RESUMEN
Aging affects all organs. Arteries, in particular, are among the most affected. Vascular aging (VA) is defined as age-associated changes in function and structure of vessels. Classical VA phenotypes are carotid intima-media thickness (IMT), carotid plaque (CP), and arterial stiffness (STIFF). Individuals have different predisposition to these VA phenotypes and their associated risk of cardiovascular events. Some develop an early vascular aging (EVA), and others are protected and identified as having supernormal vascular aging (SUPERNOVA). The mechanisms leading to these phenotypes are not well understood. In the Northern Manhattan Study (NOMAS), we found genetic variants in the 7 Sirtuins (SIRT) and 5 Uncoupling Proteins (UCP) to be differently associated with risk to developing VA phenotypes. In this article, we review the results of genetic-epidemiology studies to better understand which of the single nucleotide polymorphisms (SNPs) in SIRT and UCP are responsible for both EVA and SUPERNOVA.
Asunto(s)
Envejecimiento , Polimorfismo de Nucleótido Simple , Sirtuinas , Humanos , Sirtuinas/genética , Sirtuinas/metabolismo , Envejecimiento/genética , Envejecimiento/metabolismo , Rigidez Vascular/genética , Grosor Intima-Media Carotídeo , Proteínas Desacopladoras Mitocondriales/genética , Proteínas Desacopladoras Mitocondriales/metabolismo , Predisposición Genética a la Enfermedad , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/patologíaRESUMEN
Cancer cachexia causes skeletal muscle atrophy, impacting the treatment and prognosis of patients with advanced cancer, but no treatment has yet been established to control cancer cachexia. We demonstrated that transcutaneous application of carbon dioxide (CO2) could improve local blood flow and reduce skeletal muscle atrophy in a fracture model. However, the effects of transcutaneous application of CO2 in cancer-bearing conditions are not yet known. In this study, we calculated fat-free body mass (FFM), defined as the skeletal muscle mass, and evaluated the expression of muscle atrophy markers and uncoupling protein markers as well as the cross-sectional area (CSA) to investigate whether transcutaneous application of CO2 to skeletal muscle could suppress skeletal muscle atrophy in cancer-bearing mice. Human oral squamous cell carcinoma was transplanted subcutaneously into the upper dorsal region of nude mice, and 1 week later, CO2 gas was applied to the legs twice a week for 4 weeks and FFM was calculated by bioimpedance spectroscopy. After the experiment concluded, the quadriceps were extracted, and muscle atrophy markers (muscle atrophy F-box protein (MAFbx), muscle RING-finger protein 1 (MuRF-1)) and uncoupling protein markers (uncoupling protein 2 (UCP2) and uncoupling protein 3 (UCP3)) were evaluated by real-time polymerase chain reaction and immunohistochemical staining, and CSA by hematoxylin and eosin staining. The CO2-treated group exhibited significant mRNA and protein expression inhibition of the four markers. Furthermore, immunohistochemical staining showed decreased MAFbx, MuRF-1, UCP2, and UCP3 in the CO2-treated group. In fact, the CSA in hematoxylin and eosin staining and the FFM revealed significant suppression of skeletal muscle atrophy in the CO2-treated group. We suggest that transcutaneous application of CO2 to skeletal muscle suppresses skeletal muscle atrophy in a mouse model of oral squamous cell carcinoma.
Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Humanos , Ratones , Animales , Dióxido de Carbono/metabolismo , Caquexia/etiología , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Ratones Desnudos , Eosina Amarillenta-(YS) , Hematoxilina , Neoplasias de la Boca/patología , Atrofia Muscular/patología , Músculo Esquelético/metabolismo , Neoplasias de Cabeza y Cuello/patología , Proteínas Desacopladoras Mitocondriales/metabolismoRESUMEN
Apical cilia on epithelial cells defend the lung by propelling pathogens and particulates out of the respiratory airways. Ciliated cells produce ATP that powers cilia beating by densely grouping mitochondria just beneath the apical membrane. However, this efficient localization comes at a cost because electrons leaked during oxidative phosphorylation react with molecular oxygen to form superoxide, and thus, the cluster of mitochondria creates a hotspot for oxidant production. The relatively high oxygen concentration overlying airway epithelia further intensifies the risk of generating superoxide. Thus, airway ciliated cells face a unique challenge of producing harmful levels of oxidants. However, surprisingly, highly ciliated epithelia produce less reactive oxygen species (ROS) than epithelia with few ciliated cells. Compared to other airway cell types, ciliated cells express high levels of mitochondrial uncoupling proteins, UCP2 and UCP5. These proteins decrease mitochondrial protonmotive force and thereby reduce production of ROS. As a result, lipid peroxidation, a marker of oxidant injury, decreases. However, mitochondrial uncoupling proteins exact a price for decreasing oxidant production; they decrease the fraction of mitochondrial respiration that generates ATP. These findings indicate that ciliated cells sacrifice mitochondrial efficiency in exchange for safety from damaging oxidation. Employing uncoupling proteins to prevent oxidant production, instead of relying solely on antioxidants to decrease postproduction oxidant levels, may offer an advantage for targeting a local area of intense ROS generation.
Asunto(s)
Canales Iónicos , Superóxidos , Humanos , Especies Reactivas de Oxígeno/metabolismo , Proteínas Desacopladoras Mitocondriales/metabolismo , Superóxidos/metabolismo , Canales Iónicos/metabolismo , Estrés Oxidativo , Adenosina Trifosfato/metabolismo , Células Epiteliales/metabolismo , Oxidantes/farmacología , Oxígeno/metabolismo , Proteínas Mitocondriales/metabolismoRESUMEN
Homeothermy is crucial for mammals. Postnatal growth is the key period for young offspring to acquire gut microbiota. Although gut microbiota may affect mammal thermogenesis, the impact of developmental regulation of gut microbiota on the ability of young pups to produce heat remains unclear. Antibiotics were used to interfere with the establishment of gut microbiota during the development of Brandt's voles, and their thermogenic development and regulatory pathways were determined. Deprivation of microbiota by antibiotics inhibits the development of thermogenesis in pups. Butyric acid and bile acid, as metabolites of gut microbiota, participated in the thermoregulation of pups. We propose that gut microbiota promote the development of thermoregulation through the butyric acid-free fatty acid receptor-2-uncoupling protein-1 or the deoxycholic acid-Takeda-G-protein-receptor-5-uncoupling protein-1 pathway in pups. These results show a relationship between gut microbiota and thermogenesis and expand the mechanism of postnatal development of thermogenesis in small mammals.
Asunto(s)
Microbioma Gastrointestinal , Animales , Ácido Butírico/metabolismo , Termogénesis/fisiología , Arvicolinae/metabolismo , Antibacterianos/metabolismo , Mamíferos , Proteínas Desacopladoras Mitocondriales/metabolismoRESUMEN
Low temperatures and the lack of food during the winter lead the marsh frog Rana ridibunda and the grass frog Rana mascareniensis to hibernate in order to survive. The present study aimed to investigate the cytoarchitecture of brain sub-regions affected by the thermal cycle's fluctuations during the hibernation and activity period, besides the regional distribution quantitative expression of Na(+)/K(+)-ATPase and Pax6 transcriptional factor, the molecular gene expressions of some heat shock proteins, uncoupling protein, and metallothionein. The two frog species were isolated from the field during summer and hibernation time in winter. During hibernation it was notable the destitution of degenerated, pyknotic and vasogenic neurons in different brain areas with high rate nearby the pallium. The immunohistochemical expression of Na+/ K+-ATPase and Pax 6 is decreased during hibernation in different brain sub-regions in the two species suggesting their tendency for energy conservation strategy during hibernation. Additionally, RT-qPCR recorded the up regulation of a number of heat shock protein genes during hibernation with sharing increase between two species for hsp90 besides and the non-significant expression in summer and hibernation periods for hsp47 for both species. Moreover, uncoupling protein (ucp1and ucp2) and metallothionein genes in olfactory bulb were with significant up regulation during the hibernation suggesting that these proteins possibly have a protective effect against reactive oxygen species ROS. So, brain adaptations to low temperature play a crucial role in coordinating stress responses. The present study shed light on the importance of the olfactory bulb in the thermoregulation and sensation of temperature elevations during the hibernation period and defended by the expression of heat shock proteins and uncoupling proteins preventing the cellular damage and proteins misfolding. Neuronal energy production and regeneration activities among amphibians are markedly reduced with decreasing body temperature.
Asunto(s)
Adenosina Trifosfatasas , Proteínas de Choque Térmico , Animales , Rana ridibunda/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Desacopladoras Mitocondriales/metabolismo , Expresión GénicaRESUMEN
The uncoupling protein UCP2 is a mitochondrial carrier for which transport activity remains controversial. The physiological contexts in which UCP2 is expressed have led to the assumption that, like UCP1, it uncouples oxidative phosphorylation and thereby reduces the generation of reactive oxygen species. Other reports have involved UCP2 in the Warburg effect, and results showing that UCP2 catalyzes the export of matrix C4 metabolites to facilitate glutamine utilization suggest that the carrier could be involved in the metabolic adaptations required for cell proliferation. We have examined the role of UCP2 in the energy metabolism of the lung adenocarcinoma cell line A549 and show that UCP2 silencing decreased the basal rate of respiration, although this inhibition was not compensated by an increase in glycolysis. Silencing did not lead to either changes in proton leakage, as determined by the rate of respiration in the absence of ATP synthesis, or changes in the rate of formation of reactive oxygen species. The decrease in energy metabolism did not alter the cellular energy charge. The decreased cell proliferation observed in UCP2-silenced cells would explain the reduced cellular ATP demand. We conclude that UCP2 does not operate as an uncoupling protein, whereas our results are consistent with its activity as a C4-metabolite carrier involved in the metabolic adaptations of proliferating cells.
Asunto(s)
Metabolismo Energético , Canales Iónicos , Neoplasias Pulmonares , Proteína Desacopladora 2 , Humanos , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Adenosina Trifosfato/metabolismo , Línea Celular , Canales Iónicos/genética , Canales Iónicos/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas Desacopladoras Mitocondriales/metabolismo , Neoplasias , Especies Reactivas de Oxígeno/metabolismo , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismoRESUMEN
On the one hand, reactive oxygen species (ROS) are involved in the onset and progression of a wide array of diseases. On the other hand, these are a part of signaling pathways related to cell metabolism, growth and survival. While ROS are produced at various cellular sites, in cardiomyocytes the largest amount of ROS is generated by mitochondria. Apart from the electron transport chain and various other proteins, uncoupling protein (UCP) and monoamine oxidases (MAO) have been proposed to modify mitochondrial ROS formation. Here, we review the recent information on UCP and MAO in cardiac injuries induced by ischemia-reperfusion (I/R) as well as protection from I/R and heart failure secondary to I/R injury or pressure overload. The current data in the literature suggest that I/R will preferentially upregulate UCP2 in cardiac tissue but not UCP3. Studies addressing the consequences of such induction are currently inconclusive because the precise function of UCP2 in cardiac tissue is not well understood, and tissue- and species-specific aspects complicate the situation. In general, UCP2 may reduce oxidative stress by mild uncoupling and both UCP2 and UCP3 affect substrate utilization in cardiac tissue, thereby modifying post-ischemic remodeling. MAOs are important for the physiological regulation of substrate concentrations. Upon increased expression and or activity of MAOs, however, the increased production of ROS and reactive aldehydes contribute to cardiac alterations such as hypertrophy, inflammation, irreversible cardiomyocyte injury, and failure.
Asunto(s)
Mitocondrias , Monoaminooxidasa , Especies Reactivas de Oxígeno/metabolismo , Proteínas Desacopladoras Mitocondriales/metabolismo , Monoaminooxidasa/metabolismo , Proteína Desacopladora 2/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteína Desacopladora 3/metabolismoRESUMEN
Mitochondrial uncoupling proteins UCP1 and UCP2 have a structural homology of app. 60%. They execute their mitochondria uncoupling function through different molecular mechanisms. Non-shivering thermogenesis by UCP1 is mediated through a transmembrane dissipation of the proton motive force to create heat during sympathetic stimulation. UCP2, on the other hand, modulates through the interaction with methylated MICU1 the permeability of the cristae junction, which acts as an isolator for the cristae-located mitochondrial membrane potential. In this mini-review, we discuss and compare the recently described molecular mechanism of UCP1 in brown adipose tissue and UCP2 in aged and cancer non-excitable cells that contribute to mitochondrial uncoupling, and the synergistic effects of both UCPs with the mitochondrial Ca2+ uptake machinery.
Asunto(s)
Canales Iónicos , Proteínas de la Membrana , Proteínas Desacopladoras Mitocondriales/metabolismo , Proteínas de la Membrana/metabolismo , Canales Iónicos/metabolismo , Proteínas Mitocondriales/metabolismo , Proteína Desacopladora 2/metabolismo , Mitocondrias/metabolismoRESUMEN
Alzheimer's disease (AD) is becoming increasingly prevalent worldwide. It represents one of the greatest medical challenges as no pharmacologic treatments are available to prevent disease progression. Astrocytes play crucial functions within neuronal circuits by providing metabolic and functional support, regulating interstitial solute composition, and modulating synaptic transmission. In addition to these physiological functions, growing evidence points to an essential role of astrocytes in neurodegenerative diseases like AD. Early-stage AD is associated with hypometabolism and oxidative stress. Contrary to neurons that are vulnerable to oxidative stress, astrocytes are particularly resistant to mitochondrial dysfunction and are therefore more resilient cells. In our study, we leveraged astrocytic mitochondrial uncoupling and examined neuronal function in the 3xTg AD mouse model. We overexpressed the mitochondrial uncoupling protein 4 (UCP4), which has been shown to improve neuronal survival in vitro. We found that this treatment efficiently prevented alterations of hippocampal metabolite levels observed in AD mice, along with hippocampal atrophy and reduction of basal dendrite arborization of subicular neurons. This approach also averted aberrant neuronal excitability observed in AD subicular neurons and preserved episodic-like memory in AD mice assessed in a spatial recognition task. These findings show that targeting astrocytes and their mitochondria is an effective strategy to prevent the decline of neurons facing AD-related stress at the early stages of the disease.
Asunto(s)
Enfermedad de Alzheimer , Mitocondrias , Proteínas Desacopladoras Mitocondriales , Animales , Ratones , Enfermedad de Alzheimer/metabolismo , Astrocitos/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Ratones Transgénicos , Mitocondrias/metabolismo , Proteínas Desacopladoras Mitocondriales/genética , Proteínas Desacopladoras Mitocondriales/metabolismoRESUMEN
BACKGROUND: Uncoupling proteins (UCPs) are unpaired electron carriers that uncouple oxygen intake by the electron transport chain from ATP production in the inner membrane of the mitochondria. The physiological activities of UCPs have been hotly contested, and the involvement of UCPs in the pathogenesis and progression of diabetes mellitus is among the greatest concerns. UCPs are hypothesised to be triggered by superoxide and then reduce mitochondrial free radical production, potentially protecting diabetes mellitus patients who are experiencing oxidative stress. OBJECTIVES: The objectives of the study are to find out the newest ways to treat diabetes mellitus through protein uncoupling. METHODS: Research and review papers are collected from different databases like google scholar, PubMed, Mendeley, Scopus, Science Open, Directory of open access journals, and Education Resources Information Center, using different keywords such as "uncoupling proteins in diabetes mellitus treatment", "UCP 1", "UCP 2", and 'UCP 3". RESULTS: UCP1, UCP2, and UCP 3 are potential targets as uncoupling proteins for the treatment of diabetes mellitus for new drugs. New drugs treat the disease by reducing oxidative stress through thermogenesis and energy expenditure. CONCLUSION: UCP1, UCP2, and UCP3 have a role in fatty acid metabolism, negative control of insulin production, and insulin sensitivity by beta-cells. Polymorphisms in the UCP 1, 2, and 3 genes significantly reduce the risk of developing diabetes mellitus. Protein uncoupling indirectly targets the GPCR and islet of Langerhans. This review summarises the advances in understanding the role of UCP1, UCP2, and UCP3 in diabetes mellitus.
Asunto(s)
Diabetes Mellitus , Canales Iónicos , Humanos , Canales Iónicos/genética , Proteínas Mitocondriales/genética , Diabetes Mellitus/tratamiento farmacológico , Diabetes Mellitus/metabolismo , Proteínas Desacopladoras Mitocondriales/metabolismo , Metabolismo Energético/fisiologíaRESUMEN
The interaction of mitochondria with cellular components evolved differently in plants and mammals; in plants, the organelle contains proteins such as ALTERNATIVE OXIDASES (AOXs), which, in conjunction with internal and external ALTERNATIVE NAD(P)H DEHYDROGENASES, allow canonical oxidative phosphorylation (OXPHOS) to be bypassed. Plant mitochondria also contain UNCOUPLING PROTEINS (UCPs) that bypass OXPHOS. Recent work revealed that OXPHOS bypass performed by AOXs and UCPs is linked with new mechanisms of mitochondrial retrograde signaling. AOX is functionally associated with the NO APICAL MERISTEM transcription factors, which mediate mitochondrial retrograde signaling, while UCP1 can regulate the plant oxygen-sensing mechanism via the PRT6 N-Degron. Here, we discuss the crosstalk or the independent action of AOXs and UCPs on mitochondrial retrograde signaling associated with abiotic stress responses. We also discuss how mitochondrial function and retrograde signaling mechanisms affect chloroplast function. Additionally, we discuss how mitochondrial inner membrane transporters can mediate mitochondrial communication with other organelles. Lastly, we review how mitochondrial metabolism can be used to improve crop resilience to environmental stresses. In this respect, we particularly focus on the contribution of Brazilian research groups to advances in the topic of mitochondrial metabolism and signaling.
Asunto(s)
Proteínas Mitocondriales , NAD , Animales , Mamíferos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Desacopladoras Mitocondriales/metabolismo , NAD/metabolismo , Oxidorreductasas/metabolismo , Oxígeno/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Estrés Fisiológico , Factores de Transcripción/metabolismoRESUMEN
Understanding temperature production and regulation in endotherm organisms becomes a crucial challenge facing the increased frequency and intensity of heat strokes related to global warming. Mitochondria, located at the crossroad of metabolism, respiration, Ca2+ homeostasis, and apoptosis, were recently proposed to further act as cellular radiators, with an estimated inner temperature reaching 50 °C in common cell lines. This inner thermogenesis might be further exacerbated in organs devoted to produce consistent efforts as muscles, or heat as brown adipose tissue, in response to acute solicitations. Consequently, pathways promoting respiratory chain uncoupling and mitochondrial activity, such as Ca2+ fluxes, uncoupling proteins, futile cycling, and substrate supplies, provide the main processes controlling heat production and cell temperature. The mitochondrial thermogenesis might be further amplified by cytoplasmic mechanisms promoting the over-consumption of ATP pools. Considering these new thermic paradigms, we discuss here all conventional wisdoms linking mitochondrial functions to cellular thermogenesis in different physiological conditions.
Asunto(s)
Mitocondrias , Termogénesis , Adenosina Trifosfato/metabolismo , Tejido Adiposo Pardo/metabolismo , Mitocondrias/metabolismo , Proteínas Desacopladoras Mitocondriales/metabolismo , Termogénesis/fisiologíaRESUMEN
Mitochondrial thermogenesis is an adaptive response of cells to their surrounding stress. Oxidative stress is one of the common stresses during in vitro maturation (IVM) of oocytes, which leads to mitochondrial dysfunction. This study aimed to probe the effects of the mitochondria-targeted antioxidant Mito-Q on oocyte development and unravel the role of Mito-Q in mitochondrial ATP production and thermogenesis regulation. Our results showed that Mito-Q had a positive effect on porcine oocytes maturation and subsequent embryo development. During oocytes IVM, Mito-Q could reduce ATP levels and ROS, increase lipid droplets accumulation, induce autophagy, and maintain mitochondrial temperature stability. Moreover, in metaphase II (MII) oocytes, Mito-Q would induce mitochondrial uncoupling manifested by decreased ATP, attenuated mitochondrial membrane potential (MMP), and increased mitochondrial thermogenesis. Notably, the expression of mitochondrial uncoupling protein (UCP2) was significantly reduced in oocytes treated with Mito-Q. Further study indicated that specific depletion of UCP2 in oocytes also resulted in increased thermogenesis, decreased ATP and declined MMP, suggesting that UCP2 downregulation may participate in Mito-Q-induced mitochondrial uncoupling. In summary, our data demonstrate that Mito-Q promotes oocyte maturation in vitro and maintains the stability of mitochondrial thermogenesis by inhibiting UCP2 expression.
Asunto(s)
Técnicas de Maduración In Vitro de los Oocitos , Oocitos , Animales , Adenosina Trifosfato/metabolismo , Regulación hacia Abajo , Técnicas de Maduración In Vitro de los Oocitos/métodos , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Mitocondrias , Proteínas Desacopladoras Mitocondriales/metabolismo , Compuestos Organofosforados , Porcinos , Termogénesis , Ubiquinona/análogos & derivadosRESUMEN
Most of the major retinal degenerative diseases are associated with significant levels of oxidative stress. One of the major sources contributing to the overall level of stress is the reactive oxygen species (ROS) generated by mitochondria. The driving force for ROS production is the proton gradient across the inner mitochondrial membrane. This gradient can be modulated by members of the uncoupling protein family, particularly the widely expressed UCP2. The overexpression and knockout studies of UCP2 in mice have established the ability of this protein to provide neuroprotection in a number of animal models of neurological disease, including retinal diseases. The expression and activity of UCP2 are controlled at the transcriptional, translational and post-translational levels, making it an ideal candidate for therapeutic intervention. In addition to regulation by a number of growth factors, including the neuroprotective factors LIF and PEDF, small molecule activators of UCP2 have been found to reduce mitochondrial ROS production and protect against cell death both in culture and animal models of retinal degeneration. Such studies point to the development of new therapeutics to combat a range of blinding retinal degenerative diseases and possibly other diseases in which oxidative stress plays a key role.
Asunto(s)
Enfermedades Neurodegenerativas , Animales , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Desacopladoras Mitocondriales/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismoRESUMEN
Genetic selection for rapid growth in broilers has inadvertently resulted in increased susceptibility to heat stress, particularly in male birds. Increased oxidative stress associated with hyperthermia may be reduced by avian uncoupling protein (avUCP), which has been proposed to modulate free radical production. However, the relationship between avUCP expression and current heat stress management strategies is unclear. Embryonic acclimation or thermal manipulation (TM) and dietary fat source are 2 heat stress interventions that may alter avUCP expression and oxidative stress, but the literature is inconclusive. The objective of this trial was to investigate the effect of TM and dietary fat source on avUCP gene expression and oxidative damage in the breast meat of market age broilers before and after acute heat challenge. The influence of bird sex was also evaluated as broilers exhibit a high degree of sexual dimorphism in growth and stress susceptibility. Concentration of thiobarbituric acid reactive substances (TBARS) was measured as a marker of oxidative damage. Embryonic TM occurred from incubation d 7 to 16 for 12 h daily at 39.5°C. Dietary treatments were applied during the finisher period using either poultry fat, soya oil, or olive oil supplemented at 4.5% in the diet. Acute heat stress (AHS) occurred on d 43 at 32°C for 4 h. Bird performance was decreased by TM, but no significant differences were noted between dietary fat source treatments. Neither avUCP nor TBARS concentrations were significantly influenced by TM or dietary fat source. Downregulation of avUCP was observed following AHS, concurrent with an increase in TBARS concentration. Male birds exhibited higher levels of both avUCP expression and TBARS compared to females and a significant interaction was noted for heat stress by sex, with avUCP expression being greatest in males prior to AHS. The increase in avUCP expression and TBARS concentrations in male birds may be associated with an increased susceptibility to stress arising from the increased growth rate noted for male broilers.
Asunto(s)
Pollos , Trastornos de Estrés por Calor , Animales , Pollos/fisiología , Dieta/veterinaria , Suplementos Dietéticos , Trastornos de Estrés por Calor/veterinaria , Respuesta al Choque Térmico , Masculino , Proteínas Desacopladoras Mitocondriales/metabolismo , Aceite de Oliva/metabolismo , Estrés Oxidativo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismoRESUMEN
Higher concentration of protons in the mitochondrial intermembrane space compared to the matrix results in an electrochemical potential causing the back flux of protons to the matrix. This proton transport can take place through ATP synthase complex (leading to formation of ATP) or can occur via proton transporters of the mitochondrial carrier superfamily and/or membrane lipids. Some mitochondrial proton transporters, such as uncoupling proteins (UCPs), transport protons as their general regulating function; while others are symporters or antiporters, which use the proton gradient as a driving force to co-transport other substrates across the mitochondrial inner membrane (such as phosphate carrier, a symporter; or aspartate/glutamate transporter, an antiporter). Passage (or leakage) of protons across the inner membrane to matrix from any route other than ATP synthase negatively impacts ATP synthesis. The focus of this review is on regulated proton transport by UCPs. Recent findings on the structure and function of UCPs, and the related research methodologies, are also critically reviewed. Due to structural similarity of members of the mitochondrial carrier superfamily, several of the known structural features are potentially expandable to all members. Overall, this report provides a brief, yet comprehensive, overview of the current knowledge in the field.
Asunto(s)
Mitocondrias/metabolismo , Proteínas Desacopladoras Mitocondriales/química , Proteínas Desacopladoras Mitocondriales/metabolismo , Animales , Regulación de la Expresión Génica , Humanos , Transporte Iónico , Potencial de la Membrana Mitocondrial , Modelos Moleculares , Conformación ProteicaRESUMEN
Uncoupling proteins (UCPs) form a distinct subfamily of the mitochondrial carrier family (MCF) SLC25. Four UCPs, DmUCP4A-C and DmUCP5, have been identified in Drosophila melanogaster on the basis of their sequence homology with mammalian UCP4 and UCP5. In a Parkinson's disease model, DmUCP4A showed a protective role against mitochondrial dysfunction, by increasing mitochondrial membrane potential and ATP synthesis. To date, DmUCP4A is still an orphan of a biochemical function, although its possible involvement in mitochondrial uncoupling has been ruled out. Here, we show that DmUCP4A expressed in bacteria and reconstituted in phospholipid vesicles catalyzes a unidirectional transport of aspartate, which is saturable and inhibited by mercurials and other mitochondrial carrier inhibitors to various degrees. Swelling experiments carried out in yeast mitochondria have demonstrated that the unidirectional transport of aspartate catalyzed by DmUCP4 is not proton-coupled. The biochemical function of DmUCP4A has been further confirmed in a yeast cell model, in which growth has required an efflux of aspartate from mitochondria. Notably, DmUCP4A is the first UCP4 homolog from any species to be biochemically characterized. In Drosophila melanogaster, DmUCP4A could be involved in the transport of aspartate from mitochondria to the cytosol, in which it could be used for protein and nucleotide synthesis, as well as in the biosynthesis of ß-alanine and N-acetylaspartate, which play key roles in signal transmission in the central nervous system.
Asunto(s)
Ácido Aspártico/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Desacopladoras Mitocondriales/genética , Proteínas Desacopladoras Mitocondriales/metabolismo , Animales , Ácido Aspártico/análogos & derivados , Ácido Aspártico/biosíntesis , Transporte Biológico Activo , Clonación Molecular , Citosol/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mitocondrias/metabolismo , beta-Alanina/biosíntesisRESUMEN
Significance: Uncoupling proteins (UCPs) are a family of proteins that allow proton leakage across the inner mitochondrial membrane. Although UCP1, also known as thermogenin, is well known and important for heat generation in brown adipose tissue, striated muscles express two distinct members of UCP, namely UCP2 and UCP3. Unlike UCP1, the main function of UCP2 and UCP3 does not appear to be heat production. Recent Advances: Interestingly, UCP2 is the main isoform expressed in cardiac tissues, whereas UCP3 is the dominant isoform in skeletal muscles. In the past years, researchers have started to investigate the regulation of UCP2 and UCP3 expression in striated muscles. Furthermore, concepts about the proposed functions of UCP2 and UCP3 in striated muscles are developed but are still a matter of debate. Critical Issues: Potential functions of UCP2 and UCP3 in striated muscles include a role in protection against mitochondria-dependent oxidative stress, as transporter for pyruvate, fatty acids, and protons into and out of the mitochondria, and in metabolic sensing. In this context, the different isoform expression of UCP2 and UCP3 in the skeletal and cardiac muscle may be related to different metabolic requirements of the two organs. Future Directions: The level of expression of UCP2 and UCP3 in striated muscles changes in different disease stages. This suggests that UCPs may become drug targets for therapy in the future. Antioxid. Redox Signal. 37, 324-335.
Asunto(s)
Canales Iónicos , Proteínas Mitocondriales , Tejido Adiposo Pardo/metabolismo , Canales Iónicos/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas Desacopladoras Mitocondriales/metabolismo , Músculo Esquelético/metabolismo , ARN Mensajero/metabolismo , Proteína Desacopladora 2/metabolismo , Proteína Desacopladora 3/genética , Proteína Desacopladora 3/metabolismoRESUMEN
Mitochondrial uncoupling proteins (UCP) are a part of the large family of mitochondrial solute carriers (SLC25s), concentrated in the inner mitochondrial membrane that carries protons from intermembrane space to the matrix. Further, some UCPs are also involved in the transportation of the fatty acid anions and catalyzed the proton transport by fatty acid cycling across the membrane. Out of the 5 UCPs, UCP 2, 4, and 5 are localized in the central nervous system (CNS), and alteration within the expression of these UCPs results in neuronal dysfunction and, ultimately, death of neurons. UCPs play a vital role in regulating mitochondrial membrane potential, preventing reactive oxygen species (ROS) production, alteration in neuronal activity, and the regulation of calcium homeostasis that ultimately results in the prevention of neuronal loss. These changes in mitochondria impact the function and survival of neurons playing a critical role in the progression of neurodegenerative diseases, particularly Alzheimer's disease (AD) and Parkinson's disease (PD). Additionally, UCP2 regulates the microglia response towards neuroinflammation by modulating microglia's M1 and M2 phenotypes. These microglia cells are further involved in regulating inflammatory response and synaptic functions. Moreover, UCP2, 4, and 5 are ubiquitously present in all brain regions that negatively regulate ROS production and inflammation, leading to the prevention of neuronal cell death. Increased ROS production is a common symptom reported in neurodegenerative diseases that affect several pathways concerned with neuronal death, either apoptosis or autophagy. These accumulating evidence suggested UCPs as a possible therapeutic target for the management of neurodegenerative diseases.
Asunto(s)
Proteínas Desacopladoras Mitocondriales/metabolismo , Enfermedades Neurodegenerativas/patología , Envejecimiento/patología , Encéfalo/metabolismo , Diabetes Mellitus Tipo 2/patología , Hipoxia/patología , Potencial de la Membrana Mitocondrial/fisiología , Membranas Mitocondriales/metabolismo , Neuroglía/metabolismo , Enfermedades Neuroinflamatorias/patología , Plasticidad Neuronal/fisiología , Estrés Oxidativo/fisiologíaRESUMEN
2,4-Dinitrophenol (DNP) is a classic uncoupler of oxidative phosphorylation in mitochondria which is still used in "diet pills", despite its high toxicity and lack of antidotes. DNP increases the proton current through pure lipid membranes, similar to other chemical uncouplers. However, the molecular mechanism of its action in the mitochondria is far from being understood. The sensitivity of DNP's uncoupling action in mitochondria to carboxyatractyloside, a specific inhibitor of adenine nucleotide translocase (ANT), suggests the involvement of ANT and probably other mitochondrial proton-transporting proteins in the DNP's protonophoric activity. To test this hypothesis, we investigated the contribution of recombinant ANT1 and the uncoupling proteins UCP1-UCP3 to DNP-mediated proton leakage using the well-defined model of planar bilayer lipid membranes. All four proteins significantly enhanced the protonophoric effect of DNP. Notably, only long-chain free fatty acids were previously shown to be co-factors of UCPs and ANT1. Using site-directed mutagenesis and molecular dynamics simulations, we showed that arginine 79 of ANT1 is crucial for the DNP-mediated increase of membrane conductance, implying that this amino acid participates in DNP binding to ANT1.