Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.172
Filtrar
1.
Sci Rep ; 14(1): 20856, 2024 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242806

RESUMEN

At present, biopharmaceuticals have received extensive attention from the society, among which recombinant proteins have a good growth trend and a large market share. Chinese hamster ovary (CHO) cells are the preferred mammalian system to produce glycosylated recombinant protein drugs. A highly efficient and stable cell screening method needs to be developed to obtain more and useful recombinant proteins. Limited dilution method, cell sorting, and semi-solid medium screening are currently the commonly used cell cloning methods. These methods are time-consuming and labor-intensive, and they have the disadvantage of low clone survival rate. Here, a method based on semi-solid medium was developed to screen out high-yielding and stable cell line within 3 weeks to improve the screening efficiency. The semi-solid medium was combined with an expression vector containing red fluorescent protein (RFP) for early cell line development. In accordance with the fluorescence intensity of RFP, the expression of upstream target gene could be indicated, and the fluorescence intensity was in direct proportion to the expression of upstream target gene. In conclusion, semi-solid medium combined with bicistronic expression vector provides an efficient method for screening stable and highly expressed cell lines.


Asunto(s)
Cricetulus , Proteínas Recombinantes , Células CHO , Animales , Proteínas Recombinantes/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/metabolismo , Vectores Genéticos/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Cricetinae , Proteína Fluorescente Roja , Medios de Cultivo/química
2.
Nat Microbiol ; 9(9): 2308-2322, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39227714

RESUMEN

Swimming bacteria navigate chemical gradients using temporal sensing to detect changes in concentration over time. Here we show that surface-attached bacteria use a fundamentally different mode of sensing during chemotaxis. We combined microfluidic experiments, massively parallel cell tracking and fluorescent reporters to study how Pseudomonas aeruginosa senses chemical gradients during pili-based 'twitching' chemotaxis on surfaces. Unlike swimming cells, we found that temporal changes in concentration did not induce motility changes in twitching cells. We then quantified the chemotactic behaviour of stationary cells by following changes in the sub-cellular localization of fluorescent proteins as cells are exposed to a gradient that alternates direction. These experiments revealed that P. aeruginosa cells can directly sense differences in concentration across the lengths of their bodies, even in the presence of strong temporal fluctuations. Our work thus overturns the widely held notion that bacterial cells are too small to directly sense chemical gradients in space.


Asunto(s)
Quimiotaxis , Pseudomonas aeruginosa , Pseudomonas aeruginosa/fisiología , Fimbrias Bacterianas/metabolismo , Microfluídica/métodos , Proteínas Luminiscentes/metabolismo , Proteínas Luminiscentes/genética
3.
Microb Biotechnol ; 17(9): e70008, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39287571

RESUMEN

DNA damage occurs when cells encounter exogenous and endogenous stresses such as long periods of desiccation, ionizing radiation and genotoxic chemicals. Efforts have been made to detect DNA damage in vivo and in vitro to characterize or quantify the damage level. It is well accepted that single-stranded DNA (ssDNA) is one of the important byproducts of DNA damage to trigger the downstream regulation. A recent study has revealed that PprI efficiently recognizes ssDNA and cleaves DdrO at a specific site on the cleavage site region (CSR) loop in the presence of ssDNA, which enables the radiation resistance of Deinococcus. Leveraging this property, we developed a quantitative DNA damage detection method in vitro based on fluorescence resonance energy transfer (FRET). DdrO protein was fused with eYFP and eCFP on the N-terminal and C-terminal respectively, between which the FRET efficiency serves as an indicator of cleavage efficiency as well as the concentration of ssDNA. The standard curve between the concentration of ssDNA and the FRET efficiency was constructed, and application examples were tested, validating the effectiveness of this method.


Asunto(s)
Daño del ADN , ADN de Cadena Simple , Deinococcus , Transferencia Resonante de Energía de Fluorescencia , Transferencia Resonante de Energía de Fluorescencia/métodos , Deinococcus/genética , Deinococcus/efectos de la radiación , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo
4.
Commun Biol ; 7(1): 945, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107369

RESUMEN

Photosensitizing fluorescence protein is a promising tool for chromophore-assisted light inactivation (CALI) that enables specific oxidation and inactivation of intracellular molecules. However, a commonly used monomeric photosensitizing fluorescent protein, SuperNova, shows a low CALI efficiency due to its insufficient maturation at 37 °C, thereby limiting the application of CALI to various molecules, especially in mammalian cells. Here, we present a photosensitizing fluorescence protein, HyperNova, with markedly improved maturation at 37 °C, leading to greatly enhanced CALI efficiency. Exploiting this quality, HyperNova enables the application of CALI to variety of molecules such as a mitotic kinase and transcriptional factors that were highly challenging with conventional SuperNova. To further demonstrate the utility of HyperNova, we have also succeeded in developing novel CALI techniques for MAP kinases by HyperNova. Our findings suggest that HyperNova has the potential to expand the molecular toolbox for manipulating biological events in living cells, providing new avenues for investigating cellular signaling pathways.


Asunto(s)
Proteínas Luminiscentes , Proteínas Luminiscentes/metabolismo , Proteínas Luminiscentes/genética , Humanos , Inactivación por Luz Asistida por Cromóforo , Fármacos Fotosensibilizantes/farmacología , Células HeLa , Luz , Animales
5.
Methods Mol Biol ; 2845: 151-160, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39115664

RESUMEN

Mitochondria-targeted Keima (mt-Keima) is a pH-sensitive, acid-stable fluorescent protein used for the quantification of mitophagy. Mt-Keima contains a mitochondrial matrix targeting sequence and has bimodal excitation with peaks at 440 nM in neutral environments and 586 nM in acidic environments. From this bimodal excitation, a ratiometric signal may be calculated to quantify mitophagy in live cells. This chapter describes procedures for measuring mitophagy by flow cytometry and live cell confocal microscopy with mt-Keima.


Asunto(s)
Citometría de Flujo , Microscopía Confocal , Mitocondrias , Mitofagia , Humanos , Mitocondrias/metabolismo , Microscopía Confocal/métodos , Citometría de Flujo/métodos , Proteínas Luminiscentes/metabolismo , Proteínas Luminiscentes/genética , Células HeLa , Concentración de Iones de Hidrógeno
6.
In Vivo ; 38(5): 2115-2121, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39187323

RESUMEN

BACKGROUND/AIM: We and others have previously shown that cell fusion plays an important role in cancer metastasis. Color coding of cancer and stromal cells with spectrally-distinct fluorescent proteins is a powerful tool, as pioneered by our laboratory to detect cell fusion. We have previously reported color-coded cell fusion between cancer cells and stromal cells in metastatic sites by using color-coded EL4 murine lymphoma cells and host mice expressing spectrally-distinct fluorescent proteins. Cell fusion occurred between cancer cells or, between cancer cells and normal cells, such as macrophages, fibroblasts, and mesenchymal stem cells. In the present study, the aim was to morphologically classify the fusion-hybrid cells observed in the primary tumor and multiple metastases EL4 formed from cells expressing red fluorescent protein (RFP) in transgenic mice expressing green fluorescent protein (GFP), in a syngeneic model. MATERIALS AND METHODS: RFP-expressing EL4 murine lymphoma cells were cultured in vitro. EL4-RFP cells were harvested and injected intraperitoneally into immunocompetent transgenic C57/BL6-GFP mice to establish a syngeneic model. Two weeks later, mice were sacrificed and each organ was harvested, cultured, and observed using confocal microscopy. RESULTS: EL4 intraperitoneal tumors (primary) and metastases in the lung, liver, blood, and bone marrow were formed. All tumors were harvested and cultured. In all specimens, RFP-EL4 cells, GFP-stromal cells, and fused yellow-fluorescent hybrid cells were observed. The fused hybrid cells showed various morphologies. Immune cell-like round-shaped yellow-fluorescent fused cells had a tendency to decrease with time in liver metastases and circulating blood. In contrast fibroblast-like spindle-shaped yellow-fluorescent fused cells increased in the intraperitoneal primary tumor, lung metastases, and bone marrow. CONCLUSION: Cell fusion between EL4-RFP cells and GFP stromal cells occurred in primary tumors and all metastatic sites. The morphology of the fused hybrid cells varied in the primary and metastatic sites. The present results suggest that fused cancer and stromal hybrid cells of varying morphology may play an important role in cancer progression.


Asunto(s)
Fusión Celular , Modelos Animales de Enfermedad , Proteínas Luminiscentes , Linfoma , Ratones Transgénicos , Proteína Fluorescente Roja , Células del Estroma , Animales , Ratones , Células del Estroma/patología , Células del Estroma/metabolismo , Línea Celular Tumoral , Linfoma/patología , Linfoma/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Metástasis de la Neoplasia , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células Híbridas/patología
7.
PLoS One ; 19(8): e0309192, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39208240

RESUMEN

Realistic and modifiable infection models are required to study the pathogenesis of amphibian chytridiomycosis. Understanding the mechanism by which Batrachochytrium dendrobatidis (Bd) can infect and kill diverse amphibians is key to mitigating this pathogen and preventing further loss of biodiversity. In vitro studies of Bd typically rely on a tryptone based growth media, whereas the recent development of a kidney cell-line infection model has provided a more realistic alternative, without the need for live animals. Here we use expression of a fluorescent reporter to enhance the in vitro cell-line based growth assay, and show that transformed Bd cells are able to invade and grow in an amphibian kidney epithelial cell line (A6) as well as in a new system using a lung fibroblast cell line (DWJ). Both Bd and host cells were modified to express reporter fluorescent proteins, enabling immediate and continuous observation of the infection process without the need for destructive sampling for fixation and staining. Plasmid DNA conferring hygromycin resistance and TdTomato (RFP) expression was delivered to Bd zoospores via electroporation, and continuous antibiotic selection after recovery produced stable fluorescent Bd transformants. Host cells (A6 and DWJ) were transfected before each assay using lipofection to deliver plasmid DNA conferring green fluorescent protein (GFP) and containing an empty shRNA expression cassette. Bd RFP expression allowed easy localisation of fungal cells and identification of endobiotic growth was assisted by host GFP expression, by allowing visualization of the space in the host cell occupied by the invading fungal body. In addition to enabling enhanced live imaging, these methods will facilitate future genetic modification and characterisation of specific genes and their effect on Bd virulence.


Asunto(s)
Batrachochytrium , Animales , Batrachochytrium/genética , Línea Celular , Micosis/microbiología , Micosis/veterinaria , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Fluorescencia , Fibroblastos/microbiología , Fibroblastos/metabolismo
8.
Cell Rep ; 43(8): 114650, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39159043

RESUMEN

We describe a binary expression aleatory mosaic (BEAM) system, which relies on DNA delivery by transfection or viral transduction along with nested recombinase activity to generate two genetically distinct, non-overlapping populations of cells for comparative analysis. Control cells labeled with red fluorescent protein (RFP) can be directly compared with experimental cells manipulated by genetic gain or loss of function and labeled with GFP. Importantly, BEAM incorporates recombinase-dependent signal amplification and delayed reporter expression to enable sharper delineation of control and experimental cells and to improve reliability relative to existing methods. We applied BEAM to a variety of known phenotypes to illustrate its advantages for identifying temporally or spatially aberrant phenotypes, for revealing changes in cell proliferation or death, and for controlling for procedural variability. In addition, we used BEAM to test the cortical protomap hypothesis at the individual radial unit level, revealing that area identity is cell autonomously specified in adjacent radial units.


Asunto(s)
Recombinasas , Animales , Recombinasas/metabolismo , Recombinasas/genética , Mosaicismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Expresión Génica/genética , Proteína Fluorescente Roja , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/genética , Humanos
9.
Poult Sci ; 103(10): 104144, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39173570

RESUMEN

The most current in vitro genetic methods, including gene preservation, gene editing and developmental modelling, require a significant number of healthy cells. In poultry species, primordial germ cells (PGCs) are great candidates for all the above-mentioned purposes, given their easy culturing and well-established freezing method for chicken. However, the constant monitoring of cultures can be financially challenging and consumes large amounts of solutions and accessories. This study aimed to introduce the Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) complex into the chicken PGCs. FUCCI is a powerful transgenic tool based on the periodic protein expression changes during the cell cycle. It includes chromatin licensing and DNA replication factor 1 attached monomeric Kusabira-Orange and Geminin-attached monomeric Azami-Green fluorescent proteins, that cause the cells to express a red signal in the G1 phase and a green signal in S and G2 phases. Modification of the chicken PGCs was done via electroporation and deemed to be successful according to confocal microscopy, DNA sequencing and timelapse video analysis. Stable clone cell lines were established, cryopreserved, and injected into recipient embryos to prove the integrational competency. The cell health monitoring was tested with medium change experiments, that proved the intended reactions of the FUCCI transgene. These results established the future for FUCCI experiments in chicken, including heat treatment and toxin treatment.


Asunto(s)
Ciclo Celular , Pollos , Células Germinativas , Animales , Ubiquitinación , Embrión de Pollo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Electroporación/veterinaria , Electroporación/métodos
10.
Biosensors (Basel) ; 14(8)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39194588

RESUMEN

Far-red fluorescent proteins (FPs) have emerged as indispensable tools in in vivo imaging, playing a pivotal role in elucidating fundamental mechanisms and addressing application issues in biotechnology and biomedical fields. Their ability for deep penetration, coupled with reduced light scattering and absorption, robust resistance to autofluorescence, and diminished phototoxicity, has positioned far-red biosensors at the forefront of non-invasive visualization techniques for observing intracellular activities and intercellular behaviors. In this review, far-red FPs and their applications in living systems are mainly discussed. Firstly, various far-red FPs, characterized by emission peaks spanning from 600 nm to 650 nm, are introduced. This is followed by a detailed presentation of the fundamental principles enabling far-red biosensors to detect biomolecules and environmental changes. Furthermore, the review accentuates the superiority of far-red FPs in multi-color imaging. In addition, significant emphasis is placed on the value of far-red FPs in improving imaging resolution, highlighting their great contribution to the advancement of in vivo imaging.


Asunto(s)
Técnicas Biosensibles , Proteínas Luminiscentes , Proteína Fluorescente Roja , Humanos , Animales , Imagen Óptica/métodos
11.
ACS Biomater Sci Eng ; 10(8): 5210-5225, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39087888

RESUMEN

Lactococcus lactis (L. lactis), the first genetically modified Generally Recognized As Safe (GRAS) category Lactic Acid producing Bacteria (LAB), is best known for its generalized health-promoting benefits and ability to express heterologous proteins. However, achieving the optimal probiotic effects requires a selective approach that would allow us to study in vivo microbial biodistribution, fate, and immunological consequences. Although the chemical conjugation of fluorophores and chromophores represent the standard procedure to tag microbial cells for various downstream applications, it requires a high-throughput synthesis scheme, which is often time-consuming and expensive. On the contrary, the genetic manipulation of LAB vector, either chromosomally or extra-chromosomally, to express bioluminescent or fluorescent reporter proteins has greatly enhanced our ability to monitor bacterial transit through a complex gut environment. However, with faster passage and quick washing out from the gut due to rhythmic contractions of the digestive tract, real-time tracking of LAB vectors, particularly non-commensal ones, remains problematic. To get a deeper insight into the biodistribution of non-commensal probiotic bacteria in vivo, we bioengineered L. lactis to express fluorescence reporter proteins, mCherry (bright red monomeric fluorescent protein) and mEGFP (monomeric enhanced green fluorescent protein), followed by microencapsulation with a mucoadhesive and biodegradable polymer, chitosan. We show that coating of recombinant Lactococcus lactis (rL. lactis) with chitosan polymer, cross-linked with tripolyphosphate (TPP), retains their ability to express the reporter proteins stably without altering the specificity and sensitivity of fluorescence detection in vitro and in vivo. Further, we provide evidence of enhanced intragastric stability by chitosan-TPP (CS) coating of rL. lactis cells, allowing us to study the spatiotemporal distribution for an extended time in the gut of two unrelated hosts, avian and murine. The present scheme involving genetic modification and chitosan encapsulation of non-commensal LAB vector demonstrates great promise as a non-invasive and intensive tool for active live tracking of gut microbes.


Asunto(s)
Lactococcus lactis , Proteínas Luminiscentes , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Animales , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Vectores Genéticos , Genes Reporteros , Ratones , Probióticos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteína Fluorescente Roja
12.
Microb Cell Fact ; 23(1): 230, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152436

RESUMEN

BACKGROUND: Non-conventional yeasts and bacteria gain significance in synthetic biology for their unique metabolic capabilities in converting low-cost renewable feedstocks into valuable products. Improving metabolic pathways and increasing bioproduct yields remain dependent on the strategically use of various promoters in these microbes. The development of broad-spectrum promoter libraries with varying strengths for different hosts is attractive for biosynthetic engineers. RESULTS: In this study, five Yarrowia lipolytica constitutive promoters (yl.hp4d, yl.FBA1in, yl.TEF1, yl.TDH1, yl.EXP1) and five Kluyveromyces marxianus constitutive promoters (km.PDC1, km.FBA1, km.TEF1, km.TDH3, km.ENO1) were selected to construct promoter-reporter vectors, utilizing α-amylase and red fluorescent protein (RFP) as reporter genes. The promoters' strengths were systematically characterized across Y. lipolytica, K. marxianus, Pichia pastoris, Escherichia coli, and Corynebacterium glutamicum. We discovered that five K. marxianus promoters can all express genes in Y. lipolytica and that five Y. lipolytica promoters can all express genes in K. marxianus with variable expression strengths. Significantly, the yl.TEF1 and km.TEF1 yeast promoters exhibited their adaptability in P. pastoris, E. coli, and C. glutamicum. In yeast P. pastoris, the yl.TEF1 promoter exhibited substantial expression of both amylase and RFP. In bacteria E. coli and C. glutamicum, the eukaryotic km.TEF1 promoter demonstrated robust expression of RFP. Significantly, in E. coli, The RFP expression strength of the km.TEF1 promoter reached ∼20% of the T7 promoter. CONCLUSION: Non-conventional yeast promoters with diverse and cross-domain applicability have great potential for developing innovative and dynamic regulated systems that can effectively manage carbon flux and enhance target bioproduct synthesis across diverse microbial hosts.


Asunto(s)
Escherichia coli , Vectores Genéticos , Kluyveromyces , Regiones Promotoras Genéticas , Yarrowia , Vectores Genéticos/genética , Yarrowia/genética , Yarrowia/metabolismo , Kluyveromyces/genética , Kluyveromyces/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Proteína Fluorescente Roja , Genes Reporteros , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ingeniería Metabólica/métodos , alfa-Amilasas/genética , alfa-Amilasas/metabolismo , Saccharomycetales
13.
J Cell Biol ; 223(9)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38949658

RESUMEN

Contact sites between lipid droplets and other organelles are essential for cellular lipid and energy homeostasis upon metabolic demands. Detection of these contact sites at the nanometer scale over time in living cells is challenging. We developed a tool kit for detecting contact sites based on fluorogen-activated bimolecular complementation at CONtact sites, FABCON, using a reversible, low-affinity split fluorescent protein, splitFAST. FABCON labels contact sites with minimal perturbation to organelle interaction. Via FABCON, we quantitatively demonstrated that endoplasmic reticulum (ER)- and mitochondria (mito)-lipid droplet contact sites are dynamic foci in distinct metabolic conditions, such as during lipid droplet biogenesis and consumption. An automated analysis pipeline further classified individual contact sites into distinct subgroups based on size, likely reflecting differential regulation and function. Moreover, FABCON is generalizable to visualize a repertoire of organelle contact sites including ER-mito. Altogether, FABCON reveals insights into the dynamic regulation of lipid droplet-organelle contact sites and generates new hypotheses for further mechanistical interrogation during metabolic regulation.


Asunto(s)
Retículo Endoplásmico , Gotas Lipídicas , Mitocondrias , Gotas Lipídicas/metabolismo , Humanos , Retículo Endoplásmico/metabolismo , Mitocondrias/metabolismo , Mitocondrias/genética , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Metabolismo de los Lípidos , Células HeLa , Células HEK293 , Proteínas Luminiscentes/metabolismo , Proteínas Luminiscentes/genética
14.
Methods Mol Biol ; 2819: 189-223, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39028508

RESUMEN

All DNA-binding proteins in vivo exist as a population of freely diffusing molecules and of DNA-bound molecules. The molecules bound to DNA can be split into specifically/tightly and nonspecifically bound proteins. Single-molecule tracking (SMT) is a method allowing to visualize protein dynamics in living cells, revealing their behavior in terms of mode of motion, diffusion coefficient/speed, change of dwell times, and unveiling preferred subcellular sites of dwelling. Bleaching-type SMT or fluorescent protein-tagged SMT involves rapid laser-induced bleaching of most fluorophore-labeled molecules. The remaining single fluorescent proteins are then continuously tracked. The trajectories of several fluorescent molecules per cell for a population of cells are analyzed and combined to permit a robust analysis of average behavior of single molecules in live cells, including analyses of protein dynamics in mutant cells or cells exposed to changes in environmental conditions.In this chapter, we describe the preparation of Bacillus subtilis cells, the recording of movies of those cells expressing a monomeric variant of a yellow fluorescent protein (mNeonGreen) fused to a protein of choice, and the subsequent curation of the movie data including the statistical analysis of the protein dynamics. We present a short overview of the analysis program SMTracker 2.0, highlighting its ability to analyze SMT data by non-expert scientists.


Asunto(s)
Bacillus subtilis , Proteínas de Unión al ADN , Imagen Individual de Molécula , Imagen Individual de Molécula/métodos , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Microscopía Fluorescente/métodos , Proteínas Luminiscentes/metabolismo , Proteínas Luminiscentes/genética
15.
Methods Mol Biol ; 2814: 133-147, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38954203

RESUMEN

Activation processes at the plasma membrane have been studied with life-cell imaging using GFP fused to a protein that binds to a component of the activation process. In this way, PIP3 formation has been monitored with CRAC-GFP, Ras-GTP with RBD-Raf-GFP, and Rap-GTP with Ral-GDS-GFP. The fluorescent sensors translocate from the cytoplasm to the plasma membrane upon activation of the process. Although this translocation assay can provide very impressive images and movies, the method is not very sensitive, and amount of GFP-sensor at the plasma membrane is not linear with the amount of activator. The fluorescence in pixels at the cell boundary is partly coming from the GFP-sensor that is bound to the activated membrane and partly from unbound GFP-sensor in the cytosolic volume of that boundary pixel. The variable and unknown amount of cytosol in boundary pixels causes the low sensitivity and nonlinearity of the GFP-translocation assay. Here we describe a method in which the GFP-sensor is co-expressed with cytosolic-RFP. For each boundary pixels, the RFP fluorescence is used to determine the amount of cytosol of that pixel and is subtracted from the GFP fluorescence of that pixel yielding the amount of GFP-sensor that is specifically associated with the plasma membrane in that pixel. This GRminusRD method using GFP-sensor/RFP is at least tenfold more sensitive, more reproducible, and linear with activator compared to GFP-sensor alone.


Asunto(s)
Membrana Celular , Proteínas Fluorescentes Verdes , Membrana Celular/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Fluorescentes Verdes/genética , Humanos , Proteínas Luminiscentes/metabolismo , Proteínas Luminiscentes/genética , Transporte de Proteínas , Microscopía Fluorescente/métodos , Citosol/metabolismo , Animales
16.
J Phys Chem B ; 128(28): 6730-6741, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38968413

RESUMEN

Fluorescent proteins (FPs) are essential tools for advanced microscopy techniques such as super-resolution imaging, single-particle tracking, and quantitative single-molecule counting. Various FPs fused to DNA-binding proteins have been used to observe the subcellular location and movement of specific gene loci in living and fixed bacterial cells. However, quantitative assessments of the properties of FPs for gene locus measurements are still lacking. Here, we assessed various FPs to observe specific gene loci in live and fixed Escherichia coli cells using a fluorescent repressor-operator binding system (FROS), tet operator-Tet repressor proteins (TetR). Tsr-fused FPs were used to assess the intensity and photostability of various FPs (five red FPs: mCherry2, FusionRed, mRFP, mCrimson3, and dKatushka; and seven yellow FPs: SYFP2, Venus, mCitrine, YPet, mClover3, mTopaz, and EYFP) at the single-molecule level in living cells. These FPs were then used for gene locus measurements using FROS. Our results indicate that TetR-mCrimson3 (red) and TetR-EYFP (yellow) had better properties for visualizing gene loci than the other TetR-FPs. Furthermore, fixation procedures affected the clustering of diffusing TetR-FPs and altered the locations of the TetR-FP foci. Fixation with formaldehyde consistently disrupted proper DNA locus observations using TetR-FPs. Notably, the foci measured using TetR-mCrimson3 remained close to their original positions in live cells after glyoxal fixation. This in vivo study provides a cell-imaging guide for the use of FPs for gene-locus observation in E. coli and a scheme for evaluating the use of FPs for other cell-imaging purposes.


Asunto(s)
Escherichia coli , Proteínas Luminiscentes , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/química , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Sitios Genéticos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/química
17.
Lett Appl Microbiol ; 77(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39020263

RESUMEN

Oral Veillonella species are among the early colonizers of the human oral cavity. We constructed a small, single-selectable-marker shuttle plasmid, examined its ability to be transformed into diverse oral Veillonella strains, and assessed its potential use for expressing a gene encoding an oxygen-independent fluorescent protein, thus generating a fluorescent Veillonella parvula strain. Because tetracycline resistance is common in Veillonella, we replaced genes encoding ampicillin- and tetracycline-resistance in a previously described shuttle plasmid (pBSJL2) with a chloramphenicol acetyltransferase gene. The resulting plasmid pCF1135 was successfully introduced into four strains representing V. parvula and V. atypica by either natural transformation or electroporation. We then modified this plasmid to express a gene encoding an oxygen-independent fluorescent protein in V. parvula SKV38. The resulting strain yielded a fluorescence signal intensity ∼16 times higher than the wild type in microplate-based fluorimetry experiments. While fluorescence microscopy demonstrated that planktonic cells, colonies, and biofilms of fluorescent V. parvula could also be imaged, photobleaching was a significant issue. In conclusion, we anticipate this genetic system and information provided here will facilitate expanded studies of oral Veillonella species' properties and behavior.


Asunto(s)
Boca , Plásmidos , Veillonella , Plásmidos/genética , Veillonella/genética , Humanos , Boca/microbiología , Fluorescencia , Biopelículas/crecimiento & desarrollo , Proteínas Luminiscentes/genética , Vectores Genéticos , Electroporación , Microscopía Fluorescente , Resistencia a la Tetraciclina/genética
18.
Stem Cell Res ; 79: 103493, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39032428

RESUMEN

Myelin basic protein (MBP) is a major component of the myelin sheaths of oligodendrocytes in the central nervous system and Schwann cells of the peripheral nervous system. Here we generated heterozygous fluorescent reporter of MBP gene in human induced pluripotent stem cells (hiPSCs). CRISPR/Cas9 genome editing technology was employed to knock in fused tdTomato fluorescent protein and EF1 alpha promoter-driven Bleomycin (Zeocin) resistance gene to the translational MBP C-terminal region. The resulting line, MBP-TEZ, showed tdTomato fluorescence upon oligodendrocyte differentiation. This reporter hiPSC line provides a precedential opportunity for monitoring human myelin formation and degeneration and purifying MBP-expressing cell lineages.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Proteína Básica de Mielina/metabolismo , Proteína Básica de Mielina/genética , Vaina de Mielina/metabolismo , Línea Celular , Diferenciación Celular , Sistemas CRISPR-Cas , Genes Reporteros , Proteínas Luminiscentes/metabolismo , Proteínas Luminiscentes/genética , Edición Génica , Proteína Fluorescente Roja
19.
Methods Mol Biol ; 2824: 447-459, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39039429

RESUMEN

Rift Valley fever virus is able to infect multiple organs and cell types, and the course of infection varies between viral strains and between individuals in particular according to age, genetic background, and physiological status. Studies on viral and host factors involve detecting and quantifying viral load at multiple time points and in multiple tissues. While this is classically performed by genome quantification or viral titration, in vivo imaging techniques using recombinant viruses expressing a bioluminescent or fluorescent protein allow noninvasive longitudinal studies on the same group of mice over the entire course of disease and the detection of unsuspected sites of infection. Here, we describe the protocol to monitor and characterize mouse infection with Rift Valley fever virus by in vivo imaging using recombinant viruses expressing light-emitting reporter genes.


Asunto(s)
Genes Reporteros , Mediciones Luminiscentes , Virus de la Fiebre del Valle del Rift , Animales , Ratones , Mediciones Luminiscentes/métodos , Virus de la Fiebre del Valle del Rift/genética , Fiebre del Valle del Rift/virología , Fiebre del Valle del Rift/diagnóstico , Carga Viral/métodos , Modelos Animales de Enfermedad , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo
20.
Cell Rep Methods ; 4(7): 100815, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38986612

RESUMEN

The ability of cells to sense and respond to mechanical forces is critical in many physiological and pathological processes. However, determining the mechanisms by which forces affect protein function inside cells remains challenging. Motivated by in vitro demonstrations of fluorescent proteins (FPs) undergoing reversible mechanical switching of fluorescence, we investigated whether force-sensitive changes in FP function could be visualized in cells. Guided by a computational model of FP mechanical switching, we develop a formalism for its detection in Förster resonance energy transfer (FRET)-based biosensors and demonstrate its occurrence in cellulo within a synthetic actin crosslinker and the mechanical linker protein vinculin. We find that in cellulo mechanical switching is reversible and altered by manipulation of cell force generation, external stiffness, and force-sensitive bond dynamics of the biosensor. This work describes a framework for assessing FP mechanical stability and provides a means of probing force-sensitive protein function inside cells.


Asunto(s)
Técnicas Biosensibles , Transferencia Resonante de Energía de Fluorescencia , Proteínas Luminiscentes , Transferencia Resonante de Energía de Fluorescencia/métodos , Proteínas Luminiscentes/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/química , Técnicas Biosensibles/métodos , Humanos , Vinculina/metabolismo , Vinculina/química , Actinas/metabolismo , Actinas/química , Fenómenos Biomecánicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA