Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.307
Filtrar
1.
Cell Rep ; 43(5): 114215, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38728140

RESUMEN

Cells have robust wound repair systems to prevent further damage or infection and to quickly restore cell cortex integrity when exposed to mechanical and chemical stress. Actomyosin ring formation and contraction at the wound edge are major events during closure of the plasma membrane and underlying cytoskeleton during cell wound repair. Here, we show that all five Drosophila Septins are required for efficient cell wound repair. Based on their different recruitment patterns and knockdown/mutant phenotypes, two distinct Septin complexes, Sep1/Sep2/Pnut and Sep4/Sep5/Pnut, are assembled to regulate actin ring assembly, contraction, and remodeling during the repair process. Intriguingly, we find that these two Septin complexes have different F-actin bending activities. In addition, we find that Anillin regulates the recruitment of only one of two Septin complexes upon wounding. Our results demonstrate that two functionally distinct Septin complexes work side by side to discretely regulate actomyosin ring dynamics during cell wound repair.


Asunto(s)
Actinas , Proteínas de Drosophila , Septinas , Cicatrización de Heridas , Animales , Septinas/metabolismo , Actinas/metabolismo , Proteínas de Drosophila/metabolismo , Actomiosina/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Contráctiles/metabolismo , Proteínas de Microfilamentos
2.
Mol Biol Cell ; 35(7): ar94, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38696255

RESUMEN

Animal cell cytokinesis, or the physical division of one cell into two, is thought to be driven by constriction of an actomyosin contractile ring at the division plane. The mechanisms underlying cell type-specific differences in cytokinesis remain unknown. Germ cells are totipotent cells that pass genetic information to the next generation. Previously, using formincyk-1(ts) mutant Caenorhabditis elegans 4-cell embryos, we found that the P2 germ precursor cell is protected from cytokinesis failure and can divide with greatly reduced F-actin levels at the cell division plane. Here, we identified two canonical germ fate determinants required for P2-specific cytokinetic protection: PIE-1 and POS-1. Neither has been implicated previously in cytokinesis. These germ fate determinants protect P2 cytokinesis by reducing the accumulation of septinUNC-59 and anillinANI-1 at the division plane, which here act as negative regulators of cytokinesis. These findings may provide insight into the regulation of cytokinesis in other cell types, especially in stem cells with high potency.


Asunto(s)
Actinas , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , División Celular , Citocinesis , Células Germinativas , Septinas , Animales , Citocinesis/fisiología , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Septinas/metabolismo , Septinas/genética , Células Germinativas/metabolismo , Células Germinativas/citología , Actinas/metabolismo , Proteínas Contráctiles/metabolismo , Actomiosina/metabolismo
3.
Structure ; 32(2): 120-121, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38306987

RESUMEN

In this issue of Structure, Hall et al.1 investigate the binding modes of anillin-like Mid1. During cytokinesis, Mid1 connects the contractile ring to the plasma membrane. Using computer simulations, the authors demonstrated how this connection is established via the L3 loop of the C2 domain.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Citocinesis , Proteínas Contráctiles/metabolismo , Citoesqueleto de Actina/metabolismo
4.
Am J Physiol Cell Physiol ; 326(3): C990-C998, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38314725

RESUMEN

Multiple techniques have been developed to isolate contractile smooth muscle cells (SMCs) from tissues with varying degrees of success. However, most of these approaches rely on obtaining fresh tissue, which poses logistical challenges. In the present study, we introduce a novel protocol for isolating contractile SMCs from cryopreserved smooth muscle (SM) tissue, thereby enhancing experimental efficiency. This protocol yields abundant viable, spindle-shaped, contractile SMCs that closely resemble those obtained from fresh samples. By analyzing the expression of contractile proteins, we demonstrate that both the isolated SMCs from cryopreserved tissue represent more accurately fresh SM tissue compared with cultured SMCs. Moreover, we demonstrate the importance of a brief incubation step of the tissue in culture medium before cell dissociation to achieve contractile SMCs. Finally, we provide a concise overview of our protocol optimization efforts, along with a summary of previously published methods, which could be valuable for the development of similar protocols for other species.NEW & NOTEWORTHY We report a successful protocol development for isolating contractile smooth muscle cells (SMCs) from cryopreserved tissue reducing the reliance on fresh tissues and providing a readily available source of contractile SMCs. Our findings suggest that SMCs isolated using our protocol maintain their phenotype better compared with cultured SMCs. This preservation of the cellular characteristics, including the expression of key contractile proteins, makes these cells more representative of fresh SM tissue.


Asunto(s)
Contracción Muscular , Miocitos del Músculo Liso , Miocitos del Músculo Liso/metabolismo , Músculo Liso/metabolismo , Fenotipo , Proteínas Contráctiles/genética , Proteínas Contráctiles/metabolismo , Células Cultivadas , Diferenciación Celular/genética
5.
Aging Cell ; 23(6): e14094, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38332629

RESUMEN

Oxidative stress is considered a contributor to declining muscle function and mobility during aging; however, the underlying molecular mechanisms remain poorly described. We hypothesized that greater levels of cysteine (Cys) oxidation on muscle proteins are associated with decreased measures of mobility. Herein, we applied a novel redox proteomics approach to measure reversible protein Cys oxidation in vastus lateralis muscle biopsies collected from 56 subjects in the Study of Muscle, Mobility and Aging (SOMMA), a community-based cohort study of individuals aged 70 years and older. We tested whether levels of Cys oxidation on key muscle proteins involved in muscle structure and contraction were associated with muscle function (leg power and strength), walking speed, and fitness (VO2 peak on cardiopulmonary exercise testing) using linear regression models adjusted for age, sex, and body weight. Higher oxidation levels of select nebulin Cys sites were associated with lower VO2 peak, while greater oxidation of myomesin-1, myomesin-2, and nebulin Cys sites was associated with slower walking speed. Higher oxidation of Cys sites in key proteins such as myomesin-2, alpha-actinin-2, and skeletal muscle alpha-actin were associated with lower leg power and strength. We also observed an unexpected correlation (R = 0.48) between a higher oxidation level of eight Cys sites in alpha-actinin-3 and stronger leg power. Despite this observation, the results generally support the hypothesis that Cys oxidation of muscle proteins impairs muscle power and strength, walking speed, and cardiopulmonary fitness with aging.


Asunto(s)
Envejecimiento , Cisteína , Oxidación-Reducción , Humanos , Anciano , Cisteína/metabolismo , Masculino , Femenino , Envejecimiento/fisiología , Envejecimiento/metabolismo , Rendimiento Físico Funcional , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Proteínas Contráctiles/metabolismo , Proteínas Musculares/metabolismo , Anciano de 80 o más Años
6.
Vascul Pharmacol ; 154: 107264, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38097098

RESUMEN

The long noncoding RNA (lncRNA) CARMN (cardiac mesoderm enhancer associated noncoding RNA) is a highly conserved lncRNA that expresses primarily by smooth muscle cells (SMCs). Recent literature demonstrates that CARMN plays a critical role in the differentiation and maintaining of the contractile state of vascular SMCs. Because aortic SMCs show diminished contractile proteins in abdominal aortic aneurysms (AAAs), we hypothesize that the expression of CARMN is downregulated in the aortic wall affected by aneurysm. In this study, we analyzed publicly available single-cell or bulk RNA sequencing data comparing healthy and aneurysmal mouse aortic tissues. In both healthy and diseased aortas, Carmn expression was enriched in SMCs characterized by the high expression of SMC-specific contractile proteins including Myh11 and Acta2. Carmn expression levels varied among the sub-clusters of SMCs and consequently along the aortic tree. Comparing to the corresponding sham aorta, aortas from 3 distinct AAA models contained less Carmn. To validate the Carmn downregulation, we induced AAA using the Angiotensin II and CaCl2 models. In situ hybridization showed that Carmn mRNA located in the nuclei of SMCs and became downregulated within a few days following the aneurysm induction. Mechanistically, we tested whether Carmn expression is regulated by infiltrating macrophages --- the predominant inflammatory cells found in aneurysmal tissues --- by treating healthy mouse aortic SMCs with media conditioned by macrophages primed with pro-inflammatory or anti-inflammatory cytokines. PCR analysis showed that inflammatory macrophages reduced the expression of Carmn and contractile genes including Myh11 and Acta2. Taken together, our results from bioinformatic and experimental analyses demonstrate that Carmn is downregulated in different AAA models, likely by inflammatory macrophages. The negative regulation of Carmn in AAA tissues may explain at least in part the loss of SMC contractile state during the pathogenesis of this progressive degenerative disease.


Asunto(s)
Aneurisma de la Aorta Abdominal , ARN Largo no Codificante , Ratones , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Regulación hacia Abajo , Músculo Liso Vascular/metabolismo , Aneurisma de la Aorta Abdominal/metabolismo , Macrófagos/metabolismo , Proteínas Contráctiles/genética , Proteínas Contráctiles/metabolismo , Miocitos del Músculo Liso/metabolismo , Aorta Abdominal/metabolismo
7.
Structure ; 32(2): 242-252.e2, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38103546

RESUMEN

Cytokinesis of animal and fungi cells depends crucially on the anillin scaffold proteins. Fission yeast anillin-related Mid1 anchors cytokinetic ring precursor nodes to the membrane. However, it is unclear if both of its Pleckstrin Homology (PH) and C2 C-terminal domains bind to the membrane as monomers or dimers, and if one domain plays a dominant role. We studied Mid1 membrane binding with all-atom molecular dynamics near a membrane with yeast-like lipid composition. In simulations with the full C terminal region started away from the membrane, Mid1 binds through the disordered L3 loop of C2 in a vertical orientation, with the PH away from the membrane. However, a configuration with both C2 and PH initially bound to the membrane remains associated with the membrane. Simulations of C2-PH dimers show extensive asymmetric membrane contacts. These multiple modes of binding may reflect Mid1's multiple interactions with membranes, node proteins, and ability to sustain mechanical forces.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas Contráctiles/metabolismo , Schizosaccharomyces/metabolismo , Citocinesis
8.
Anal Biochem ; 678: 115262, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37507081

RESUMEN

Thousands of mammalian intracellular proteins are dynamically modified by O-linked ß-N-acetylglucosamine (O-GlcNAc). Global changes in O-GlcNAcylation have been associated with the development of cardiomyopathy, heart failure, hypertension, and neurodegenerative disease. Levels of O-GlcNAc in cells and tissues can be detected using numerous approaches; however, immunoblotting using GlcNAc-specific antibodies and lectins is commonplace. The goal of this study was to optimize the detection of O-GlcNAc in heart lysates by immunoblotting. Using a combination of tissue fractionation, immunoblotting, and galactosyltransferase labeling, as well as hearts from wild-type and O-GlcNAc transferase transgenic mice, we demonstrate that contractile proteins in the heart are differentially detected by two commercially available antibodies (CTD110.6 and RL2). As CTD110.6 displays poor reactivity toward contractile proteins, and as these proteins represent a major fraction of the heart proteome, a better assessment of cardiac O-GlcNAcylation is obtained in total tissue lysates with RL2. The data presented highlight tissue lysis approaches that should aid the assessment of the cardiac O-GlcNAcylation by immunoblotting.


Asunto(s)
Enfermedades Neurodegenerativas , Ratones , Animales , Anticuerpos/metabolismo , Proteoma/metabolismo , Corazón , Proteínas Contráctiles/metabolismo , Acetilglucosamina , Procesamiento Proteico-Postraduccional , Mamíferos/metabolismo
9.
Mol Biol Cell ; 34(10): ar102, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37494082

RESUMEN

Drosophila melanogaster cellularization is a special form of cleavage that converts syncytial embryos into cellular blastoderms by partitioning the peripherally localized nuclei into individual cells. An early event in cellularization is the recruitment of nonmuscle myosin II ("myosin") to the leading edge of cleavage furrows, where myosin forms an interconnected basal array before reorganizing into individual cytokinetic rings. The initial recruitment and organization of basal myosin are regulated by a cellularization-specific gene, dunk, but the underlying mechanism is unclear. Through a genome-wide yeast two-hybrid screen, we identified anillin (Scraps in Drosophila), a conserved scaffolding protein in cytokinesis, as the primary binding partner of Dunk. Dunk colocalizes with anillin and regulates its cortical localization during the formation of cleavage furrows, while the localization of Dunk is independent of anillin. Furthermore, Dunk genetically interacts with anillin to regulate the basal myosin array during cellularization. Similar to Dunk, anillin colocalizes with myosin since the very early stage of cellularization and is required for myosin retention at the basal array, before the well-documented function of anillin in regulating cytokinetic ring assembly. Based on these results, we propose that Dunk regulates myosin recruitment and spatial organization during early cellularization by interacting with and regulating anillin.


Asunto(s)
Drosophila melanogaster , Drosophila , Animales , Proteínas Contráctiles/metabolismo , Citocinesis/fisiología , Proteínas del Citoesqueleto/metabolismo , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Miosina Tipo II/metabolismo , Miosinas/metabolismo , ARN/metabolismo
10.
Sci Rep ; 13(1): 8728, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37253753

RESUMEN

Many factors regulate scar formation, which yields a modified extracellular matrix (ECM). Among ECM components, microfibril-associated proteins have been minimally explored in the context of skin wound repair. Microfibril-associated protein 5 (MFAP5), a small 25 kD serine and threonine rich microfibril-associated protein, influences microfibril function and modulates major extracellular signaling pathways. Though known to be associated with fibrosis and angiogenesis in certain pathologies, MFAP5's role in wound healing is unknown. Using a murine model of skin wound repair, we found that MFAP5 is significantly expressed during the proliferative and remodeling phases of healing. Analysis of existing single-cell RNA-sequencing data from mouse skin wounds identified two fibroblast subpopulations as the main expressors of MFAP5 during wound healing. Furthermore, neutralization of MFAP5 in healing mouse wounds decreased collagen deposition and refined angiogenesis without altering wound closure. In vitro, recombinant MFAP5 significantly enhanced dermal fibroblast migration, collagen contractility, and expression of pro-fibrotic genes. Additionally, TGF-ß1 increased MFAP5 expression and production in dermal fibroblasts. Our findings suggest that MFAP5 regulates fibroblast function and influences scar formation in healing wounds. Our work demonstrates a previously undescribed role for MFAP5 and suggests that microfibril-associated proteins may be significant modulators of wound healing outcomes and scarring.


Asunto(s)
Cicatriz , Proteínas Contráctiles , Péptidos y Proteínas de Señalización Intercelular , Cicatrización de Heridas , Animales , Ratones , Cicatriz/patología , Fibroblastos/metabolismo , Fibrosis , Microfibrillas , Piel/metabolismo , Cicatrización de Heridas/fisiología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas Contráctiles/metabolismo
11.
Sci Rep ; 13(1): 5589, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37020143

RESUMEN

Femoral head necrosis is responsible for severe pain and its incidence is increasing. Abnormal adipogenic differentiation and fat cell hypertrophy of bone marrow mesenchymal stem cells increase intramedullary cavity pressure, leading to osteonecrosis. By analyzing gene expression before and after adipogenic differentiation, we found that Microfibril-Associated Protein 5 (MFAP5) is significantly down-regulated in adipogenesis whilst the mechanism of MFAP5 in regulating the differentiation of bone marrow mesenchymal stem cells is unknown. The purpose of this study was to clarify the role of MAFP5 in adipogenesis and therefore provide a theoretical basis for future therapeutic options of osteonecrosis. By knockdown or overexpression of MFAP5 in C3H10 and 3T3-L1 cells, we found that MFAP5 was significantly down-regulated as a key regulator of adipogenic differentiation, and identified the underlying downstream molecular mechanism. MFAP5 directly bound to and inhibited the expression of Staphylococcal Nuclease And Tudor Domain Containing 1, an essential coactivator of PPARγ, exerting an important regulatory role in adipogenesis.


Asunto(s)
Adipogénesis , Osteonecrosis , Humanos , Adipogénesis/genética , Diferenciación Celular , Proteínas Contráctiles/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , PPAR gamma/metabolismo
12.
Cell Death Differ ; 30(2): 527-543, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36526897

RESUMEN

Anillin (ANLN) is a mitosis-related protein that promotes contractile ring formation and cytokinesis, but its cell cycle-dependent degradation mechanisms in cancer cells remain unclear. Here, we show that high expression of ANLN promotes cytokinesis and proliferation in esophageal squamous cell carcinoma (ESCC) cells and is associated with poor prognosis in ESCC patients. Furthermore, the findings of the study showed that the deubiquitinating enzyme USP10 interacts with ANLN and positively regulates ANLN protein levels. USP10 removes the K11- and K63-linked ubiquitin chains of ANLN through its deubiquitinase activity and prevents ANLN ubiquitin-mediated degradation. Importantly, USP10 promotes contractile ring assembly at the cytokinetic furrow as well as cytokinesis by stabilizing ANLN. Interestingly, USP10 and the E3 ubiquitin ligase APC/C co-activator Cdh1 formed a functional complex with ANLN in a non-competitive manner to balance ANLN protein levels. In addition, the macrolide compound FW-04-806 (F806), a natural compound with potential for treating ESCC, inhibited the mitosis of ESCC cells by targeting USP10 and promoting ANLN degradation. F806 selectively targeted USP10 and inhibited its catalytic activity but did not affect the binding of Cdh1 to ANLN and alters the balance of the USP10-Cdh1-ANLN complex. Additionally, USP10 expression was positively correlated with ANLN level and poor prognosis of ESCC patients. Overall, targeting the USP10-ANLN axis can effectively inhibit ESCC cell-cycle progression.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/genética , Neoplasias Esofágicas/metabolismo , Proteínas Contráctiles/metabolismo , Ubiquitina/metabolismo , Proliferación Celular , Línea Celular Tumoral , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo
13.
Cell Cycle ; 22(6): 633-644, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36426865

RESUMEN

Cytokinesis is the final stage of cell division cycle when cellular constituents are separated to produce two daughter cells. This process is driven by the formation and constriction of a contractile ring. Progression of these events is controlled by mechanisms and proteins that are evolutionary conserved in eukaryotes from fungi to humans. Genetic and molecular studies in different model organisms identified essential cytokinesis genes, with several conserved proteins, including the anillin/Mid1p proteins, constituting the core cytokinetic machinery. The fission yeast Schizosaccharomyces pombe represents a well-established model organism to study eukaryotic cell cycle regulation. Cytokinesis in fission yeast and mammalian cells depends on the placement, assembly, maturation, and constriction of a medially located actin-myosin contractile ring (ACR). Here, we review aspects of the ACR assembly and cytokinesis process in fission yeast and consider the regulation of such events in mammalian cells. First, we briefly describe the role of anillin during mammalian ACR assembly and cytokinesis. Second, we describe different aspects of the anillin-like protein Mid1p regulation during the S. pombe cell cycle, including its structure, function, and phospho-regulation. Third, we briefly discuss Mid1pindependent ACR assembly in S. pombe. Fourth, we highlight emerging studies demonstrating the roles of anillin in human tumourigenesis introducing anillin as a potential drug target for cancer treatment. Collectively, we provide an overview of the current understanding of medial division and cytokinesis in S. pombe and suggest the implications of these observations in other eukaryotic organisms, including humans.


Asunto(s)
Neoplasias , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Humanos , Citocinesis , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas Contráctiles/metabolismo , Actinas/metabolismo
14.
Heart Fail Rev ; 28(3): 627-644, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36107271

RESUMEN

Heart failure (HF) is a major deteriorating disease of the myocardium due to weak myocardial muscles. As such, the heart is unable to pump blood efficiently around the body to meet its constant demand. HF is a major global health problem with more than 7 million deaths annually worldwide, with some patients dying suddenly due to sudden cardiac death (SCD). There are several risk factors which are associated with HF and SCD which can negatively affect the heart synergistically. One major risk factor is diabetes mellitus (DM) which can cause an elevation in blood glucose level or hyperglycaemia (HG) which, in turn, has an insulting effect on the myocardium. This review attempted to explain the subcellular, cellular and molecular mechanisms and to a lesser extent, the genetic factors associated with the development of diabetes- induced cardiomyopathy due to the HG which can subsequently lead to chronic heart failure (CHF) and SCD. The study first explained the structure and function of the myocardium and then focussed mainly on the excitation-contraction coupling (ECC) processes highlighting the defects of calcium transporting (SERCA, NCX, RyR and connexin) and contractile regulatory (myosin, actin, titin and troponin) proteins. The study also highlighted new therapies and those under development, as well as preventative strategies to either treat or prevent diabetic cardiomyopathy (DCM). It is postulated that prevention is better than cure.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Insuficiencia Cardíaca , Hiperglucemia , Humanos , Calcio/metabolismo , Proteínas Contráctiles/metabolismo , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo , Miocardio/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Contracción Miocárdica , Muerte Súbita Cardíaca , Diabetes Mellitus/metabolismo
16.
Int J Mol Sci ; 23(24)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36555091

RESUMEN

Ischaemia, followed by reperfusion, causes the generation of reactive oxygen species, overproduction of peroxynitrite, activation of matrix metalloproteinases (MMPs), and subsequently the degradation of heart contractile proteins in the cardiomyocytes. Klotho is a membrane-bound or soluble protein that regulates mineral metabolism and has antioxidative activity. This study aimed to examine the influence of Klotho protein on the MMP-mediated degradation of contractile proteins during ischaemia/reperfusion injury (IRI) to the cardiomyocytes. Human cardiac myocytes (HCM) underwent in vitro chemical IRI (with sodium cyanide and deoxyglucose), with or without the administration of recombinant Klotho protein. The expression of MMP genes, the expression and activity of MMP proteins, as well as the level of contractile proteins such as myosin light chain 1 (MLC1) and troponin I (TnI) in HCM were measured. Administration of Klotho protein resulted in a decreased activity of MMP-2 and reduced the release of MLC1 and TnI that followed in cells subjected to IRI. Thus, Klotho protein contributes to the inhibition of MMP-dependent degradation of contractile proteins and prevents injury to the cardiomyocytes during IRI.


Asunto(s)
Proteínas Contráctiles , Proteínas Klotho , Daño por Reperfusión Miocárdica , Miocitos Cardíacos , Humanos , Proteínas Contráctiles/metabolismo , Proteínas Klotho/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Troponina I/metabolismo , Daño por Reperfusión
17.
Open Biol ; 12(11): 220247, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36416720

RESUMEN

Cytokinesis is required to physically separate the daughter cells at the end of mitosis. This crucial process requires the assembly and ingression of an actomyosin ring, which must occur with high fidelity to avoid aneuploidy and cell fate changes. Most of our knowledge of mammalian cytokinesis was generated using over-expressed transgenes in HeLa cells. Over-expression can introduce artefacts, while HeLa are cancerous human cells that have lost their epithelial identity, and the mechanisms controlling cytokinesis in these cells could be vastly different from other cell types. Here, we tagged endogenous anillin, Ect2 and RhoA with mNeonGreen and characterized their localization during cytokinesis for the first time in live human cells. Comparing anillin localization in multiple cell types revealed cytokinetic diversity with differences in the duration and symmetry of ring closure, and the timing of cortical recruitment. Our findings show that the breadth of anillin correlates with the rate of ring closure, and support models where cell size or ploidy affects the cortical organization, and intrinsic mechanisms control the symmetry of ring closure. This work highlights the need to study cytokinesis in more diverse cell types, which will be facilitated by the reagents generated for this study.


Asunto(s)
Actomiosina , Proteínas Contráctiles , Citocinesis , Proteínas Proto-Oncogénicas , Proteína de Unión al GTP rhoA , Humanos , Actomiosina/metabolismo , Proteínas Contráctiles/genética , Proteínas Contráctiles/metabolismo , Células HeLa , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
18.
Cell Rep ; 40(9): 111274, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36044846

RESUMEN

Cleavage of one cell into two is the most dramatic event in the life of a cell. Plasma membrane fission occurs within a narrow intercellular bridge (ICB) between the daughter cells, but the mechanisms underlying ICB formation and maturation are poorly understood. Here we identify CIN85 as an ICB assembly factor and demonstrate its requirement for robust and timely cytokinesis. CIN85 interacts directly with the N-terminal region of anillin and SEPT9 and thereby facilitates SEPT9-containing filament localization to the plasma membrane of the ICB. In contrast, the C-terminal pleckstrin homology (PH) domain of anillin binds to septin units lacking SEPT9 but enriched in SEPT11. Anillin's interactions with distinct septin units are required to promote ICB elongation and maturation that, we propose, generate the physical space into which the abscission machinery is recruited to drive the final membrane scission event releasing two independent daughter cells.


Asunto(s)
Citocinesis , Septinas , Proteínas Contráctiles/metabolismo , Citoesqueleto/metabolismo , Septinas/metabolismo
19.
J Cardiovasc Pharmacol ; 80(4): 574-582, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35881905

RESUMEN

ABSTRACT: Inositol 1, 4, 5-trisphosphate (IP3) signaling-mediated calcium release drives the contraction of vascular smooth muscles and hence regulates blood vessel volume and blood pressure. Melatonin supplementation has been suggested to be beneficial for hypertension. To determine whether the blood pressure-lowering effect of melatonin was accounted for by IP3 signaling, we evaluated the vasoconstriction response and IP3 signaling in isolated mouse thoracic aortic rings during melatonin incubation. C57BL/6 mice were given intraperitoneal injections daily with melatonin, and the systolic blood pressure and contractility of aortic rings from melatonin-treated mice were decreased, and the contraction suppression effect of melatonin was attributed to the impaired expression of contractile proteins in vascular smooth muscle cells rather than IP3 signaling. Our results further showed that melatonin increased the expression of γ-secretase, which could cleave and release the notch intracellular domain, and the notch intracellular domain prevented the transcription of contractile genes by interfering with the interaction between serum response factor and myocardin, the master regulator of contractile protein. In this article, we report a novel mechanism by which melatonin regulates smooth muscle contractility that does not depend on IP3 signaling.


Asunto(s)
Melatonina , Vasoconstricción , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/farmacología , Animales , Calcio/metabolismo , Proteínas Contráctiles/metabolismo , Proteínas Contráctiles/farmacología , Inositol/metabolismo , Inositol/farmacología , Melatonina/farmacología , Ratones , Ratones Endogámicos C57BL , Contracción Muscular , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteínas Nucleares , Factor de Respuesta Sérica/metabolismo , Factor de Respuesta Sérica/farmacología , Transactivadores
20.
Commun Biol ; 5(1): 748, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35902770

RESUMEN

Allergies have become a rising health problem, where plentiful substances can trigger IgE-mediated allergies in humans. While profilins are considered minor allergens, these ubiquitous proteins are primary molecules involved in cross-reactivity and pollen-food allergy syndrome. Here we report the first crystal structures of murine Fab/IgE, with its chains naturally paired, in complex with the allergen profilin from Hevea brasiliensis (Hev b 8). The crystallographic models revealed that the IgE's six complementarity-determining regions (CDRs) interact with the allergen, comprising a rigid paratope-epitope surface of 926 Å2, which includes an extensive network of interactions. Interestingly, we also observed previously unreported flexibility at Fab/IgE's elbow angle, which did not influence the shape of the paratope. The Fab/IgE exhibits a high affinity for Hev b 8, even when using 1 M NaCl in BLI experiments. Finally, based on the encouraging cross-reactivity assays using two mutants of the maize profilin (Zea m 12), this antibody could be a promising tool in IgE engineering for diagnosis and research applications.


Asunto(s)
Hipersensibilidad a los Alimentos , Profilinas , Alérgenos/química , Alérgenos/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Contráctiles/metabolismo , Humanos , Inmunoglobulina E , Ratones , Proteínas de Microfilamentos/metabolismo , Profilinas/genética , Profilinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA