Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.489
Filtrar
1.
Int J Mol Sci ; 25(18)2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39337260

RESUMEN

This study investigates the immobilization of cyanobacterial photosystem I (PSI) from Synechocystis sp. PCC 6803 onto fluorine-doped tin oxide (FTO) conducting glass plates to create photoelectrodes for biohybrid solar cells. The fabrication of these PSI-FTO photoelectrodes is based on two immobilization processes: rapid electrodeposition driven by an external electric field and slower adsorption during solvent evaporation, both influenced by gravitational sedimentation. Deposition and performance of photoelectrodes was investigated by UV-Vis absorption spectroscopy and photocurrent measurements. We investigated the efficiency of PSI immobilization under varying conditions, including solution pH, applied electric field intensity and duration, and electrode polarization, with the goals to control (1) the direction of migration and (2) the orientation of the PSI particles on the substrate surface. Variation in the pH value of the PSI solution alters the surface charge distribution, affecting the net charge and the electric dipole moment of these proteins. Results showed PSI migration to the positively charged electrode at pH 6, 7, and 8, and to the negatively charged electrode at pH 4.4 and 5, suggesting an isoelectric point of PSI between 5 and 6. At acidic pH, the electrophoretic migration was largely hindered by protein aggregation. Notably, photocurrent generation was consistently cathodic and correlated with PSI layer thickness, and no conclusions can be drawn on the orientation of the immobilized proteins. Overall, these findings suggest mediated electron transfer from FTO to PSI by the used electrolyte containing 10 mM sodium ascorbate and 200 µM dichlorophenolindophenol.


Asunto(s)
Electrodos , Complejo de Proteína del Fotosistema I , Compuestos de Estaño , Compuestos de Estaño/química , Complejo de Proteína del Fotosistema I/química , Complejo de Proteína del Fotosistema I/metabolismo , Synechocystis/química , Synechocystis/metabolismo , Concentración de Iones de Hidrógeno , Galvanoplastia/métodos , Flúor/química , Proteínas Inmovilizadas/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo
2.
Soft Matter ; 20(38): 7623-7633, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39291470

RESUMEN

Coacervates represent models for membrane-free protocells and thus provide a simple route to synthetic cellular-like systems that provide selective encapsulation of solutes. Here, we demonstrate a simple and versatile post-coacervation crosslink method using the thiol-ene click reaction in aqueous media to prepare covalently crosslinked coacervates. The crosslinking of the coacervate enables stability at extreme pH where the uncrosslinked coacervate fully disassembles. The crosslinking also enhances the hydrophobicity within the coacervate environment to increase the encapsulation efficiency of bovine serum albumin (BSA), as compared to the uncrosslinked coacervate. Additionally, the crosslinked coacervate increases the stabilization of BSA at low pH. These crosslinked coacervates can act as carriers for enzymes. The enzymatic activity of alkaline phosphatase (ALP) is enhanced within the crosslinked coacervate compared to the ALP in aqueous solution. The post-coacervation crosslink approach allows the utilization of coacervates for encapsulation of biologicals under conditions where the coacervate would generally disassemble. We demonstrate that these crosslinked coacervates enable the protection of encapsulated protein against denaturation at extreme pH and enhance the enzymatic activity with encapsulation. This click approach to stabilization of coacervates should be broadly applicable to other systems for a variety of biologics and environmentally sensitive molecules.


Asunto(s)
Fosfatasa Alcalina , Albúmina Sérica Bovina , Albúmina Sérica Bovina/química , Fosfatasa Alcalina/química , Fosfatasa Alcalina/metabolismo , Concentración de Iones de Hidrógeno , Reactivos de Enlaces Cruzados/química , Bovinos , Animales , Estabilidad Proteica , Proteínas Inmovilizadas/química , Proteínas Inmovilizadas/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo
3.
J Chromatogr A ; 1734: 465322, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39217733

RESUMEN

Excellent pretreatments before instrumental analysis are critical for separation and determination of target compounds for discovery of new drugs from herb medicines. We developed a rapid and highly-selective method to separate the bioactive compounds from herbal extract using protein affinity-selection spin column, which was packed with the new sorbent materials from integrating the recombinant ß2-adrenoceptor (ß2-AR) directly out of cell lysates onto the surface of microspheres. Protein affinity-selection spin column was placed in a centrifugal tube, where after the non-specific binders were released to the filtrate under the operational centrifugation, the specific binders on the spin column were cleaned with a washing solvent for LC-MS analysis. The known agonists of ß2-AR were retained/released on protein affinity-selection spin column but not on control column, demonstrating the method with good recovery (79.4∼95.7 %) and high repeatability (RSD < 3.5 %). The adsorption features of three ligands on the spin column were described best by Prism saturation binding model, and the high-affinity binding and the large binding capacity of the spin column make it feasible to trap the trace analytes effectively. It was applied in separating bioactive compounds from Alstoniae Scholaris extract, two of which were identified as picrinine and oleanolic acid in combination with LC-MS and verified as the potential agonists towards ß2-AR though molecular docking and cell experiments. Our study demonstrated that, the spin column with the immobilized protein sorbents in the centrifugal filter device represents a promising tool, enabling rapid and target-specific affinity separation of the bioactive compounds from herbal extract.


Asunto(s)
Proteínas Inmovilizadas , Microesferas , Extractos Vegetales , Extractos Vegetales/química , Proteínas Inmovilizadas/química , Proteínas Inmovilizadas/metabolismo , Cromatografía de Afinidad/métodos , Cromatografía Liquida/métodos , Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 2/química , Adsorción , Humanos , Espectrometría de Masas/métodos , Medicamentos Herbarios Chinos/química , Cromatografía Líquida con Espectrometría de Masas
4.
Biomacromolecules ; 25(8): 5300-5309, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39007485

RESUMEN

A strategy for the bioorthogonal immobilization of proteins onto commercially available filter paper is presented. Recently, a two-step approach has been described that relies on covalent immobilization of a linker molecule to paper, followed by enzyme-mediated conjugation of a protein of interest containing an enzyme-recognition tag. Here, this strategy was expanded by evaluating four different chemical and chemoenzymatic reactions and investigating paper loading efficiency and orthogonality. Enhanced green fluorescent protein (EGFP) was used as a model protein to allow quantification of protein loading via fluorescence imaging. Two approaches were identified that showed significantly increased loading efficiencies compared with the previously applied conjugation strategy. Additionally, all four methods were proven orthogonal to each other, allowing simultaneous immobilization of a mixture of proteins to a premodified assembly of two paper sheets.


Asunto(s)
Proteínas Fluorescentes Verdes , Proteínas Inmovilizadas , Proteínas Fluorescentes Verdes/química , Proteínas Inmovilizadas/química , Papel
5.
J Chromatogr A ; 1730: 465141, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38986402

RESUMEN

Functional protein immobilization forms the basis for bio-detections. A series of one-point, site-specific immobilization methods have been developed, however, it still remains as a challenge how to avoid the proteins to move in all directions as well as conveniently regenerate the bio-devices. Herein, we have developed a bivalent affinity binding-inspired method for PPARγ immobilization using DNA aptamer and nickel-nitrilotriacetic acid (Ni2+-NTA) chelation. The specific DNA aptamer (Apt 2) was selected by an on-column systematic evolution of ligands by exponential enrichment (SELEX) method with affinity of (1.57 ± 0.15) × 105 M-1, determined by isothermal titration calorimetry (ITC). Apt 2 and nickel-nitrilotriacetic acid (Ni2+-NTA) were modified on macroporous silica gels via L-α-allylglycine as a linker. They respectively interacted with PPARγ and 6×His tag via bivalent affinity binding for the receptor immobilization. After comprehensive surface characterization, PPARγ was proved to be successful immobilized. Chromatographic studies revealed that the immobilized PPARγ has conformation selectivity, which discriminated agonist and antagonist of the receptor. Ligand-binding parameters (affinity and rate constant) of four agonists (rosiglitazone, pioglitazone, troglitazone, and magnolol) with PPARγ were determined. Troglitazone showed the lowest dissociation rate constant. The binding affinities (3.28 × 107, 1.91 × 106, 2.25 × 107, and 2.43 × 107 M-1) were highly consistent with the data obtained using purified receptor in solution (2.16 × 107, 4.52 × 106, 1.20 × 107, and 1.56 × 107 M-1), offering reliable bio-detection method for PPARγ and its ligands. Due to the biocompatibility of nuclear receptor with DNA, it is conceivable that the bivalent affinity-based method will be a general method for the immobilization of other nuclear receptors, which may provide selective conformation and improved ligand-binding activity for the receptors.


Asunto(s)
Aptámeros de Nucleótidos , PPAR gamma , PPAR gamma/química , PPAR gamma/metabolismo , Ligandos , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Unión Proteica , Proteínas Inmovilizadas/química , Proteínas Inmovilizadas/metabolismo , Ácido Nitrilotriacético/química , Ácido Nitrilotriacético/análogos & derivados , Humanos , Calorimetría
6.
Sci Rep ; 14(1): 16139, 2024 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997417

RESUMEN

Rapid and safe hemostasis is crucial for the survival of bleeding patients in prehospital care. It is urgent to develop high performance hemostatic material to control the massive hemorrhage in the military field and accidental trauma. In this work, an efficient protein hemostat of thrombin was immobilized onto commercial gauze, which was mediated by self-polymerization and anchoring of tannic acid (TA). Through TA treatment, the efficient immobilization of thrombin was achieved, preserving both the biological activity of thrombin and the physical properties of the dressing, including absorbency, breathability, and mechanical performance. Moreover, in the presence of TA coating and thrombin, Gau@TA/Thr could obviously shortened clotting time and enriched blood components such as plasma proteins, platelets, and red blood cells, thereby exhibiting an enhanced in vitro coagulation effect. In SD rat liver volume defect and artery transection hemorrhage models, Gau@TA/Thr still had outstanding hemostatic performance. Besides, the Gau@TA/Thr gauze had inherent antibacterial property and demonstrated excellent biocompatibility. All results suggested that Gau@TA/Thr would be a potential candidate for treating uncontrollable hemorrhage in prehospital care.


Asunto(s)
Vendajes , Coagulación Sanguínea , Hemorragia , Hemostáticos , Taninos , Trombina , Taninos/química , Taninos/farmacología , Animales , Hemorragia/tratamiento farmacológico , Trombina/metabolismo , Coagulación Sanguínea/efectos de los fármacos , Ratas , Hemostáticos/farmacología , Hemostáticos/química , Ratas Sprague-Dawley , Masculino , Antiinfecciosos/farmacología , Humanos , Proteínas Inmovilizadas/farmacología , Proteínas Inmovilizadas/química , Modelos Animales de Enfermedad , Polifenoles
7.
Anal Chim Acta ; 1314: 342781, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38876519

RESUMEN

BACKGROUND: Okadaic acid (OA), as a diarrhetic shellfish poisoning, can increase the risk of acute carcinogenic or teratogenic effects for the ingestion of OA contaminated shellfish. At present, much effort has been made to graft immunoassay onto a paper substrate to make paper-based sensors for rapid and simple detection of shellfish toxin. However, the complicated washing steps and low protein fixation efficiency on the paper substrate need to be further addressed. RESULTS: A novel paper-tip immunosensor for detecting OA was developed combined with smartphone and naked eye readout. The trapezoid paper tip was consisted of quantitative and qualitative detection zones. To improve the OA antigen immobilization efficiency on the paper substrate, graphene oxide (GO)-assisted protein immobilization method was introduced. Meanwhile, Au nanoparticles composite probe combined with the lateral flow washing was developed to simplify the washing step. The OA antigen-immobilized zone, as the detection zone Ⅰ, was used for quantitative assay by smartphone imaging. The paper-tip front, as the detection zone Ⅱ, which could qualitatively differentiate OA pollution level within 45 min using the naked eye. The competitive immunoassay on the paper tip exhibited a wide linear range for detecting OA (0.02-50 ng∙mL-1) with low detection limit of 0.02 ng∙mL-1. The recovery of OA in spiked shellfish samples was in the range of 90.3 %-113.%. SIGNIFICANCE: These results demonstrated that the proposed paper-tip immunosensor could provide a simple, low-cost and high-sensitivity test for OA detection without the need for additional large-scale equipment or expertise. We anticipate that this paper-tip immunosensor will be a flexible and versatile tool for on-site detecting the pollution of marine products.


Asunto(s)
Técnicas Biosensibles , Oro , Grafito , Ácido Ocadaico , Papel , Teléfono Inteligente , Grafito/química , Ácido Ocadaico/análisis , Inmunoensayo/métodos , Oro/química , Nanopartículas del Metal/química , Proteínas Inmovilizadas/química , Límite de Detección , Animales , Anticuerpos Inmovilizados/inmunología , Anticuerpos Inmovilizados/química
8.
J Chromatogr A ; 1729: 465057, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38857565

RESUMEN

The histamine H1 receptor (H1R) plays a pivotal role in allergy initiation and undergoes the necessity of devising a high-throughput screening approach centered on H1R to screen novel ligands effectively. This study suggests a method employing styrene maleic acid (SMA) extraction and His-tag covalent bonding to immobilize H1R membrane proteins, minimizing the interference of nonspecific proteins interference while preserving native protein structure and maximizing target exposure. This approach was utilized to develop a novel material for high-throughput ligand screening and implemented in cell membrane chromatography (CMC). An H1R-His-SMALPs/CMC model was established and its chromatographic performance (selectivity, specificity and lifespan) validated, demonstrating a significant enhancement in lifespan compared to previous CMC models. Subsequently, this model facilitated high-throughput screening of H1R ligands in the compound library and preliminary activity verification of potential H1R antagonists. Identification of a novel H1R antagonist laid the foundation for further development in this area.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Maleatos , Receptores Histamínicos H1 , Ligandos , Maleatos/química , Ensayos Analíticos de Alto Rendimiento/métodos , Receptores Histamínicos H1/química , Receptores Histamínicos H1/metabolismo , Humanos , Histidina/química , Animales , Proteínas Inmovilizadas/química , Proteínas Inmovilizadas/metabolismo , Células CHO , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Antagonistas de los Receptores Histamínicos H1/química , Poliestirenos/química , Cricetulus , Oligopéptidos/química
9.
J Chromatogr A ; 1730: 465037, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38889580

RESUMEN

Protein functionalized surface has the potential to develop new assays for determining the drug-like properties of potential compounds and discovering specific partners of G protein-coupled receptors (GPCRs). However, a universal method for purifying and immobilizing functional GPCRs has remained elusive. To this end, we developed a general and rapid way to purify and immobilize ß2-adrenergic receptor (ß2AR) by silicon-specific peptide. We screened CotB1p as a tag from six silica-binding peptides (minTBP-1, CotB1p, SB7, Car9, and Si4-1) by examining their affinity to macroporous silica gel. We investigated the adsorption and desorption of CotB1p-tagged ß2-adrenoceptor (ß2AR-CotB1p) under diverse conditions to propose a protocol for receptor purification and immobilization. Under optimized conditions, ß2AR immobilization were achieved by directly immersing cell lysates harboring the receptor with silica gel, and the elution of the receptor without demonstratable contaminants was realized by including l-arginine/L-lysine in the elutes. This allows purification of the receptor from Escherichia coli (E.coli) lysates with a purity of 95 %. The immobilized receptor was utilized as a stationary phase to reveal the tag impact on ligand-binding outputs by comparing the CotB1p-strategy with a typical covalent method. The KAs of salbutamol, chlorprenaline, tulobuterol, and terbutaline on ß2AR-CotB1p column were 1.26 × 106, 6.59 × 106, 7.90 × 106, and 8.97 × 105 M-1 respectively, which were two orders of magnitude higher than those on the Halo-ß2AR column. The whole immobilization was accomplished within 30 min without the requirement of any special treatment, resulting in enhanced accuracy for determining receptor-ligand binding parameters. Taken together, CotB1p-mediated strategy is simple, rapid, and universal for purification or immobilization of unstable biomolecules like GPCRs for analytical and biological applications.


Asunto(s)
Escherichia coli , Receptores Adrenérgicos beta 2 , Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 2/química , Escherichia coli/química , Péptidos/química , Péptidos/metabolismo , Humanos , Proteínas Inmovilizadas/química , Proteínas Inmovilizadas/metabolismo , Adsorción , Unión Proteica
10.
J Chromatogr A ; 1727: 464948, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38759460

RESUMEN

Immobilization of functional protein, especially G protein-coupled receptors (GPCRs), is particularly significant in various fields such as the development of assays for diagnosis, lead compound screening, as well as drug-protein interaction analysis. However, there are still some challenges with the immobilized proteins such as undefined loads, orientations, and the loss of activity. Herein, we introduced a DNA conjugation strategy into the immobilization of Cysteinyl leukotriene receptor 1(CysLTR1) which enables exquisite molecular control and higher activity of the receptor. We used the bacterial relaxases VirD2 as an immobilized tag fused at the C terminus of CysLTR1. Tyrosine residue(Y29) at the core binding site of the VirD2 tag can react with the single-strand piece of DNA(T-DNA) in the form of a covalent bond. Inspired by this strategy, we developed a new immobilization method by mixing the T-DNA-modified silica gel with the cell lysate containing the expressed VirD2-tagged CysLTR1 for 1 hour. We found that the successful formation of DNA-protein conjugate enables the immobilization of CysLTR1 fast, site-specific, and with minimal loss of activity. The feasibility of the immobilized CysLTR1 was evaluated in drug-protein binding interaction by frontal analysis and adsorption energy distribution analysis. The binding of pranlukast, zafirlukast, and MK571 to the immobilized CysLTR1 was realized, and the association constants presented good agreement between the two methods. Rosmarinic acid was retained in the immobilized CysLTR1 column, and the in-vitro test revealed that the compound binds to the receptor in one type of binding site mode. Despite these results, we concluded that the DNA-protein conjugate strategy will probably open up the possibilities for capturing other functional proteins in covalent and site-specific modes from the complex matrices and the immobilized receptor preserves the potential in fishing out lead compounds from natural products.


Asunto(s)
Proteínas Inmovilizadas , Receptores de Leucotrienos , Receptores de Leucotrienos/metabolismo , Receptores de Leucotrienos/química , Proteínas Inmovilizadas/química , Proteínas Inmovilizadas/metabolismo , Humanos , ADN/química , ADN/metabolismo , Sitios de Unión , Unión Proteica
11.
J Chromatogr A ; 1722: 464902, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38636150

RESUMEN

Although immobilized metal ion affinity chromatography (IMAC) is one of the most effective methods for purifying his-tagged proteins, it has limitations such as expensive commercial resins and non-specific binding of unwanted proteins to the nickel immobilized on the resin. In this study, biocompatible chitosan and porous chitosan membranes as alternative resins were synthesized for protein immobilization and purification, but finally porous chitosan membrane was selected due to its higher porosity and consequently higher nickel adsorption. Once the membrane was functionalized with nickel ions and its metal adsorption confirmed by EDS and ICP methods, it was used to immobilize and purify recombinant ß-NGF as a protein model with his-tag tail in batch-fashion. Protein binding and purification were also approved by FTIR and UV-Vis spectroscopy and SDS-PAGE technique. Our results indicated that the protein of interest could bind to the nickel-functionalized porous chitosan membrane with high efficiency at pH=7. Furthermore, for protein purification, the pH value of 6 and an imidazole concentration of 750 mM were suggested for the final elution buffer. In conclusion, nickel-functionalized porous chitosan membrane could be a suitable alternative to IMAC for low cost and specific protein immobilization and purification.


Asunto(s)
Quitosano , Cromatografía de Afinidad , Histidina , Membranas Artificiales , Níquel , Níquel/química , Quitosano/química , Cromatografía de Afinidad/métodos , Histidina/química , Porosidad , Adsorción , Proteínas Inmovilizadas/química , Concentración de Iones de Hidrógeno , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación
12.
Biomater Sci ; 12(11): 2841-2864, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38683585

RESUMEN

Polymer-based biomaterials have received a lot of attention due to their biomedical, agricultural, and industrial potential. Soluble protein-polymer bioconjugates, immobilized proteins, and encapsulated proteins have been shown to tune enzymatic activity, improved pharmacokinetic ability, increased chemical and thermal stability, stimuli responsiveness, and introduced protein recovery. Controlled polymerization techniques, increased protein-polymer attachment techniques, improved polymer surface grafting techniques, controlled polymersome self-assembly, and sophisticated characterization methods have been utilized for the development of well-defined polymer-based biomaterials. In this review we aim to provide a brief account of the field, compare these methods for engineering biomaterials, provide future directions for the field, and highlight impacts of these forms of bioconjugation.


Asunto(s)
Polímeros , Polímeros/química , Materiales Biocompatibles/química , Proteínas Inmovilizadas/química , Proteínas/química , Humanos , Estabilidad Proteica , Animales
13.
Assay Drug Dev Technol ; 22(4): 192-202, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638103

RESUMEN

DNA-encoded libraries (DELs) have demonstrated to be one of the most powerful technologies within the ligand identification toolbox, widely used either in academia or biotech and pharma companies. DEL methodology utilizes affinity selection (AS) as the approach to interrogate the protein of interest for the identification of binders. Here we present a high-throughput, fully automated AS platform developed to fulfill industrial standards and compatible with different assay formats to improve the reproducibility of the AS process for DEL binders identification. This platform is flexible enough to virtually set aside all kinds of DELs and AS methods and conditions using immobilized proteins. It bears the two main immobilization methods to support of the proteins of interest: magnetic beads or resin tip columns. A combination of a broad variety of protocol options with a wide range of different experimental conditions can be set up with a throughput of 96 samples at the same time. In addition, small modifications of the protocols provide the platform with the versatility to run not only the routine DEL screens, but also test covalent libraries, the successful immobilization of the proteins of interest, and many other experiments that may be required. This versatile AS platform for DEL can be a powerful instrument for direct application of the technology in academic and industry settings.


Asunto(s)
ADN , Ensayos Analíticos de Alto Rendimiento , ADN/química , Proteínas Inmovilizadas/química , Biblioteca de Genes , Ligandos
14.
ACS Biomater Sci Eng ; 10(5): 3017-3028, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38655791

RESUMEN

Macroporous cryogels are attractive scaffolds for biomedical applications, such as biomolecular immobilization, diagnostic sensing, and tissue engineering. In this study, thiol-reactive redox-responsive cryogels with a porous structure are prepared using photopolymerization of a pyridyl disulfide poly(ethylene glycol) methacrylate (PDS-PEG-MA) monomer. Reactive cryogels are produced using PDS-PEG-MA and hydrophilic poly(ethylene glycol) methyl ether methacrylate (PEGMEMA) monomers, along with a PEG-based cross-linker and photoinitiator. Functionalization of cryogels using a fluorescent dye via the disulfide-thiol exchange reactions is demonstrated, followed by release under reducing conditions. For ligand-mediated protein immobilization, first, thiol-containing biotin or mannose is conjugated onto the cryogels. Subsequently, fluorescent dye-labeled proteins streptavidin and concanavalin A (ConA) are immobilized via ligand-mediated conjugation. Furthermore, we demonstrate that the mannose-decorated cryogel could capture ConA selectively from a mixture of lectins. The efficiency of protein immobilization could be easily tuned by changing the ratio of the thiol-sensitive moiety in the scaffold. Finally, an integrin-binding cell adhesive peptide is attached to cryogels to achieve successful attachment, and the on-demand detachment of integrin-receptor-rich fibroblast cells is demonstrated. Redox-responsive cryogels can serve as potential scaffolds for a variety of biomedical applications because of their facile synthesis and modification.


Asunto(s)
Criogeles , Oxidación-Reducción , Polietilenglicoles , Criogeles/química , Polietilenglicoles/química , Animales , Concanavalina A/química , Concanavalina A/metabolismo , Metacrilatos/química , Ratones , Manosa/química , Proteínas Inmovilizadas/química , Proteínas Inmovilizadas/metabolismo , Compuestos de Sulfhidrilo/química , Estreptavidina/química , Estreptavidina/metabolismo , Proteínas/química , Proteínas/metabolismo , Biotina/química , Biotina/metabolismo , Biotina/análogos & derivados , Porosidad
15.
Nanotechnology ; 35(32)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38688249

RESUMEN

Dealing with bone defects is a significant challenge to global health. Electrospinning in bone tissue engineering has emerged as a solution to this problem. In this study, we designed a PVDF-b-PTFE block copolymer by incorporating TFE, which induced a phase shift in PVDF fromαtoß, thereby enhancing the piezoelectric effect. Utilizing the electrospinning process, we not only converted the material into a film with a significant surface area and high porosity but also intensified the piezoelectric effect. Then we used polydopamine to immobilize BMP-2 onto PVDF-b-PTFE electrospun nanofibrous membranes, achieving a controlled release of BMP-2. The scaffold's characters were examined using SEM and XRD. To assess its osteogenic effectsin vitro, we monitored the proliferation of MC3T3-E1 cells on the fibers, conducted ARS staining, and measured the expression of osteogenic genes.In vivo, bone regeneration effects were analyzed through micro-CT scanning and HE staining. ELISA assays confirmed that the sustained release of BMP-2 can be maintained for at least 28 d. SEM images and CCK-8 results demonstrated enhanced cell viability and improved adhesion in the experimental group. Furthermore, the experimental group exhibited more calcium nodules and higher expression levels of osteogenic genes, including COL-I, OCN, and RUNX2. HE staining and micro-CT scans revealed enhanced bone tissue regeneration in the defective area of the PDB group. Through extensive experimentation, we evaluated the scaffold's effectiveness in augmenting osteoblast proliferation and differentiation. This study emphasized the potential of piezoelectric PVDF-b-PTFE nanofibrous membranes with controlled BMP-2 release as a promising approach for bone tissue engineering, providing a viable solution for addressing bone defects.


Asunto(s)
Proteína Morfogenética Ósea 2 , Regeneración Ósea , Indoles , Nanofibras , Osteogénesis , Polímeros , Ingeniería de Tejidos , Andamios del Tejido , Proteína Morfogenética Ósea 2/farmacología , Proteína Morfogenética Ósea 2/metabolismo , Nanofibras/química , Regeneración Ósea/efectos de los fármacos , Animales , Ratones , Indoles/química , Indoles/farmacología , Polímeros/química , Polímeros/farmacología , Ingeniería de Tejidos/métodos , Osteogénesis/efectos de los fármacos , Andamios del Tejido/química , Proliferación Celular/efectos de los fármacos , Línea Celular , Proteínas Inmovilizadas/farmacología , Proteínas Inmovilizadas/química , Supervivencia Celular/efectos de los fármacos
16.
Colloids Surf B Biointerfaces ; 236: 113818, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417347

RESUMEN

The feasibility of immobilized protein-based biodetection relies critically on the activity of the immobilized proteins as well as the biocompatibility of the protein surface. Although many protein immobilization strategies have been developed with satisfied detection readout signals. Non-specific interactions caused by the protein-coating surface are still of great concern since they often interfere with or affect the reliability of detection. Herein, we developed a highly efficient G protein-coupled receptor (GPCR) immobilization method by the combination of polyethylene glycol (PEG) with a self-labeling enzyme-catalyzed reaction. The immobilization relies on the covalent interaction between the fusion tag of a target GPCR (kinase domain of epidermal growth factor receptor, EGFR) and its covalent inhibitor ibrutinib, which is modified on PEGylated silica gels. Two types of GPCRs, N-methyl-D-aspartate 2 A receptor (NMDAR2A) and endothelin A receptor (ETAR), were used as examples to realize protein immobilization. The GPCR modified gels and the affinity columns packed with them have been extensively characterized, in terms of non-specific adsorptions, retention factor (k'), half peak width (W1/2), tailing factor (Tf), theoretical plates (N), and association and dissociation constants of the ligands with the receptors. The immobilized GPCRs with reduced non-specific interactions and enhanced fouling resistance, salt tolerance, and chromatographic performance were clearly observed. We believe it is the first work to introduce PEGylation in GPCR immobilization and provide comprehensive proof-of-concept studies to illustrate the improved antifouling property, salt tolerance, and chromatographic performance. This method could be generally applicable in other immobilized protein-based technology for reliable biodetection.


Asunto(s)
Receptores Acoplados a Proteínas G , Tolerancia a la Sal , Reproducibilidad de los Resultados , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Inmovilizadas/química , Geles
17.
Acta Biomater ; 179: 371-384, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38382829

RESUMEN

Endovascular stenting is a safer alternative to open surgery for use in treating cerebral arterial stenosis and significantly reduces the recurrence of ischemic stroke, but the widely used bare-metal stents (BMSs) often result in in-stent restenosis (ISR). Although evidence suggests that drug-eluting stents are superior to BMSs in the short term, their long-term performances remain unknown. Herein, we propose a potential vascular stent modified by immobilizing clickable chemerin 15 (C15) peptides on the stent surface to suppress coagulation and restenosis. Various characterization techniques and an animal model were used to evaluate the surface properties of the modified stents and their effects on endothelial injury, platelet adhesion, and inflammation. The C15-immobilized stent could prevent restenosis by minimizing endothelial injury, promoting physiological healing, restraining the platelet-leukocyte-related inflammatory response, and inhibiting vascular smooth muscle cell proliferation and migration. Furthermore, in vivo studies demonstrated that the C15-immobilized stent mitigated inflammation, suppressed neointimal hyperplasia, and accelerated endothelial restoration. The use of surface-modified, anti-inflammatory, endothelium-friendly stents may be of benefit to patients with arterial stenosis. STATEMENT OF SIGNIFICANCE: Endovascular stenting is increasingly used for cerebral arterial stenosis treatment, aiming to prevent and treat ischemic stroke. But an important accompanying complication is in-stent restenosis (ISR). Persistent inflammation has been established as a hallmark of ISR and anti-inflammation strategies in stent modification proved effective. Chemerin 15, an inflammatory resolution mediator with 15-aa peptide, was active at picomolar through cell surface receptor, no need to permeate cell membrane and involved in resolution of inflammation by inhibiting inflammatory cells adhesion, modulating macrophage polarization into protective phenotype, and reducing inflammatory factors release. The implications of this study are that C15 immobilized stent favors inflammation resolution and rapid re-endothelialization, and exhibits an inhibitory role of restenosis. As such, it helps the decreased incidence of ISR.


Asunto(s)
Quimiocinas , Hiperplasia , Neointima , Stents , Animales , Quimiocinas/metabolismo , Humanos , Neointima/patología , Masculino , Antiinflamatorios/farmacología , Antiinflamatorios/química , Péptidos y Proteínas de Señalización Intercelular/farmacología , Péptidos/farmacología , Péptidos/química , Ratones , Proliferación Celular/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Proteínas Inmovilizadas/farmacología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos
18.
Molecules ; 28(12)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37375186

RESUMEN

Biological organisms rely on proteins to perform the majority of their functions. Most protein functions are based on their physical motions (conformational changes), which can be described as transitions between different conformational states in a multidimensional free-energy landscape. A comprehensive understanding of this free-energy landscape is therefore of paramount importance for understanding the biological functions of proteins. Protein dynamics includes both equilibrium and nonequilibrium motions, which typically exhibit a wide range of characteristic length and time scales. The relative probabilities of various conformational states in the energy landscape, the energy barriers between them, their dependence on external parameters such as force and temperature, and their connection to the protein function remain largely unknown for most proteins. In this paper, we present a multimolecule approach in which the proteins are immobilized at well-defined locations on Au substrates using an atomic force microscope (AFM)-based patterning method called nanografting. This method enables precise control over the protein location and orientation on the substrate, as well as the creation of biologically active protein ensembles that self-assemble into well-defined nanoscale regions (protein patches) on the gold substrate. We performed AFM-force compression and fluorescence experiments on these protein patches and measured the fundamental dynamical parameters such as protein stiffness, elastic modulus, and transition energies between distinct conformational states. Our results provide new insights into the processes that govern protein dynamics and its connection to protein function.


Asunto(s)
Proteínas Inmovilizadas , Proteínas , Microscopía de Fuerza Atómica , Proteínas/química , Fenómenos Mecánicos , Microscopía Fluorescente
19.
Int J Mol Sci ; 24(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37047243

RESUMEN

Actinomycin is a family of chromogenic lactone peptides that differ in their peptide portions of the molecule. An antimicrobial peptide, actinomycin X2 (Ac.X2), was produced through the fermentation of a Streptomyces cyaneofuscatus strain. Immobilization of Ac.X2 onto a prepared silk fibroin (SF) film was done through a carbodiimide reaction. The physical properties of immobilized Ac.X2 (antimicrobial films, AMFs) were analyzed by ATR-FTIR, SEM, AFM, and WCA. The findings from an in vitro study showed that AMFs had a more broad-spectrum antibacterial activity against both S. aureus and E. coli compared with free Ac.X2, which showed no apparent strong effect against E. coli. These AMFs showed a suitable degradation rate, good hemocompatibility, and reduced cytotoxicity in the biocompatibility assay. The results of in vivo bacterially infected wound healing experiments indicated that wound inflammation was prevented by AMFs, which promoted wound repair and improved the wound microenvironment. This study revealed that Ac.X2 transformation is a potential candidate for skin wound healing.


Asunto(s)
Péptidos Antimicrobianos , Dactinomicina , Fibroínas , Proteínas Inmovilizadas , Cicatrización de Heridas , Dactinomicina/química , Dactinomicina/farmacología , Fibroínas/química , Fibroínas/farmacología , Proteínas Inmovilizadas/química , Proteínas Inmovilizadas/farmacología , Cicatrización de Heridas/efectos de los fármacos , Streptomyces/metabolismo , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Espectroscopía Infrarroja por Transformada de Fourier , Microscopía de Fuerza Atómica , Fermentación , Ensayo de Materiales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Animales , Ratas , Masculino , Ratas Sprague-Dawley
20.
Anal Chem ; 95(13): 5643-5651, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36939216

RESUMEN

Protein immobilization is of utmost importance in many areas, where various proteins are used for selective detection of target compounds. Despite the importance given to determine the amount of immobilized protein, there is no simple method that allows direct, noninvasive detection. In this work, a method based on pH transition, occurring during change of solution ionic strength, was developed. The method utilized the ionic character of the immobilized protein while implementing biologically compatible buffers. Five different proteins, namely, glucose oxidase, horseradish peroxidase, bovine serum albumin, lysozyme, and protein A, were immobilized in different amounts on a porous polymeric matrix, and their pH transition was measured using lactate buffer of various concentrations and pH values. A linear correlation was found between the amount of immobilized protein and the amplitude of the pH transition, allowing the detection down to 2 nmol of immobilized protein. By changing the buffer concentration and pH, the sensitivity of the method could be tailored. Criteria based on the symmetry of the pH transition peak have been developed to determine if a particular measurement is within a linear range. In addition, a mathematical model was developed enabling prediction of pH transition profiles based solely on the protein amino acid sequence, the buffer pKa value(s), and the amount of immobilized protein.Hence, it can be used to design pH transition method experiments to achieve the required sensitivity for a target sample. Since the proposed method is noninvasive, it can be routinely applied during optimization of the immobilization protocol, for quality control, and also as an in-process monitoring tool.


Asunto(s)
Glucosa Oxidasa , Albúmina Sérica Bovina , Glucosa Oxidasa/metabolismo , Peroxidasa de Rábano Silvestre/química , Albúmina Sérica Bovina/química , Proteínas Inmovilizadas , Enzimas Inmovilizadas/química , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA