by the endoplasmic reticulum (ER) membrane marker calnexin, indicating that the AC may be located within a globular structure derived from ER membranes, adjacent to the outer nuclear membrane. Moreover, the viral capsid protein BcLF1 and tegument protein BBLF1 were co-localized with IQGAP1 near the cytoplasmic membrane in the late stage of replication. Knockdown of IQGAP1 did not affect the AC formation but decreased virion release from both TW01-EBV and Akata+ cells, suggesting IQGAP1-mediated trafficking regulates EBV virion release. The data presented here show that BGLF4 is required for cytoskeletal rearrangement, coordination with the redistribution of cytoplasmic organelles and IQGAP1 for virus maturation, and subsequent IQGAP1-dependent virion release.IMPORTANCEEBV genome is replicated and encapsidated in the nucleus, and the resultant nucleocapsids are translocated to the cytoplasm for subsequent virion maturation. We show that a cytoplasmic AC, containing viral proteins, markers of the endoplasmic reticulum, Golgi, and endosomes, is formed in the juxtanuclear region of epithelial and B cells during EBV reactivation. The viral BGLF4 kinase contributes to the formation of the AC. The cellular protein IQGAP1 is also recruited to the AC and partially co-localizes with the virus capsid protein BcLF1 and tegument protein BBLF1 in EBV-reactivated cells, dependent on the BGLF4-induced cytoskeletal rearrangement. In addition, virion release was attenuated in IQGAP1-knockdown epithelial and B cells after reactivation, suggesting that IQGAP1-mediated trafficking may regulate the efficiency of virus maturation and release.


Asunto(s)
Citoplasma , Herpesvirus Humano 4 , Proteínas Serina-Treonina Quinasas , Proteínas Virales , Virión , Ensamble de Virus , Liberación del Virus , Proteínas Activadoras de ras GTPasa , Humanos , Proteínas de la Cápside/metabolismo , Citoplasma/metabolismo , Citoplasma/virología , Infecciones por Virus de Epstein-Barr/metabolismo , Infecciones por Virus de Epstein-Barr/virología , Herpesvirus Humano 4/química , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/crecimiento & desarrollo , Herpesvirus Humano 4/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo , Proteínas Virales/metabolismo , Virión/química , Virión/crecimiento & desarrollo , Virión/metabolismo , Ensamble de Virus/fisiología , Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Aparato de Golgi/metabolismo
17.
PLoS Genet ; 19(12): e1011049, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38091360

RESUMEN

Neural regulation of sleep and metabolic homeostasis are critical in many aspects of human health. Despite extensive epidemiological evidence linking sleep dysregulation with obesity, diabetes, and metabolic syndrome, little is known about the neural and molecular basis for the integration of sleep and metabolic function. The RAS GTPase-activating gene Neurofibromin (Nf1) has been implicated in the regulation of sleep and metabolic rate, raising the possibility that it serves to integrate these processes, but the effects on sleep consolidation and physiology remain poorly understood. A key hallmark of sleep depth in mammals and flies is a reduction in metabolic rate during sleep. Here, we examine multiple measures of sleep quality to determine the effects of Nf1 on sleep-dependent changes in arousal threshold and metabolic rate. Flies lacking Nf1 fail to suppress metabolic rate during sleep, raising the possibility that loss of Nf1 prevents flies from integrating sleep and metabolic state. Sleep of Nf1 mutant flies is fragmented with a reduced arousal threshold in Nf1 mutants, suggesting Nf1 flies fail to enter deep sleep. The effects of Nf1 on sleep can be localized to a subset of neurons expressing the GABAA receptor Rdl. Sleep loss has been associated with changes in gut homeostasis in flies and mammals. Selective knockdown of Nf1 in Rdl-expressing neurons within the nervous system increases gut permeability and reactive oxygen species (ROS) in the gut, raising the possibility that loss of sleep quality contributes to gut dysregulation. Together, these findings suggest Nf1 acts in GABA-sensitive neurons to modulate sleep depth in Drosophila.


Asunto(s)
Proteínas de Drosophila , Proteínas del Tejido Nervioso , Proteínas Activadoras de ras GTPasa , Sueño , Animales , Drosophila melanogaster , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Activadoras de ras GTPasa/genética , Proteínas Activadoras de ras GTPasa/metabolismo , Duración del Sueño , Masculino , Encéfalo/metabolismo , Intestinos/metabolismo , Dieta
18.
Aging (Albany NY) ; 15(22): 13329-13344, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-38015711

RESUMEN

Circular RNAs (circRNAs) are noncoding RNAs with a circular colsed structure that play an important role in the occurrence and development of cancers. The functional mechanism of circRNAs as ceRNAs in hepatocellular carcinoma (HCC) and its effect on the invasion and metastasis of HCC need to be further studied. Five pairs of HCC tissues were selected for high-throughput sequencing, and 19 circRNAs with differential expression were obtained. The expression of circSLCO1B7 was obviously downregulated in 50 pairs of tumor tissues and plasma of HCC patients, which was closely related to the TNM stage, lymph node metastasis and tumor size. Cell functional experiments showed that circSLCO1B7 could inhibit cell growth, migration, invasion and promote cell apoptosis. In the regulatory mechanism, circSLCO1B7 sponged miR-556-3p to regulate the expression of the downstream target gene DAB2IP and induced the Epithelial-mesenchymal transition (EMT) progression. Our results indicated that circSLCO1B7 significantly inhibits the metastasis of HCC via the miR-556-3p/DAB2IP axis. Thus, circSLCO1B7 is a good candidate as a therapeutic target.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Humanos , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/patología , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Activadoras de ras GTPasa/metabolismo , ARN Circular/genética
19.
Funct Integr Genomics ; 23(4): 326, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880458

RESUMEN

Renal cell carcinoma (RCC) is the most lethal of the urologic malignancies. We previously discovered that DAB2IP, a novel Ras GTPase-activating protein, was frequently epigenetically silenced in RCC, and DAB2IP loss was correlated with the overall survival of RCC patients. In this study, we determined the biological functions of DAB2IP in clear cell RCC (ccRCC) and its potential mechanisms of action. Correlations between DAB2IP expression level and ccRCC tumor size and patient survival were analyzed, and the results showed that ccRCC patients with high DAB2IP mRNA level exhibited smaller tumor size and better survival than the patients with low DAB2IP. Compared to control, DAB2IP knockdown significantly increased cell proliferation, promoted cell cycle progression in G1/S phase, and decreased p27 expression. Mechanism studies demonstrated that loss of DAB2IP promoted p27 protein phosphorylation, cytosolic sequestration, and subsequently ubiquitination-mediated degradation in ccRCC cells. Further studies confirmed that the proline-rich domain in C terminal (CPR) of DAB2IP suppressed AKT phosphorylation and p27 phosphorylation on S10. Hence, DAB2IP is essential for p27 protein stabilization in ccRCC, which is at less partly mediated by PI3K/AKT signaling pathway.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/genética , Proliferación Celular/genética , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Línea Celular Tumoral , Proteínas Activadoras de ras GTPasa/genética , Proteínas Activadoras de ras GTPasa/metabolismo
20.
J Neurosci ; 43(35): 6212-6226, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37558489

RESUMEN

SYNGAP1 haploinsufficiency in humans leads to severe neurodevelopmental disorders characterized by intellectual disability, autism, epilepsy, and sensory processing deficits. However, the circuit mechanisms underlying these disorders are not well understood. In mice, a decrease of SynGAP levels results in cognitive deficits by interfering with the development of excitatory glutamatergic connections. Recent evidence suggests that SynGAP also plays a crucial role in the development and function of GABAergic inhibitory interneurons. Nevertheless, it remains uncertain whether and to what extent the expression of SYNGAP1 in inhibitory interneurons contributes to cortical circuit function and related behaviors. The activity of cortical neurons has not been measured simultaneously with behavior. To address these gaps, we recorded from layer 2/3 neurons in the primary whisker somatosensory cortex (wS1) of mice while they learned to perform a whisker tactile detection task. Our results demonstrate that mice with interneuron-specific SYNGAP1 haploinsufficiency exhibit learning deficits characterized by heightened behavioral responses in the absence of relevant sensory input and premature responses to unrelated sensory stimuli not associated with reward acquisition. These behavioral deficits are accompanied by specific circuit abnormalities within wS1. Interneuron-specific SYNGAP1 haploinsufficiency increases detrimental neuronal correlations directly related to task performance and enhances responses to irrelevant sensory stimuli unrelated to the reward acquisition. In summary, our findings indicate that a reduction of SynGAP in inhibitory interneurons impairs sensory representation in the primary sensory cortex by disrupting neuronal correlations, which likely contributes to the observed cognitive deficits in mice with pan-neuronal SYNGAP1 haploinsufficiency.SIGNIFICANCE STATEMENT SYNGAP1 haploinsufficiency leads to severe neurodevelopmental disorders. The exact nature of neural circuit dysfunction caused by SYNGAP1 haploinsufficiency remains poorly understood. SynGAP plays a critical role in the function of GABAergic inhibitory interneurons as well as glutamatergic pyramidal neurons in the neocortex. Whether and how decreasing SYNGAP1 level in inhibitory interneurons disrupts a behaviorally relevant circuit remains unclear. We measure neural activity and behavior in mice learning a perceptual task. Mice with interneuron-targeted disruption of SYNGAP1 display increased detrimental neuronal correlations and elevated responses to irrelevant sensory inputs, which are related to impaired task performance. These results show that cortical interneuron dysfunction contributes to sensory deficits in SYNGAP1 haploinsufficiency with important implications for identifying therapeutic targets.


Asunto(s)
Neocórtex , Humanos , Ratones , Animales , Neocórtex/metabolismo , Interneuronas/fisiología , Neuronas/fisiología , Células Piramidales/metabolismo , Aprendizaje , Proteínas Activadoras de ras GTPasa/genética , Proteínas Activadoras de ras GTPasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA