Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Anticancer Drugs ; 31(3): 241-250, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31633500

RESUMEN

Trastuzumab, a humanized anti-human epidermal growth factor receptor 2 antibody drug, is the first-line therapy for human epidermal growth factor receptor 2-positive breast and gastric cancer. For breast cancer, the benefit of continuous treatment with trastuzumab after it becomes refractory to first-line therapy has been demonstrated. However, it is unclear whether trastuzumab can show similar efficacy as a second-line treatment for gastric cancer. Here, we report that trastuzumab in combination with paclitaxel exhibits increased antitumor efficacy even for trastuzumab-resistant xenografted tumors. We derived the trastuzumab-resistant models from previously established human epidermal growth factor receptor 2-positive gastric cancer patient-derived cells. Human epidermal growth factor receptor 2 expression, PIK3CA mutation, and phosphatase and tensin homolog expression in these resistant models was equivalent to those in the trastuzumab-sensitive parental model, whereas cyclin-dependent kinase inhibitors, such as p16, p15, and p21, were downregulated. Trastuzumab in combination with paclitaxel enhanced antitumor activity in both the sensitive and resistant models. In the trastuzumab-sensitive model, the combination of trastuzumab and paclitaxel resulted in suppression of the AKT-p27-retinoblastoma protein pathway and induction of apoptosis. Although this combination did not suppress retinoblastoma protein phosphorylation in the trastuzumab-resistant model, it did markedly decrease epidermal growth factor receptor and human epidermal growth factor receptor 2 phosphorylation and further enhance paclitaxel-mediated apoptosis. These results suggested that trastuzumab in combination with paclitaxel can still exert more potent antitumor efficacy than each agent alone in trastuzumab-resistant models, providing evidence that trastuzumab remains beneficial in the treatment of trastuzumab-resistant tumors.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis/efectos de los fármacos , Receptor ErbB-2/análisis , Neoplasias Gástricas/tratamiento farmacológico , Animales , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase I/genética , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/fisiología , Resistencia a Antineoplásicos , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Paclitaxel/administración & dosificación , Paclitaxel/farmacología , Neoplasias Gástricas/química , Neoplasias Gástricas/patología , Trastuzumab/administración & dosificación , Trastuzumab/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Biomed Pharmacother ; 96: 1109-1118, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29196103

RESUMEN

Cyclin-dependent kinase inhibitor 3 (CDKN3) is proved to be associated with the progressing of many cancers. Whereas, its biological effects on prostate cancer (PC) are less understood. To investigate the functional mechanism of CDKN3 in PC, we examined the expression of CDKN3 in PC tissues and analyzed the disease free survival time of patients. We then transfected LNCaP and PC3 cells with siRNA-CDKN3 to silence CDKN3, and transfected 22RV1 and VCaP cells with full length CDKN3 cDNA for CDKN3 over-expression. Cell growth of these transfected cells were analyzed using CCK-8 assay. And transfected LNCaP and PC3 cells were further submitted to cell cycle, apoptosis, invasion and endogenous protein expression assays. We found that CDKN3 was highly expressed in PC and negatively correlated with disease relapse. And CDKN3 positively control the cell proliferation in prostate carcinoma cell lines. Knockdown of CDKN3 significantly promoted G1 phase arrest, elevated apoptosis rates, and suppressed cell invasion in both LNCaP and PC3 cells. Moreover, in vivo data showed that knockdown of CDKN3 expression dramatically inhibited the PC3 tumor growth in nude mouse model. Gene set enrichment analysis (GSEA) showed that cell cycle and DNA replication signaling were related with elevated CDKN3 expression. And results of western blot showed that the depletion of CDKN3 down-regulated the expression levels of cell cycle- and DNA replication-related proteins. In conclusion, our results highlight the importance of CDKN3 in PC and provide new insights into diagnostics and therapeutics of the PC.


Asunto(s)
Ciclo Celular/fisiología , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/fisiología , Replicación del ADN/fisiología , Fosfatasas de Especificidad Dual/fisiología , Neoplasias de la Próstata/metabolismo , Transducción de Señal/fisiología , Animales , Línea Celular Tumoral , Supervivencia sin Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias de la Próstata/patología , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
3.
Cell Death Differ ; 23(3): 430-41, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26292757

RESUMEN

Cell-cycle inhibitors of the Ink4 and Cip/Kip families are involved in cellular senescence and tumor suppression. These inhibitors are individually dispensable for the cell cycle and inactivation of specific family members results in increased proliferation and enhanced susceptibility to tumor development. We have now analyzed the consequences of eliminating a substantial part of the cell-cycle inhibitory activity in the cell by generating a mouse model, which combines the absence of both p21(Cip1) and p27(Kip1) proteins with the endogenous expression of a Cdk4 R24C mutant insensitive to Ink4 inhibitors. Pairwise combination of Cdk4 R24C, p21-null and p27-null alleles results in frequent hyperplasias and tumors, mainly in cells of endocrine origin such as pituitary cells and in mesenchymal tissues. Interestingly, complete abrogation of p21(Cip1) and p27(Kip1) in Cdk4 R24C mutant mice results in a different phenotype characterized by perinatal death accompanied by general hypoplasia in most tissues. This phenotype correlates with increased replicative stress in developing tissues such as the nervous system and subsequent apoptotic cell death. Partial inhibition of Cdk4/6 rescues replicative stress signaling as well as p53 induction in the absence of cell-cycle inhibitors. We conclude that one of the major physiological activities of cell-cycle inhibitors is to prevent replicative stress during development.


Asunto(s)
Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/fisiología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/fisiología , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/fisiología , Replicación del ADN , Animales , Autorrenovación de las Células , Quinasa 4 Dependiente de la Ciclina/fisiología , Genes Letales , Hemangiosarcoma/genética , Ratones , Ratones Noqueados , Células-Madre Neurales/fisiología , Neoplasias Hipofisarias/genética , Estrés Fisiológico
4.
J Physiol ; 594(17): 4805-13, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-26670741

RESUMEN

Long-lived and self-renewing adult stem cells (SCs) are essential for homeostasis in a wide range of tissues and can include both rapidly cycling and quiescent (q)SC populations. Rapidly cycling SCs function principally during normal tissue maintenance and are highly sensitive to stress, whereas qSCs exit from their quiescent state in response to homeostatic imbalance and regenerative pressure. The regulatory mechanisms underlying the quiescent state include factors essential for cell cycle control, stress response and survival pathways, developmental signalling pathways, and post-transcriptional modulation. Here, we review these regulatory mechanisms citing observations from the intestine and other self-renewing tissues.


Asunto(s)
Células Madre Adultas/fisiología , Intestinos/citología , Animales , Autofagia , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/fisiología , Proteínas de Unión al ADN/fisiología , Fosfohidrolasa PTEN/fisiología , Proteínas Quinasas/fisiología
5.
Age (Dordr) ; 37(2): 27, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25787341

RESUMEN

Cellular senescence was first reported in human fibroblasts as a state of stable in vitro growth arrest following extended culture. Since that initial observation, a variety of other phenotypic characteristics have been shown to co-associate with irreversible cell cycle exit in senescent fibroblasts. These include (1) a pro-inflammatory secretory response, (2) the up-regulation of immune ligands, (3) altered responses to apoptotic stimuli and (4) promiscuous gene expression (stochastic activation of genes possibly as a result of chromatin remodeling). Many features associated with senescent fibroblasts appear to promote conversion to an immunogenic phenotype that facilitates self-elimination by the immune system. Pro-inflammatory cytokines can attract and activate immune cells, the presentation of membrane bound immune ligands allows for specific recognition and promiscuous gene expression may function to generate an array of tissue restricted proteins that could subsequently be processed into peptides for presentation via MHC molecules. However, the phenotypes of senescent cells from different tissues and species are often assumed to be broadly similar to those seen in senescent human fibroblasts, but the data show a more complex picture in which the growth arrest mechanism, tissue of origin and species can all radically modulate this basic pattern. Furthermore, well-established triggers of cell senescence are often associated with a DNA damage response (DDR), but this may not be a universal feature of senescent cells. As such, we discuss the role of DNA damage in regulating an immunogenic response in senescent cells, in addition to discussing less established "atypical" senescent states that may occur independent of DNA damage.


Asunto(s)
Senescencia Celular/fisiología , Daño del ADN/fisiología , Puntos de Control del Ciclo Celular/fisiología , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/fisiología , Expresión Génica/fisiología , Humanos , Subfamilia K de Receptores Similares a Lectina de Células NK , Fenotipo , Regulación hacia Arriba/fisiología
6.
Nucleic Acids Res ; 42(11): 7057-68, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24753426

RESUMEN

Robustness and completion of DNA replication rely on redundant DNA replication origins. Reduced efficiency of origin licensing is proposed to contribute to chromosome instability in CDK-deregulated cell cycles, a frequent alteration in oncogenesis. However, the mechanism by which this instability occurs is largely unknown. Current models suggest that limited origin numbers would reduce fork density favouring chromosome rearrangements, but experimental support in CDK-deregulated cells is lacking. We have investigated the pattern of origin firing efficiency in budding yeast cells lacking the CDK regulators Cdh1 and Sic1. We show that each regulator is required for efficient origin activity, and that both cooperate non-redundantly. Notably, origins are differentially sensitive to CDK deregulation. Origin sensitivity is independent on normal origin efficiency, firing timing or chromosomal location. Interestingly, at a chromosome arm, there is a shortage of origin firing involving active and dormant origins, and the extent of shortage correlates with the severity of CDK deregulation and chromosome instability. We therefore propose that CDK deregulation in G1 phase compromises origin redundancy by decreasing the number of active and dormant origins, leading to origin shortage and increased chromosome instability.


Asunto(s)
Proteínas Cdh1/fisiología , Inestabilidad Cromosómica , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/fisiología , Replicación del ADN , Origen de Réplica , Proteínas de Saccharomyces cerevisiae/fisiología , Proteínas Cdh1/genética , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/genética , Momento de Replicación del ADN , Eliminación de Gen , Dosificación de Gen , Proteínas de Saccharomyces cerevisiae/genética
7.
Plant Cell ; 26(1): 296-309, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24399300

RESUMEN

Whereas our knowledge about the diverse pathways aiding DNA repair upon genome damage is steadily increasing, little is known about the molecular players that adjust the plant cell cycle in response to DNA stress. By a meta-analysis of DNA stress microarray data sets, three family members of the SIAMESE/SIAMESE-RELATED (SIM/SMR) class of cyclin-dependent kinase inhibitors were discovered that react strongly to genotoxicity. Transcriptional reporter constructs corroborated specific and strong activation of the three SIM/SMR genes in the meristems upon DNA stress, whereas overexpression analysis confirmed their cell cycle inhibitory potential. In agreement with being checkpoint regulators, SMR5 and SMR7 knockout plants displayed an impaired checkpoint in leaf cells upon treatment with the replication inhibitory drug hydroxyurea (HU). Surprisingly, HU-induced SMR5/SMR7 expression depends on ATAXIA TELANGIECTASIA MUTATED (ATM) and SUPPRESSOR OF GAMMA RESPONSE1, rather than on the anticipated replication stress-activated ATM AND RAD3-RELATED kinase. This apparent discrepancy was explained by demonstrating that, in addition to its effect on replication, HU triggers the formation of reactive oxygen species (ROS). ROS-dependent transcriptional activation of the SMR genes was confirmed by different ROS-inducing conditions, including high-light treatment. We conclude that the identified SMR genes are part of a signaling cascade that induces a cell cycle checkpoint in response to ROS-induced DNA damage.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/genética , Proteínas de Ciclo Celular/fisiología , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/fisiología , Daño del ADN , Especies Reactivas de Oxígeno/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/genética , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Hidroxiurea/farmacología , Estrés Oxidativo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología
8.
Development ; 140(15): 3079-93, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23861057

RESUMEN

Cyclin-dependent kinases (Cdks) are serine/threonine kinases and their catalytic activities are modulated by interactions with cyclins and Cdk inhibitors (CKIs). Close cooperation between this trio is necessary for ensuring orderly progression through the cell cycle. In addition to their well-established function in cell cycle control, it is becoming increasingly apparent that mammalian Cdks, cyclins and CKIs play indispensable roles in processes such as transcription, epigenetic regulation, metabolism, stem cell self-renewal, neuronal functions and spermatogenesis. Even more remarkably, they can accomplish some of these tasks individually, without the need for Cdk/cyclin complex formation or kinase activity. In this Review, we discuss the latest revelations about Cdks, cyclins and CKIs with the goal of showcasing their functional diversity beyond cell cycle regulation and their impact on development and disease in mammals.


Asunto(s)
Puntos de Control del Ciclo Celular/fisiología , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/fisiología , Quinasas Ciclina-Dependientes/fisiología , Ciclinas/fisiología , Secuencia de Aminoácidos , Animales , Puntos de Control del Ciclo Celular/genética , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/genética , Quinasas Ciclina-Dependientes/química , Quinasas Ciclina-Dependientes/genética , Ciclinas/genética , Reparación del ADN , Epigénesis Genética , Humanos , Masculino , Datos de Secuencia Molecular , Neuronas/fisiología , Proteolisis , Espermatogénesis , Células Madre/citología , Células Madre/metabolismo , Transcripción Genética
9.
J Cell Biol ; 201(7): 997-1012, 2013 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-23775190

RESUMEN

Mitosis is controlled by a network of kinases and phosphatases. We screened a library of small interfering RNAs against a genome-wide set of phosphatases to comprehensively evaluate the role of human phosphatases in mitosis. We found four candidate spindle checkpoint phosphatases, including the tumor suppressor CDKN3. We show that CDKN3 is essential for normal mitosis and G1/S transition. We demonstrate that subcellular localization of CDKN3 changes throughout the cell cycle. We show that CDKN3 dephosphorylates threonine-161 of CDC2 during mitotic exit and we visualize CDC2(pThr-161) at kinetochores and centrosomes in early mitosis. We performed a phosphokinome-wide mass spectrometry screen to find effectors of the CDKN3-CDC2 signaling axis. We found that one of the identified downstream phosphotargets, CKß phosphorylated at serine 209, localizes to mitotic centrosomes and controls the spindle checkpoint. Finally, we show that CDKN3 protein is down-regulated in brain tumors. Our findings indicate that CDKN3 controls mitosis through the CDC2 signaling axis. These results have implications for targeted anticancer therapeutics.


Asunto(s)
Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/fisiología , Fosfatasas de Especificidad Dual/fisiología , Mitosis/fisiología , Proteína Quinasa CDC2 , Centrosoma/metabolismo , Centrosoma/ultraestructura , Ciclina B/metabolismo , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/análisis , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/metabolismo , Quinasas Ciclina-Dependientes , Fosfatasas de Especificidad Dual/análisis , Fosfatasas de Especificidad Dual/metabolismo , Células HeLa , Humanos , Cinetocoros/metabolismo , Cinetocoros/ultraestructura , Espectrometría de Masas , Mitosis/genética , Fosforilación , Interferencia de ARN , Transducción de Señal
10.
Plant J ; 75(5): 823-35, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23662698

RESUMEN

Anther infertility under high temperature (HT) conditions is a critical factor contributing to yield loss in cotton (Gossypium hirsutum). Using large-scale expression profile sequencing, we studied the effect of HT on cotton anther development. Our analysis revealed that altered carbohydrate metabolism or disrupted tapetal programmed cell death (PCD) underlie anther sterility. Expression of the Gossypium hirsutum casein kinase I (GhCKI) gene, which encodes a homolog of casein kinase I (CKI), was induced in an HT-sensitive cotton line after exposure to HT. As mammalian homologs of GhCKI are involved in inactivation of glycogen synthase and the regulation of apoptosis, GhCKI may be considered a target gene for improving anther fertility under HT conditions. Our studies suggest that GhCKI exhibits starch synthase kinase activity, increases glucose content in early-stage buds and activates the accumulation of abscisic acid, thereby disturbing the balance of reactive oxygen species and eventually disrupting tapetal PCD, leading to anther abortion or indehiscence. These results indicate that GhCKI may be a key regulator of tapetal PCD and anther dehiscence, with the potential to facilitate regulation of HT tolerance in crops.


Asunto(s)
Apoptosis/genética , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/fisiología , Gossypium/crecimiento & desarrollo , Proteínas de Plantas/fisiología , Almidón Sintasa/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Análisis por Conglomerados , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/genética , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/metabolismo , Flores/citología , Flores/enzimología , Flores/crecimiento & desarrollo , Glucosa/metabolismo , Gossypium/citología , Gossypium/enzimología , Homeostasis , Peróxido de Hidrógeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reproducción/genética , Almidón Sintasa/genética , Estrés Fisiológico , Temperatura
11.
FEBS J ; 279(18): 3386-410, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22356687

RESUMEN

Cellular systems biology aims to uncover design principles that describe the properties of biological networks through interaction of their components in space and time. The cell cycle is a complex system regulated by molecules that are integrated into functional modules to ensure genome integrity and faithful cell division. In budding yeast, cyclin-dependent kinases (Cdk1/Clb) drive cell cycle progression, being activated and inactivated in a precise temporal sequence. In this module, which we refer to as the 'Clb module', different Cdk1/Clb complexes are regulated to generate waves of Clb activity, a functional property of cell cycle control. The inhibitor Sic1 plays a critical role in the Clb module by binding to and blocking Cdk1/Clb activity, ultimately setting the timing of DNA replication and mitosis. Fifteen years of research subsequent to the identification of Sic1 have lead to the development of an integrative approach that addresses its role in regulating the Clb module. Sic1 is an intrinsically disordered protein and achieves its inhibitory function by cooperative binding, where different structural regions stretch on the Cdk1/Clb surface. Moreover, Sic1 promotes S phase entry, facilitating Cdk1/Clb5 nuclear transport, and therefore revealing a double function of inhibitor/activator that rationalizes a mechanism to prevent precocious DNA replication. Interestingly, the investigation of Clb temporal dynamics by mathematical modelling and experimental validation provides evidence that Sic1 acts as a timer to coordinate oscillations of Clb cyclin waves. Here we review these findings, focusing on the design principle underlying the Clb module, which highlights the role of Sic1 in regulating phase-specific Cdk1/Clb activities.


Asunto(s)
Ciclina B/metabolismo , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Ciclo Celular/fisiología , Puntos de Control del Ciclo Celular , Quinasas Ciclina-Dependientes/metabolismo , Fosforilación , Biología de Sistemas
12.
Stem Cells Dev ; 21(10): 1597-603, 2012 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21936707

RESUMEN

Cyclin dependent kinase inhibitors (CDKIs) influence proliferation of hematopoietic progenitor cells (HPCs), but little is known of how they influence proliferative responsiveness of HPCs to colony stimulating factors (CSFs), alone and in combination with other hematopoietically active factors, such as the potent co-stimulating cytokine stem cell factor (SCF), or inhibition by myelosuppressive chemokines. Using mice with deletions in p18(INK4c), p21(CIP1/WAF1), or p27(KIP1) genes, and in mice with double gene deletions for either p18/p21 or p18/p27, we determined effects of absence of these CDKIs and their interactions on functional HPC numbers in vivo, and HPC proliferative responsiveness in vitro. There is a decrease in bone marrow HPC proliferation in p18(-/-) mice commensurate with decreased numbers of HPC, suggesting a positive role for p18 on HPC in vivo, similar to that for p21. These positive effects of p18 dominate negative effects of p27 gene deletion. Moreover, the CDKIs differentially regulate responsiveness of granulocyte macrophage (GM) progenitors to synergistic cell proliferation in response to GM-CSF plus SCF, which is considered important for normal hematopoiesis. Responsiveness of HPCs to inhibition by myelosuppressive chemokines is directly related to the capacity of HPCs to respond to synergistic stimulation, and their cell cycle status. P18(INK4c) gene deletion rescued the loss of chemokine suppression of synergistic proliferation due to deletion of p21(CIP1/WAF1). These findings underscore the complex interplay of cell cycle regulators in HPC, and demonstrate that loss of one can sometimes be compensated by loss of another CDKI in both, a pro- or anti-proliferative context.


Asunto(s)
Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/fisiología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/fisiología , Células Madre Hematopoyéticas/fisiología , Factor de Células Madre/fisiología , Animales , Células de la Médula Ósea/fisiología , Proliferación Celular , Células Cultivadas , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/genética , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/metabolismo , Citocinas/fisiología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Células Progenitoras de Granulocitos y Macrófagos/fisiología , Péptidos y Proteínas de Señalización Intercelular/fisiología , Interleucina-6/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fase S , Bazo/citología , Factor de Células Madre/farmacología
13.
Mol Cell Biol ; 30(21): 5057-70, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20805359

RESUMEN

The cortactin oncoprotein is frequently overexpressed in head and neck squamous cell carcinoma (HNSCC), often due to amplification of the encoding gene (CTTN). While cortactin overexpression enhances invasive potential, recent research indicates that it also promotes cell proliferation, but how cortactin regulates the cell cycle machinery is unclear. In this article we report that stable short hairpin RNA-mediated cortactin knockdown in the 11q13-amplified cell line FaDu led to increased expression of the Cip/Kip cyclin-dependent kinase inhibitors (CDKIs) p21(WAF1/Cip1), p27(Kip1), and p57(Kip2) and inhibition of S-phase entry. These effects were associated with increased binding of p21(WAF1/Cip1) and p27(Kip1) to cyclin D1- and E1-containing complexes and decreased retinoblastoma protein phosphorylation. Cortactin regulated expression of p21(WAF1/Cip1) and p27(Kip1) at the transcriptional and posttranscriptional levels, respectively. The direct roles of p21(WAF1/Cip1), p27(Kip1), and p57(Kip2) downstream of cortactin were confirmed by the transient knockdown of each CDKI by specific small interfering RNAs, which led to partial rescue of cell cycle progression. Interestingly, FaDu cells with reduced cortactin levels also exhibited a significant diminution in RhoA expression and activity, together with decreased expression of Skp2, a critical component of the SCF ubiquitin ligase that targets p27(Kip1) and p57(Kip2) for degradation. Transient knockdown of RhoA in FaDu cells decreased expression of Skp2, enhanced the level of Cip/Kip CDKIs, and attenuated S-phase entry. These findings identify a novel mechanism for regulation of proliferation in 11q13-amplified HNSCC cells, in which overexpressed cortactin acts via RhoA to decrease expression of Cip/Kip CDKIs, and highlight Skp2 as a downstream effector for RhoA in this process.


Asunto(s)
Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/fisiopatología , Ciclo Celular/genética , Ciclo Celular/fisiología , Cortactina/genética , Cortactina/fisiología , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/genética , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/fisiología , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/fisiopatología , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/fisiología , Secuencia de Bases , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Proliferación Celular , Cromosomas Humanos Par 11/genética , Cortactina/antagonistas & inhibidores , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/fisiología , Inhibidor p27 de las Quinasas Dependientes de la Ciclina , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/fisiología , Cartilla de ADN/genética , Amplificación de Genes , Expresión Génica , Técnicas de Silenciamiento del Gen , Neoplasias de Cabeza y Cuello/patología , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/fisiología , ARN Interferente Pequeño/genética
14.
Structure ; 18(4): 494-506, 2010 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-20399186

RESUMEN

Intrinsically disordered proteins can form highly dynamic complexes with partner proteins. One such dynamic complex involves the intrinsically disordered Sic1 with its partner Cdc4 in regulation of yeast cell cycle progression. Phosphorylation of six N-terminal Sic1 sites leads to equilibrium engagement of each phosphorylation site with the primary binding pocket in Cdc4, the substrate recognition subunit of a ubiquitin ligase. ENSEMBLE calculations using experimental nuclear magnetic resonance and small-angle X-ray scattering data reveal significant transient structure in both phosphorylation states of the isolated ensembles (Sic1 and pSic1) that modulates their electrostatic potential, suggesting a structural basis for the proposed strong contribution of electrostatics to binding. A structural model of the dynamic pSic1-Cdc4 complex demonstrates the spatial arrangements in the ubiquitin ligase complex. These results provide a physical picture of a protein that is predominantly disordered in both its free and bound states, enabling aspects of its structure/function relationship to be elucidated.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/fisiología , Proteínas F-Box/fisiología , Proteínas Ligasas SKP Cullina F-box/química , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligasas/fisiología , Proteínas de Ciclo Celular/genética , Cristalografía por Rayos X/métodos , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/genética , Proteínas F-Box/genética , Espectroscopía de Resonancia Magnética , Conformación Molecular , Fosforilación , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Dispersión de Radiación , Electricidad Estática , Relación Estructura-Actividad , Especificidad por Sustrato , Treonina/química , Ubiquitina-Proteína Ligasas/genética
15.
Dev Biol ; 337(1): 134-46, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19854167

RESUMEN

Sensory hair cells and supporting cells of the mammalian cochlea and vestibular (balance) organs exit the cell cycle during embryogenesis and do not proliferate thereafter. Here, we have studied the mechanisms underlying the maintenance of the postmitotic state and the proliferative capacity of these cells. We provide the first evidence of the role of cyclin D1 in cell cycle regulation in these cells. Cyclin D1 expression disappeared from embryonic hair cells as differentiation started. The expression was transiently upregulated in cochlear hair cells early postnatally, paralleling the spatiotemporal pattern of unscheduled cell cycle re-entry of cochlear hair cells from the p19(Ink4d)/p21(Cip1) compound mutant mice. Cyclin D1 misexpression in vitro in neonatal vestibular HCs from these mutant mice triggered S-phase re-entry. Thus, cyclin D1 suppression is important for hair cell's quiescence, together with the maintained expression of cyclin-dependent kinase inhibitors. In contrast to hair cells, cyclin D1 expression was maintained in supporting cells when differentiation started. The expression continued during the neonatal period when supporting cells have been shown to re-enter the cell cycle upon stimulation with exogenous mitogens. Thereafter, the steep decline in supporting cell's proliferative activity paralleled with cyclin D1 downregulation. Thus, cyclin D1 critically contributes to the proliferative plasticity of supporting cells. These data suggest that targeted cyclin D1 induction in supporting cells might be an avenue for proliferative regeneration in the inner ear.


Asunto(s)
Ciclo Celular , Ciclina D1/fisiología , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/fisiología , Oído Interno/embriología , Células Ciliadas Auditivas/citología , Animales , Proliferación Celular , Cóclea/química , Inhibidor p19 de las Quinasas Dependientes de la Ciclina/análisis , Inhibidor p19 de las Quinasas Dependientes de la Ciclina/fisiología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/análisis , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/fisiología , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/análisis , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/fisiología , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/análisis , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/fisiología , Antígeno Ki-67/análisis , Ratones , Transducción de Señal , Proteínas Wnt/fisiología , beta Catenina/fisiología
16.
Cell Cycle ; 8(16): 2613-20, 2009 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-19597327

RESUMEN

Cyclin-dependent kinase inhibitors (CKIs) are major contributors to the decision to enter or exit the cell cycle. The Caenorhabditis elegans genome encodes two CKIs belonging to the Cip/Kip family, cki-1 and cki-2. cki-1 has been shown to act as a canonical negative regulator of cell cycle entry, while the role of cki-2 remains unclear. We identified cki-2 in a genome-wide RNAi screen to reveal genes essential for developmental cell cycle quiescence. Examination of cki-2 knockout animals revealed extra rounds of cell divisions, verifying a role in establishing or maintaining the temporary cell cycle arrest. Despite the overlapping defects, the pathways mediated by cki-1 and cki-2 are discrete since the extra cell phenotype conferred by a putative cki-2(null) mutation is enhanced upon additional loss of cki-1 activity. Moreover, the extra cell division defect of cki-2 is not increased with the additional loss of lin-35 Rb, as is seen with cki-1. Thus, both cki-1 and cki-2 mediate cell cycle quiescence, but our genetic and phenotypic analyses demonstrate that they act within distinct pathways to exert control over the cell cycle machinery.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/embriología , Ciclo Celular/fisiología , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/fisiología , Animales , Animales Modificados Genéticamente , Proteínas de Caenorhabditis elegans/genética , Ciclo Celular/genética , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/genética , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Mutación , Fenotipo , Reacción en Cadena de la Polimerasa , ARN Bacteriano
17.
J Microsc ; 231(2): 234-46, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18778421

RESUMEN

The cell cycle is regulated by the cyclin-dependent kinase (CDK), and CDK inhibitors can bind to CDKs and inhibit their activities. This review examines plant CDK inhibitors, with particular emphasis on their molecular and cellular functions, regulation and cellular localization. In plants, a family of ICK/KRP CDK inhibitors represented by ICK1 is known and another type of CDK inhibitor represented by the SIMESE (SIM) has recently been reported. Considerable understanding has been gained with the ICK/KRP CDK inhibitors. These plant CDK inhibitors share only limited sequence similarity in the C-terminal region with the KIP/CIP family of mammalian CDK inhibitors. The ICK/KRP CDK inhibitors thus provide good tools to understand the basic machinery as well as the unique aspects of the plant cell cycle. The ICK/KRP CDK inhibitors interact with D-type cyclins or A-type CDKs or both. Several functional regions and motifs have been identified in ICK1 for CDK inhibition, nuclear localization and protein instability. Clear evidence shows that ICK/KRP proteins are important for the cell cycle and endoreduplication. Preliminary evidence suggests that they may also be involved in cell differentiation and cell death. Results so far show that plant CDK inhibitors are exclusively localized in the nucleus. The molecular sequences regulating the localization and functional significance will be discussed.


Asunto(s)
Ciclo Celular , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/análisis , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/fisiología , Fenómenos Fisiológicos de las Plantas , Plantas/química
18.
Cell Cycle ; 7(15): 2321-6, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18682686

RESUMEN

It is now clear that neurogenesis occurs in the brain of adult mammals. Many studies have attempted to establish relationships among neurogenesis, depression and the mechanism of action of antidepressant drugs. Therapeutic effects of antidepressants appear to be linked to increased neurogenesis in the hippocampus. Cdk inhibitors are expressed in multiple brain regions, presumably maintaining quiescence in differentiated neurons. Recently, the abundant expression of p21(Cip1) was found in neuroblasts and in newly developing neurons in the subgranular zone of the hippocampus, a region where adult neurogenesis occurs. Chronic treatment with the tricyclic antidepressant imipramine markedly decreased p21(Cip1) mRNA and protein levels and stimulated neurogenesis in this region. These results suggest that p21(Cip1) restrains neurogenesis in the hippocampus, and antidepressant-induced stimulation of neurogenesis might be a consequence of decreased p21(Cip1) expression, with the subsequent release of neuronal progenitor cells from the blockade of proliferation. These findings suggest the potential for new therapeutic strategies for the treatment of depression that target cell cycle proteins. However, there is a possibility that long-term stimulation of neurogenesis might exhaust the proliferation potentials of neuronal progenitors.


Asunto(s)
Antidepresivos/farmacología , Diferenciación Celular/efectos de los fármacos , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Células Madre Adultas/efectos de los fármacos , Células Madre Adultas/fisiología , Animales , Antidepresivos/uso terapéutico , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Ciclo Celular/efectos de los fármacos , Ciclo Celular/fisiología , Diferenciación Celular/fisiología , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/metabolismo , Depresión/tratamiento farmacológico , Depresión/etiología , Humanos , Mamíferos , Neuronas/fisiología
19.
Biochim Biophys Acta ; 1786(2): 83-6, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18503775

RESUMEN

Transcriptional inhibitors (TI) repress global transcription and induce apoptosis. It has been suggested that induction of p53 is one of the hallmarks of global transcriptional repression. Two recent papers suggested that treatment of human cancer cells with TIs, leads to p53-dependent, transcription-independent or p53-dependent, transcription-dependent apoptosis. The latter mechanism is linked to the fact that TIs can be selective in their inhibitory effects thereby permitting transcription of some genes. However, the majority of other published data suggest that these drugs induce p53-independent apoptosis. In this article I discuss the mechanisms of TI-dependent cell death and the potential role of p53 in this process.


Asunto(s)
Apoptosis/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Proteína p53 Supresora de Tumor/fisiología , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/fisiología , Humanos , Modelos Biológicos , ARN Polimerasa II/metabolismo
20.
Gene Ther ; 15(2): 117-25, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17989702

RESUMEN

Therapies involving adult stem cells are dependent upon sufficient expansion of these cells to repopulate or replace the diseased tissue and are consequently hindered by their relatively quiescent phenotype. Cellular proliferation is governed by the cyclin-dependent kinases, which in a complex with a corresponding cyclin, phosphorylate a number of downstream mediators to drive the cell through the cell cycle. In turn, biochemical activities of the cyclin-dependent kinases are regulated by two families of cyclin-dependent kinase inhibitors, which have been shown to be potent cell intrinsic blocks of adult stem cell proliferation in multiple tissue types. In contrast to normal stem cells, inappropriate regulation of the cell cycle in cancer stem cells may underlie tumorigenesis and failure of conventional chemotherapeutics to fully eradicate a tumor. Thus, definition of the roles of the cyclin-dependent kinase inhibitors in normal and cancer stem cells may permit the development of novel strategies for adult stem cell expansion and therapies specifically targeted to cancer stem cells.


Asunto(s)
Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/fisiología , Células Madre Hematopoyéticas/citología , Células Madre Neoplásicas/patología , Adulto , Ciclo Celular/fisiología , Proliferación Celular , Terapia Genética/métodos , Humanos , Neoplasias/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA