Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 586
Filtrar
1.
Subcell Biochem ; 104: 549-563, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38963500

RESUMEN

Within the highly diverse type four filament (TFF or T4F) superfamily, the machineries of type IVa pili (T4aP) and the type 2 secretion system (T2SS) in diderm bacteria exhibit a substantial sequence similarity despite divergent functions and distinct appearances: T4aP can extend micrometers beyond the outer membrane, whereas the endopili in the T2SS are restricted to the periplasm. The determination of the structure of individual components and entire filaments is crucial to understand how their structure enables them to serve different functions. However, the dynamics of these filaments poses a challenge for their high-resolution structure determination. This review presents different approaches that have been used to study the structure and dynamics of T4aP and T2SS endopili by means of integrative structural biology, cryo-electron microscopy (cryo-EM), and molecular dynamics simulations. Their conserved features and differences are presented. The non-helical stretch in the long-conserved N-terminal helix which is characteristic of all members of the TFF and the impact of calcium on structure, function, and dynamics of these filaments are discussed in detail.


Asunto(s)
Microscopía por Crioelectrón , Fimbrias Bacterianas , Sistemas de Secreción Tipo II , Fimbrias Bacterianas/química , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/ultraestructura , Fimbrias Bacterianas/fisiología , Microscopía por Crioelectrón/métodos , Sistemas de Secreción Tipo II/química , Sistemas de Secreción Tipo II/metabolismo , Simulación de Dinámica Molecular , Conformación Proteica , Proteínas Fimbrias/química , Proteínas Fimbrias/metabolismo , Proteínas Fimbrias/genética
2.
Nat Commun ; 15(1): 5050, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877033

RESUMEN

Amongst the major types of archaeal filaments, several have been shown to closely resemble bacterial homologues of the Type IV pili (T4P). Within Sulfolobales, member species encode for three types of T4P, namely the archaellum, the UV-inducible pilus system (Ups) and the archaeal adhesive pilus (Aap). Whereas the archaellum functions primarily in swimming motility, and the Ups in UV-induced cell aggregation and DNA-exchange, the Aap plays an important role in adhesion and twitching motility. Here, we present a cryoEM structure of the Aap of the archaeal model organism Sulfolobus acidocaldarius. We identify the component subunit as AapB and find that while its structure follows the canonical T4P blueprint, it adopts three distinct conformations within the pilus. The tri-conformer Aap structure that we describe challenges our current understanding of pilus structure and sheds new light on the principles of twitching motility.


Asunto(s)
Microscopía por Crioelectrón , Sulfolobus acidocaldarius , Sulfolobus acidocaldarius/metabolismo , Sulfolobus acidocaldarius/genética , Sulfolobus acidocaldarius/fisiología , Proteínas Arqueales/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/genética , Fimbrias Bacterianas/ultraestructura , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/fisiología , Fimbrias Bacterianas/química , Proteínas Fimbrias/metabolismo , Proteínas Fimbrias/química , Proteínas Fimbrias/genética , Modelos Moleculares
3.
Nat Commun ; 15(1): 5049, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877064

RESUMEN

Type IV pili (T4P) represent one of the most common varieties of surface appendages in archaea. These filaments, assembled from small pilin proteins, can be many microns long and serve diverse functions, including adhesion, biofilm formation, motility, and intercellular communication. Here, we determine atomic structures of two distinct adhesive T4P from Saccharolobus islandicus via cryo-electron microscopy (cryo-EM). Unexpectedly, both pili were assembled from the same pilin polypeptide but under different growth conditions. One filament, denoted mono-pilus, conforms to canonical archaeal T4P structures where all subunits are equivalent, whereas in the other filament, the tri-pilus, the same polypeptide exists in three different conformations. The three conformations in the tri-pilus are very different from the single conformation found in the mono-pilus, and involve different orientations of the outer immunoglobulin-like domains, mediated by a very flexible linker. Remarkably, the outer domains rotate nearly 180° between the mono- and tri-pilus conformations. Both forms of pili require the same ATPase and TadC-like membrane pore for assembly, indicating that the same secretion system can produce structurally very different filaments. Our results show that the structures of archaeal T4P appear to be less constrained and rigid than those of the homologous archaeal flagellar filaments that serve as helical propellers.


Asunto(s)
Proteínas Arqueales , Microscopía por Crioelectrón , Proteínas Fimbrias , Proteínas Fimbrias/metabolismo , Proteínas Fimbrias/química , Proteínas Fimbrias/ultraestructura , Proteínas Arqueales/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/ultraestructura , Modelos Moleculares , Fimbrias Bacterianas/ultraestructura , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/química , Conformación Proteica , Secuencia de Aminoácidos
4.
Acta Crystallogr D Struct Biol ; 80(Pt 7): 474-492, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38935340

RESUMEN

Sortase-dependent pili are long surface appendages that mediate attachment, colonization and biofilm formation in certain genera and species of Gram-positive bacteria. Ligilactobacillus ruminis is an autochthonous gut commensal that relies on sortase-dependent LrpCBA pili for host adherence and persistence. X-ray crystal structure snapshots of the backbone pilin LrpA were captured in two atypical bent conformations leading to a zigzag morphology in the LrpCBA pilus structure. Small-angle X-ray scattering and structural analysis revealed that LrpA also adopts the typical linear conformation, resulting in an elongated pilus morphology. Various conformational analyses and biophysical experiments helped to demonstrate that a hinge region located at the end of the flexible N-terminal domain of LrpA facilitates a new closure-and-twist motion for assembling dynamic pili during the assembly process and host attachment. Further, the incongruent combination of flexible domain-driven conformational dynamics and rigid isopeptide bond-driven stability observed in the LrpCBA pilus might also extend to the sortase-dependent pili of other bacteria colonizing a host.


Asunto(s)
Proteínas Fimbrias , Fimbrias Bacterianas , Fimbrias Bacterianas/química , Cristalografía por Rayos X , Proteínas Fimbrias/química , Proteínas Fimbrias/metabolismo , Modelos Moleculares , Dominios Proteicos , Bacillaceae , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Conformación Proteica
5.
Nat Commun ; 15(1): 3032, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589417

RESUMEN

Type 1 pili are important virulence factors of uropathogenic Escherichia coli that mediate bacterial attachment to epithelial cells in the urinary tract. The pilus rod is comprised of thousands of copies of the main structural subunit FimA and is assembled in vivo by the assembly platform FimD. Although type 1 pilus rods can self-assemble from FimA in vitro, this reaction is slower and produces structures with lower kinetic stability against denaturants compared to in vivo-assembled rods. Our study reveals that FimD-catalysed in vitro-assembled type 1 pilus rods attain a similar stability as pilus rods assembled in vivo. Employing structural, biophysical and biochemical analyses, we show that in vitro assembly reactions lacking FimD produce pilus rods with structural defects, reducing their stability against dissociation. Overall, our results indicate that FimD is not only required for the catalysis of pilus assembly, but also to control the assembly of the most stable quaternary structure.


Asunto(s)
Proteínas de Escherichia coli , Proteínas Fimbrias , Proteínas Fimbrias/genética , Proteínas Fimbrias/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Fimbrias Bacterianas/química
6.
Food Microbiol ; 121: 104519, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38637081

RESUMEN

Currently, fresh, unprocessed food has become a relevant element of the chain of transmission of enteropathogenic infections. To survive on a plant surface and further spread the infections, pathogens like Salmonella have to attach stably to the leaf surface. Adhesion, driven by various virulence factors, including the most abundant fim operon encoding type 1 fimbriae, is usually an initial step of infection, preventing physical removal of the pathogen. Adhesion properties of Salmonella's type 1 fimbriae and its FimH adhesin were investigated intensively in the past. However, there is a lack of knowledge regarding its role in interaction with plant cells. Understanding the mechanisms and structures involved in such interaction may facilitate efforts to decrease the risk of contamination and increase fresh food safety. Here, we applied Salmonella genome site-directed mutagenesis, adhesion assays, protein-protein interactions, and biophysics methods based on surface plasmon resonance to unravel the role of FimH adhesin in interaction with spinach leaves. We show that FimH is at least partially responsible for Salmonella binding to spinach leaves, and this interaction occurs in a mannose-independent manner. Importantly, we identified a potential FimH receptor as endo-1,3-ß-d-Glucanase and found that this interaction is strong and specific, with a dissociation constant in the nanomolar range. This research advances our comprehension of Salmonella's interactions with plant surfaces, offering insights that can aid in minimizing contamination risks and improving the safety of fresh, unprocessed foods.


Asunto(s)
Manosa , Salmonella typhimurium , Salmonella typhimurium/genética , Manosa/metabolismo , Spinacia oleracea , Proteínas Fimbrias/genética , Proteínas Fimbrias/química , Proteínas Fimbrias/metabolismo , Adhesinas Bacterianas/genética , Adhesión Bacteriana/genética
7.
J Biol Chem ; 300(6): 107329, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679328

RESUMEN

The biphasic assembly of Gram-positive pili begins with the covalent polymerization of distinct pilins catalyzed by a pilus-specific sortase, followed by the cell wall anchoring of the resulting polymers mediated by the housekeeping sortase. In Actinomyces oris, the pilus-specific sortase SrtC2 not only polymerizes FimA pilins to assemble type 2 fimbriae with CafA at the tip, but it can also act as the anchoring sortase, linking both FimA polymers and SrtC1-catalyzed FimP polymers (type 1 fimbriae) to peptidoglycan when the housekeeping sortase SrtA is inactive. To date, the structure-function determinants governing the unique substrate specificity and dual enzymatic activity of SrtC2 have not been illuminated. Here, we present the crystal structure of SrtC2 solved to 2.10-Å resolution. SrtC2 harbors a canonical sortase fold and a lid typical for class C sortases and additional features specific to SrtC2. Structural, biochemical, and mutational analyses of SrtC2 reveal that the extended lid of SrtC2 modulates its dual activity. Specifically, we demonstrate that the polymerizing activity of SrtC2 is still maintained by alanine-substitution, partial deletion, and replacement of the SrtC2 lid with the SrtC1 lid. Strikingly, pilus incorporation of CafA is significantly reduced by these mutations, leading to compromised polymicrobial interactions mediated by CafA. In a srtA mutant, the partial deletion of the SrtC2 lid reduces surface anchoring of FimP polymers, and the lid-swapping mutation enhances this process, while both mutations diminish surface anchoring of FimA pili. Evidently, the extended lid of SrtC2 enables the enzyme the cell wall-anchoring activity in a substrate-selective fashion.


Asunto(s)
Aminoaciltransferasas , Proteínas Bacterianas , Cisteína Endopeptidasas , Proteínas Fimbrias , Fimbrias Bacterianas , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Aminoaciltransferasas/metabolismo , Aminoaciltransferasas/genética , Aminoaciltransferasas/química , Fimbrias Bacterianas/metabolismo , Fimbrias Bacterianas/genética , Proteínas Fimbrias/metabolismo , Proteínas Fimbrias/química , Proteínas Fimbrias/genética , Cristalografía por Rayos X , Actinomyces/metabolismo , Actinomyces/enzimología , Especificidad por Sustrato , Modelos Moleculares
8.
Proteins ; 92(1): 117-133, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37700555

RESUMEN

The bacterial adhesin FimH is a model for the study of protein allostery because its structure has been resolved in multiple configurations, including the active and the inactive state. FimH consists of a pilin domain (PD) that anchors it to the rest of the fimbria and an allosterically regulated lectin domain (LD) that binds mannose on the surface of infected cells. Under normal conditions, the two domains are docked to each other and LD binds mannose weakly. However, in the presence of tensile force generated by shear the domains separate and conformational changes propagate across LD resulting in a stronger bond to mannose. Recently, the crystallographic structure of a variant of FimH has been resolved, called FimH FocH , where PD contains 10 mutations near the inter-domain interface. Although the X-ray structures of FimH and FimH FocH are almost identical, experimental evidence shows that FimH FocH is activated even in the absence of shear. Here, molecular dynamics simulations combined with the Jarzynski equality were used to investigate the discrepancy between the crystallographic structures and the functional assays. The results indicate that the free energy barrier of the unbinding process between LD and PD is drastically reduced in FimH FocH . Rupture of inter-domain hydrogen bonds involving R166 constitutes a rate limiting step of the domain separation process and occurs more readily in FimH FocH than FimH. In conclusion, the mutations in FimH FocH shift the equilibrium toward an equal occupancy of bound and unbound states for LD and PD by reducing a rate limiting step.


Asunto(s)
Manosa , Simulación de Dinámica Molecular , Manosa/química , Regulación Alostérica , Adhesinas de Escherichia coli/química , Escherichia coli/genética , Proteínas Fimbrias/química , Lectinas/metabolismo
9.
Biopolymers ; 115(1): e23539, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37227047

RESUMEN

Many species of pathogenic gram-positive bacteria display covalently crosslinked protein polymers (called pili or fimbriae) that mediate microbial adhesion to host tissues. These structures are assembled by pilus-specific sortase enzymes that join the pilin components together via lysine-isopeptide bonds. The archetypal SpaA pilus from Corynebacterium diphtheriae is built by the Cd SrtA pilus-specific sortase, which crosslinks lysine residues within the SpaA and SpaB pilins to build the shaft and base of the pilus, respectively. Here, we show that Cd SrtA crosslinks SpaB to SpaA via a K139(SpaB)-T494(SpaA) lysine-isopeptide bond. Despite sharing only limited sequence homology, an NMR structure of SpaB reveals striking similarities with the N-terminal domain of SpaA (N SpaA) that is also crosslinked by Cd SrtA. In particular, both pilins contain similarly positioned reactive lysine residues and adjacent disordered AB loops that are predicted to be involved in the recently proposed "latch" mechanism of isopeptide bond formation. Competition experiments using an inactive SpaB variant and additional NMR studies suggest that SpaB terminates SpaA polymerization by outcompeting N SpaA for access to a shared thioester enzyme-substrate reaction intermediate.


Asunto(s)
Aminoaciltransferasas , Corynebacterium diphtheriae , Proteínas Fimbrias/química , Proteínas Fimbrias/metabolismo , Corynebacterium diphtheriae/metabolismo , Proteínas Bacterianas/metabolismo , Lisina , Cadmio/metabolismo , Aminoaciltransferasas/metabolismo
10.
Nat Commun ; 14(1): 7143, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932265

RESUMEN

Type 4 pili (T4P) are important virulence factors, which belong to a superfamily of nanomachines ubiquitous in prokaryotes, called type 4 filaments (T4F). T4F are defined as helical polymers of type 4 pilins. Recent advances in cryo-electron microscopy (cryo-EM) led to structures of several T4F, revealing that the long N-terminal α-helix (α1) - the trademark of pilins - packs in the centre of the filaments to form a hydrophobic core. In diderm bacteria - all available bacterial T4F structures are from diderm species - a portion of α1 is melted (unfolded). Here we report that this architecture is conserved in phylogenetically distant monoderm species by determining the structure of Streptococcus sanguinis T4P. Our 3.7 Å resolution cryo-EM structure of S. sanguinis heteropolymeric T4P and the resulting full atomic model including all minor pilins highlight universal features of bacterial T4F and have widespread implications in understanding T4F biology.


Asunto(s)
Proteínas Fimbrias , Fimbrias Bacterianas , Proteínas Fimbrias/química , Microscopía por Crioelectrón/métodos , Fimbrias Bacterianas/química , Bacterias , Polímeros
11.
Nat Commun ; 14(1): 7718, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001074

RESUMEN

Adhesive type 1 pili from uropathogenic Escherichia coli strains are filamentous, supramolecular protein complexes consisting of a short tip fibrillum and a long, helical rod formed by up to several thousand copies of the major pilus subunit FimA. Here, we reconstituted the entire type 1 pilus rod assembly reaction in vitro, using all constituent protein subunits in the presence of the assembly platform FimD, and identified the so-far uncharacterized subunit FimI as an irreversible assembly terminator. We provide a complete, quantitative model of pilus rod assembly kinetics based on the measured rate constants of FimD-catalyzed subunit incorporation. The model reliably predicts the length distribution of assembled pilus rods as a function of the ratio between FimI and the main pilus subunit FimA and is fully consistent with the length distribution of membrane-anchored pili assembled in vivo. The results show that the natural length distribution of adhesive pili formed via the chaperone-usher pathway results from a stochastic chain termination reaction. In addition, we demonstrate that FimI contributes to anchoring the pilus to the outer membrane and report the crystal structures of (i) FimI in complex with the assembly chaperone FimC, (ii) the FimI-FimC complex bound to the N-terminal domain of FimD, and (iii) a ternary complex between FimI, FimA and FimC that provides structural insights on pilus assembly termination and pilus anchoring by FimI.


Asunto(s)
Proteínas de Escherichia coli , Fimbrias Bacterianas , Fimbrias Bacterianas/metabolismo , Proteínas de Escherichia coli/química , Proteínas Fimbrias/genética , Proteínas Fimbrias/química , Escherichia coli/genética , Escherichia coli/metabolismo , Chaperonas Moleculares/metabolismo
12.
Proc Natl Acad Sci U S A ; 120(49): e2316668120, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38011558

RESUMEN

Type IV pili (T4P) are ubiquitous in both bacteria and archaea. They are polymers of the major pilin protein, which has an extended and protruding N-terminal helix, α1, and a globular C-terminal domain. Cryo-EM structures have revealed key differences between the bacterial and archaeal T4P in their C-terminal domain structure and in the packing and continuity of α1. This segment forms a continuous α-helix in archaeal T4P but is partially melted in all published bacterial T4P structures due to a conserved helix breaking proline at position 22. The tad (tight adhesion) T4P are found in both bacteria and archaea and are thought to have been acquired by bacteria through horizontal transfer from archaea. Tad pilins are unique among the T4 pilins, being only 40 to 60 residues in length and entirely lacking a C-terminal domain. They also lack the Pro22 found in all high-resolution bacterial T4P structures. We show using cryo-EM that the bacterial tad pilus from Caulobacter crescentus is composed of continuous helical subunits that, like the archaeal pilins, lack the melted portion seen in other bacterial T4P and share the packing arrangement of the archaeal T4P. We further show that a bacterial T4P, the Vibrio cholerae toxin coregulated pilus, which lacks Pro22 but is not in the tad family, has a continuous N-terminal α-helix, yet its α1 s are arranged similar to those in other bacterial T4P. Our results highlight the role of Pro22 in helix melting and support an evolutionary relationship between tad and archaeal T4P.


Asunto(s)
Proteínas Fimbrias , Fimbrias Bacterianas , Proteínas Fimbrias/genética , Proteínas Fimbrias/química , Fimbrias Bacterianas/metabolismo , Archaea/genética , Archaea/metabolismo , Bacterias/metabolismo
13.
Extremophiles ; 27(3): 31, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848738

RESUMEN

There are few biophysical studies or structural characterizations of the type IV pilin system of extremophile bacteria, such as the acidophilic Acidithiobacillus thiooxidans. We set out to analyze their pili-comprising proteins, pilins, because these extracellular proteins are in constant interaction with protons of the acidic medium in which At. thiooxidans grows. We used the web server Operon Mapper to analyze and identify the cluster codified by the minor pilin of At. thiooxidans. In addition, we carried an in-silico characterization of such pilins using the VL-XT algorithm of PONDR® server. Our results showed that structural disorder prevails more in pilins of At. thiooxidans than in non-acidophilic bacteria. Further computational characterization showed that the pilins of At. thiooxidans are significantly enriched in hydroxy (serine and threonine) and amide (glutamine and asparagine) residues, and significantly reduced in charged residues (aspartic acid, glutamic acid, arginine and lysine). Similar results were obtained when comparing pilins from other Acidithiobacillus and other acidophilic bacteria from another genus versus neutrophilic bacteria, suggesting that these properties are intrinsic to pilins from acidic environments, most likely by maintaining solubility and stability in harsh conditions. These results give guidelines for the application of extracellular proteins of acidophiles in protein engineering.


Asunto(s)
Acidithiobacillus , Proteínas Fimbrias , Proteínas Fimbrias/genética , Proteínas Fimbrias/química , Proteínas Fimbrias/metabolismo , Acidithiobacillus thiooxidans/genética , Acidithiobacillus thiooxidans/metabolismo , Aminoácidos/metabolismo , Acidithiobacillus/genética , Acidithiobacillus/metabolismo , Ácidos
14.
Ther Innov Regul Sci ; 57(6): 1153-1166, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37578736

RESUMEN

The nature of alpha-D-mannose-natural aldohexose sugar, C-2 glucose epimer, whose intended use is for preventing urinary tract infections-in the interaction with E. coli is addressed in order to drive the issue of its regulatory classification as a medicinal product or medical device. PRISMA systematic review approach was applied; Delphi Panel method was used to target consensus on statements retrieved from evidence. Based on regulatory definitions and research evidence, the mechanism of D-mannose does not involve a metabolic or immunological action while there is uncertainty regarding the pharmacological action. Specific interaction between the product and the bacteria within the body occurs, but its nature is inert: it does not induce a direct response activating or inhibiting body processes. Moreover, the action of D-mannose takes place, even if inside the bladder, outside the epithelium on bacteria that have not yet invaded the urothelial tissue. Therefore, its mechanism of action is not directed to host structures but to structures (bacteria) external to the host's tissues. On the basis of current regulation, the uncertainty as regard a pharmacological action of alpha-D-mannose makes possible its medical device classification: new regulations and legal judgments can add further considerations. From a pharmacological perspective, research is driven versus synthetic mannosides: no further considerations are expected on alpha-D-mannose.


Asunto(s)
Escherichia coli , Manosa , Adhesinas de Escherichia coli/química , Adhesinas de Escherichia coli/metabolismo , Consenso , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas Fimbrias/química , Proteínas Fimbrias/metabolismo , Manosa/química , Manosa/metabolismo , Revisiones Sistemáticas como Asunto
15.
Int J Biol Macromol ; 243: 125183, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37276901

RESUMEN

Dental plaque is a complex microbial biofilm community of many species and a major cause of oral infections and infectious endocarditis. Plaque development begins when primary colonizers attach to oral tissues and undergo coaggregation. Primary colonizers facilitate cellular attachment and inter-bacterial interactions through sortase-dependent pili (or fimbriae) extending out from their cell surface. Consequently, the sortase enzyme is viewed as a potential drug target for controlling biofilm formation and avoiding infection. Streptococcus sanguinis is a primary colonizing bacterium whose pili consist of three different pilin subunits that are assembled together by the pilus-specific (C-type) SsaSrtC sortase. Here, we report on the crystal structure determination of the recombinant wild-type and active-site mutant forms of SsaSrtC. Interestingly, the SsaSrtC structure exhibits an open-lid conformation, although a conserved DPX motif is lacking in the lid. Based on molecular docking and structural analysis, we identified the substrate-binding residues essential for pilin recognition and pilus assembly. We also demonstrated that while recombinant SsaSrtC is enzymatically active toward the five-residue LPNTG sorting motif peptide of the pilins, this activity is significantly reduced by the presence of zinc. We further showed that rutin and α-crocin are potential candidate inhibitors of the SsaSrtC sortase via structure-based virtual screening and inhibition assays. The structural knowledge gained from our study will provide the means to develop new approaches that target pilus-mediated attachment, thereby preventing oral biofilm growth and infection.


Asunto(s)
Aminoaciltransferasas , Proteínas Fimbrias , Proteínas Fimbrias/genética , Proteínas Fimbrias/química , Proteínas Fimbrias/metabolismo , Proteínas Bacterianas/química , Streptococcus sanguis/metabolismo , Simulación del Acoplamiento Molecular , Aminoaciltransferasas/química
16.
Sci Rep ; 13(1): 8843, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37258594

RESUMEN

Bacterial pilin nanowires are protein complexes, suggested to possess electroactive capabilities forming part of the cells' bioenergetic programming. Their role is thought to be linked to facilitating electron transfer between cells and the external environment to permit metabolism and cell-to-cell communication. There is a significant debate, with varying hypotheses as to the nature of the proteins currently lying between type-IV pilin-based nanowires and polymerised cytochrome-based filaments. Importantly, to date, there is a very limited structure-function analysis of these structures within whole bacteria. In this work, we engineered Cupriavidus necator H16, a model autotrophic organism to express differing aromatic modifications of type-IV pilus proteins to establish structure-function relationships on conductivity and the effects this has on pili structure. This was achieved via a combination of high-resolution PeakForce tunnelling atomic force microscopy (PeakForce TUNA™) technology, alongside conventional electrochemical approaches enabling the elucidation of conductive nanowires emanating from whole bacterial cells. This work is the first example of functional type-IV pili protein nanowires produced under aerobic conditions using a Cupriavidus necator chassis. This work has far-reaching consequences in understanding the basis of bio-electrical communication between cells and with their external environment.


Asunto(s)
Proteínas Fimbrias , Nanocables , Proteínas Fimbrias/genética , Proteínas Fimbrias/química , Transporte de Electrón , Nanocables/química , Electrones , Fimbrias Bacterianas/metabolismo , Bacterias/metabolismo
17.
FEBS Lett ; 597(10): 1345-1354, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37071018

RESUMEN

Sortase-mediated pili are flexible rod proteins composed of major and minor/tip pilins, playing important roles in the initial adhesion of bacterial cells to host tissues. The pilus shaft is formed by covalent polymerization of major pilins, and the minor/tip pilin is covalently attached to the tip of the shaft involved in adhesion to the host cell. The Gram-positive bacterium Clostridium perfringens has a major pilin, and a minor/tip pilin (CppB) with the collagen-binding motif. Here, we report X-ray structures of CppB collagen-binding domains, collagen-binding assays and mutagenesis analysis, demonstrating that CppB collagen-binding domains adopt an L-shaped structure in open form, and that a small ß-sheet unique to CppB provides a scaffold for a favourable binding site for collagen peptide.


Asunto(s)
Clostridium perfringens , Proteínas Fimbrias , Proteínas Fimbrias/análisis , Proteínas Fimbrias/química , Proteínas Fimbrias/metabolismo , Clostridium perfringens/metabolismo , Fimbrias Bacterianas/química , Dominios Proteicos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
18.
Chembiochem ; 24(15): e202300099, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36999435

RESUMEN

The type 2 secretion system (T2SS) is a bacterial nanomachine composed of an inner membrane assembly platform, an outer membrane pore and a dynamic endopilus. T2SS endopili are organized into a homo-multimeric body formed by the major pilin capped by a heterocomplex of four minor pilins. The first model of the T2SS endopilus was recently released, even if structural dynamics insights are still required to decipher the role of each protein in the full tetrameric complex. Here, we applied continuous-wave and pulse EPR spectroscopy using nitroxide-gadolinium orthogonal labelling strategies to investigate the hetero-oligomeric assembly of the minor pilins. Overall, our data are in line with the endopilus model even if they evidenced conformational flexibility and alternative orientations at local scale of specific regions of minor pilins. The integration of different labelling strategies and EPR experiments demonstrates the pertinence of this approach to investigate protein-protein interactions in such multiprotein heterocomplexes.


Asunto(s)
Sistemas de Secreción Tipo II , Proteínas Fimbrias/química , Proteínas Fimbrias/metabolismo , Espectroscopía de Resonancia por Spin del Electrón/métodos , Proteínas , Marcadores de Spin
19.
Structure ; 31(5): 529-540.e7, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37001523

RESUMEN

Bacterial adhesion pili are key virulence factors that mediate host-pathogen interactions in diverse epithelial environments. Deploying a multimodal approach, we probed the structural basis underpinning the biophysical properties of pili originating from enterotoxigenic (ETEC) and uropathogenic bacteria. Using cryo-electron microscopy we solved the structures of three vaccine target pili from ETEC bacteria, CFA/I, CS17, and CS20. Pairing these and previous pilus structures with force spectroscopy and steered molecular dynamics simulations, we find a strong correlation between subunit-subunit interaction energies and the force required for pilus unwinding, irrespective of genetic similarity. Pili integrate three structural solutions for stabilizing their assemblies: layer-to-layer interactions, N-terminal interactions to distant subunits, and extended loop interactions from adjacent subunits. Tuning of these structural solutions alters the biophysical properties of pili and promotes the superelastic behavior that is essential for sustained bacterial attachment.


Asunto(s)
Adhesión Bacteriana , Proteínas Fimbrias , Proteínas Fimbrias/química , Microscopía por Crioelectrón , Fimbrias Bacterianas/química
20.
Proc Natl Acad Sci U S A ; 120(3): e2216237120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36626560

RESUMEN

Type 4 filaments (T4F)-of which type 4 pili (T4P) are the archetype-are a superfamily of nanomachines nearly ubiquitous in prokaryotes. T4F are polymers of one major pilin, which also contain minor pilins whose roles are often poorly understood. Here, we complete the structure/function analysis of the full set of T4P pilins in the opportunistic bacterial pathogen Streptococcus sanguinis. We determined the structure of the minor pilin PilA, which is unexpectedly similar to one of the subunits of a tip-located complex of four minor pilins, widely conserved in T4F. We found that PilA interacts and dramatically stabilizes the minor pilin PilC. We determined the structure of PilC, showing that it is a modular pilin with a lectin module binding a subset of glycans prevalent in the human glycome, the host of S. sanguinis. Altogether, our findings support a model whereby the minor pilins in S. sanguinis T4P form a tip-located complex promoting adhesion to various host receptors. This has general implications for T4F.


Asunto(s)
Proteínas Fimbrias , Streptococcus sanguis , Humanos , Proteínas Fimbrias/genética , Proteínas Fimbrias/química , Fimbrias Bacterianas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA