Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 519
Filtrar
1.
Hum Cell ; 37(4): 1024-1038, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38691334

RESUMEN

Osteoporosis (OP) is a highly prevalent disorder characterized by low bone mass that severely reduces patient quality of life. Although numerous treatments for OP have been introduced in clinic, many have side effects and high costs. Therefore, there is still an unmet need for optimal solutions. Here, raw signal analysis was used to identify potential high-risk factors for OP, and the biological functions and possible mechanisms of action (MOAs) of these factors were explored via gene set enrichment analysis (GSEA). Subsequently, molecular biological experiments were performed to verify and analyze the discovered risk factors in vitro and in vivo. PMAIP1 was identified as a potential risk factor for OP and significantly suppressed autophagy in osteoblasts via the AMPK/mTOR pathway, thereby inhibiting the proliferation and differentiation of osteoblasts. Furthermore, we constructed an ovariectomy (OVX) model of OP in rats and simultaneously applied si-PMAIP1 for in vivo interference. si-PMAIP1 upregulated the expression of LC3B and p-AMPK and downregulated the expression of p-mTOR, and these effects were reversed by the autophagy inhibitor. Micro-CT revealed that, si-PMAIP1 significantly inhibited the development of osteoporosis in OVX model rats, and this therapeutic effect was attenuated by treatment with an autophagy inhibitor. This study explored the role and mechanism of PMAIP1 in OP and demonstrated that PMAIP1 may serve as a novel target for OP treatment.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Autofagia , Modelos Animales de Enfermedad , Osteoblastos , Osteoporosis , Transducción de Señal , Serina-Treonina Quinasas TOR , Autofagia/genética , Osteoblastos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/fisiología , Osteoporosis/metabolismo , Osteoporosis/genética , Osteoporosis/etiología , Animales , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/fisiología , Transducción de Señal/genética , Ratas , Femenino , Humanos , Ovariectomía , Células Cultivadas , Expresión Génica/genética , Diferenciación Celular/genética , Ratas Sprague-Dawley , Proliferación Celular/genética
2.
Am J Physiol Regul Integr Comp Physiol ; 323(2): R227-R243, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35503781

RESUMEN

Pain disorders induce metabolic stress in peripheral sensory neurons by reducing mitochondrial output, shifting cellular metabolism, and altering energy use. These processes implicate neuronal metabolism as an avenue for creating novel therapeutics. Liver kinase B1 (LKB1) mediates the cellular response to metabolic stress by inducing the 5'-adenosine monophosphate activated kinase (AMPK) pathway. The LKB1-AMPK pathway increases energy-producing processes, including mitochondrial output. These processes inhibit pain by directly or indirectly restoring energetic balance within a cell. Although the LKB1-AMPK pathway has been linked to pain relief, it is not yet known which cell is responsible for this property, as well any direct ties to cellular metabolism. To elucidate this, we developed a genetic mouse model where LKB1 is selectively removed from Nav1.8+ pain sensory neurons and metabolically stressed them by fasting for 24 h. We found females, but not males, had neuron-specific, LKB1-dependent restoration of metabolic stress-induced mitochondrial metabolism. This was reflected in mechanical hypersensitivity, where the absence of LKB1 led to hypersensitivity in female, but not male, animals. This discrepancy suggests a sex- and cell-specific contribution to LKB1-dependent fasting-induced mechanical hypersensitivity. Although our data represent a potential role for LKB1 in anti-pain pathways in a metabolic-specific manner, more must be done to investigate these sex differences.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Mitocondrias , Estrés Fisiológico , Proteínas Quinasas Activadas por AMP/fisiología , Animales , Femenino , Masculino , Ratones , Mitocondrias/fisiología , Células Receptoras Sensoriales/metabolismo , Factores Sexuales
3.
Osteoarthritis Cartilage ; 30(1): 160-171, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34687898

RESUMEN

OBJECTIVE: We investigated the effect of berberine, a natural plant product that can activate AMP-activated protein kinase (AMPK), on Osteoarthritis (OA) development and associated pain in mice. DESIGN: Human primary knee chondrocytes were utilized to investigate how AMPK is activated by berberine. Both global knockout (KO) of AMPKα1 and congenic wild type (WT) mice were subjected to the post-traumatic OA through destabilization of medial meniscus (DMM) surgery. Two weeks after surgery, the mice were randomly divided into two groups with one group receiving berberine chloride daily via drinking water and were sacrificed at 6 and 12 weeks after surgery. OA severity was assessed by histological and histomorphometric analyses of cartilage degradation, synovitis, and osteophyte formation. OA-associated pain behavior was also determined. Immunohistochemistry (IHC) analyses were carried out to examine changes in AMPK signaling. RESULTS: Berberine induced phosphorylation of AMPKα (Thr172) via liver kinase B1 (LKB1), the major upstream kinase of AMPK, in chondrocytes in vitro. Both WT and AMPKα1KO developed OA and associated pain post DMM surgery. However, treatment with berberine significantly reduced severity of OA and associated pain in WT but not AMPKα1KO mice. IHC analysis of WT DMM knee cartilage further revealed that berberine inhibited concomitant loss of expression and phosphorylation of AMPKα and expression of SIRT1 and SIRT3, suggesting an important role of activation of AMPK signaling in mediating beneficial effect of berberine. CONCLUSIONS: Berberine acts through AMPK to reduce joint structural damage and pain associated with post-traumatic OA in mice in vivo.


Asunto(s)
Proteínas Quinasas Activadas por AMP/fisiología , Artralgia/prevención & control , Berberina/administración & dosificación , Osteoartritis/prevención & control , Proteínas Quinasas Activadas por AMP/efectos de los fármacos , Administración Oral , Animales , Artralgia/etiología , Berberina/farmacología , Articulaciones/lesiones , Masculino , Ratones , Osteoartritis/etiología
4.
Arthritis Rheumatol ; 74(2): 212-222, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34398520

RESUMEN

OBJECTIVE: To investigate whether thermogenesis and the hypothalamus may be involved in the physiopathology of experimental arthritis (EA). METHODS: EA was induced in male Lewis rats by intradermal injection of Freund's complete adjuvant (CFA). Food intake, body weight, plasma cytokines, thermographic analysis, gene and protein expression of thermogenic markers in brown adipose tissue (BAT) and white adipose tissue (WAT), and hypothalamic AMP-activated protein kinase (AMPK) were analyzed. Virogenetic activation of hypothalamic AMPK was performed. RESULTS: We first demonstrated that EA was associated with increased BAT thermogenesis and browning of subcutaneous WAT leading to elevated energy expenditure. Moreover, rats experiencing EA showed inhibition of hypothalamic AMPK, a canonical energy sensor modulating energy homeostasis at the central level. Notably, specific genetic activation of AMPK in the ventromedial nucleus of the hypothalamus (a key site modulating energy metabolism) reversed the effect of EA on energy balance, brown fat, and browning, as well as promoting amelioration of synovial inflammation in experimental arthritis. CONCLUSION: Overall, these data indicate that EA promotes a central catabolic state that can be targeted and reversed by the activation of hypothalamic AMPK. This might provide new therapeutic alternatives to treat rheumatoid arthritis (RA)-associated metabolic comorbidities, improving the overall prognosis in patients with RA.


Asunto(s)
Proteínas Quinasas Activadas por AMP/fisiología , Artritis/metabolismo , Artritis/fisiopatología , Hipotálamo/enzimología , Termogénesis , Animales , Artritis/complicaciones , Masculino , Ratas , Ratas Endogámicas Lew
5.
Pathol Res Pract ; 229: 153735, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34922208

RESUMEN

BACKGROUND: Sodium/iodide symporter (NIS) acts as a vital role in regulation of iodide uptake in thyroid cancer. However, the efficient approach to increase NIS expression and the mechanism of NIS-mediated iodide uptake in thyroid cancer remain unclear. METHODS: Small activating RNA (saRNA) was used to promote NIS expression. And the cell viability, apoptosis, and autophagy were detected using Cell count-kit 8 (CCK-8), Annexin V-FITC/PI double staining, and GFP-LC3 immunofluorescence assays, respectively. The protein levels of caspase 3, Bax, Bcl-2, ATG5, ATG12, LC3B Ⅱ to LC3B Ⅰ, Beclin 1, P62, AMPK, mTOR, P70S6K, actin, and phosphorylation of AMPK, mTOR, P70S6K were determined by western blotting. Moreover, a nude murine node with transplanted NC-dsRNA or NIS-482-transfected SW579 cells was used to examine the effect of NIS-mediated autophagy in vivo. And the levels of caspase 3 and ki67 were examined by immunohistochemical staining assay. RESULTS: saRNA mediated NIS mRNA and protein upregulated in SW579 cells. saRNA-mediated NIS expression inhibited cell proliferation, induced apoptosis and autophagy, and promoted iodide uptake in SW579 cells. Moreover, the effects of NIS on cells were enhanced by autophagy activator Rapamycin whereas reversed by autophagy inhibitor 3-Methyladenine (3-MA). For mechanism analysis, we found that NIS upregulation exerted the effects on cell proliferation, apoptosis, autophagy, and iodide uptake via regulating AMPK/mTOR pathway. We also demonstrated that saRNA-mediated NIS expression promoted iodide uptake in vivo. CONCLUSION: saRNA-mediated NIS expression acted as a critical role in increasing iodide uptake via AMPK/mTOR pathway in thyroid cancer.


Asunto(s)
Proteínas Quinasas Activadas por AMP/fisiología , Radioisótopos de Yodo , Simportadores/genética , Simportadores/fisiología , Serina-Treonina Quinasas TOR/fisiología , Neoplasias de la Tiroides/genética , Animales , Humanos , Radioisótopos de Yodo/farmacocinética , Ratones , Transducción de Señal , Neoplasias de la Tiroides/metabolismo , Células Tumorales Cultivadas
6.
Cell Mol Life Sci ; 79(1): 42, 2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34921639

RESUMEN

Targeting airway goblet cell metaplasia is a novel strategy that can potentially reduce the chronic obstructive pulmonary disease (COPD) symptoms. Tumor suppressor liver kinase B1 (LKB1) is an important regulator of the proliferation and differentiation of stem/progenitor cells. In this study, we report that LKB1 expression was downregulated in the lungs of patients with COPD and in those of cigarette smoke-exposed mice. Nkx2.1Cre; Lkb1f/f mice with conditional loss of Lkb1 in mouse lung epithelium displayed airway mucus hypersecretion and pulmonary macrophage infiltration. Single-cell transcriptomic analysis of the lung tissues from Nkx2.1Cre; Lkb1f/f mice further revealed that airway goblet cell differentiation was altered in the absence of LKB1. An organoid culture study demonstrated that Lkb1 deficiency in mouse airway (club) progenitor cells promoted the expression of FIZZ1/RELM-α, which drove airway goblet cell differentiation and pulmonary macrophage recruitment. Additionally, monocyte-derived macrophages in the lungs of Nkx2.1Cre; Lkb1f/f mice exhibited an alternatively activated M2 phenotype, while expressing RELM-α, which subsequently aggravated airway goblet cell metaplasia. Our findings suggest that the LKB1-mediated crosstalk between airway progenitor cells and macrophages regulates airway goblet cell metaplasia. Moreover, our data suggest that LKB1 agonists might serve as a potential therapeutic option to treat respiratory disorders associated with goblet cell metaplasia.


Asunto(s)
Quinasas de la Proteína-Quinasa Activada por el AMP/fisiología , Proteínas Quinasas Activadas por AMP/fisiología , Células Caliciformes/metabolismo , Pulmón/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Animales , Comunicación Celular , Línea Celular , Fibroblastos , Células Caliciformes/patología , Humanos , Pulmón/patología , Ratones , Ratones Transgénicos
7.
Mediators Inflamm ; 2021: 4736670, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34876884

RESUMEN

Synovitis is the primary driving factor for the occurrence and development of knee osteoarthritis (KOA) and fibroblast-like synoviocytes (FLSs) and plays a crucial role during this process. Our previous works revealed that transient receptor potential ankyrin 1 (TRPA1) ion channels mediate the amplification of KOA synovitis. In recent years, essential oils have been proved to have blocking effect on transient receptor potential channels. Meanwhile, the therapeutic effect of Sanse Powder on KOA synovitis has been confirmed in clinical trials and basic studies; although, the mechanism remains unclear. In the present study, Sanse Powder essential oil nanoemulsion (SP-NEs) was prepared, and then chemical composition, physicochemical properties, and stability were investigated. Besides, both in MIA-induced KOA rats and in LPS-stimulated FLSs, we investigated whether SP-NES could alleviate KOA synovitis by interfering with AMP-activated protein kinase- (AMPK-) mammalian target of rapamycin (mTOR), an energy sensing pathway proved to negatively regulate the TRPA1. Our research shows that the top three substances in SP-NEs were tumerone, delta-cadinene, and Ar-tumerone, which accounted for 51.62% of the total, and should be considered as the main pharmacodynamic ingredient. Less inflammatory cell infiltration and type I collagen deposition were found in the synovial tissue of KOA rats treated with SP-NEs, as well as the downregulated expressions of interleukin (IL)-1ß, IL-18, and TRPA1. Besides, SP-NEs increased the phosphorylation level of AMPK and decreased the phosphorylation level of mTOR in the KOA model, and SP-NEs also upregulated expressions of peroxisome proliferator-activated receptor-gamma (PPARγ) and PPARγ coactivator-1α and downstream signaling molecules of AMPK-mTOR in vivo and in vitro. To conclude, a kind of Chinese herbal medicine for external use which is effective in treating synovitis of KOA was extracted and prepared into essential oil nanoemulsion with stable properties in the present study. It may alleviate synovitis in experimental KOA through the negative regulation of TRPA1 by AMPK-mTOR signaling.


Asunto(s)
Proteínas Quinasas Activadas por AMP/fisiología , Medicina Tradicional China , Aceites Volátiles/farmacología , Osteoartritis de la Rodilla/tratamiento farmacológico , Sinoviocitos/efectos de los fármacos , Sinovitis/tratamiento farmacológico , Serina-Treonina Quinasas TOR/farmacología , Serina-Treonina Quinasas TOR/fisiología , Canal Catiónico TRPA1/fisiología , Animales , Modelos Animales de Enfermedad , Emulsiones , Masculino , Nanopartículas , Polvos , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Sinoviocitos/fisiología
8.
Sci Rep ; 11(1): 24410, 2021 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-34949756

RESUMEN

AMP-activated protein kinase (AMPK) has an important role in cellular energy homeostasis and has emerged as a promising target for treatment of Type 2 Diabetes (T2D) due to its beneficial effects on insulin sensitivity and glucose homeostasis. O304 is a pan-AMPK activator that has been shown to improve glucose homeostasis in both mouse models of diabetes and in human T2D subjects. Here, we describe the genome-wide transcriptional profile and chromatin landscape of pancreatic islets following O304 treatment of mice fed high-fat diet (HFD). O304 largely prevented genome-wide gene expression changes associated with HFD feeding in CBA mice and these changes were associated with remodelling of active and repressive chromatin marks. In particular, the increased expression of the ß-cell stress marker Aldh1a3 in islets from HFD-mice is completely abrogated following O304 treatment, which is accompanied by loss of active chromatin marks in the promoter as well as distant non-coding regions upstream of the Aldh1a3 gene. Moreover, O304 treatment restored dysfunctional glucose homeostasis as well as expression of key markers associated with ß-cell function in mice with already established obesity. Our findings provide preclinical evidence that O304 is a promising therapeutic compound not only for T2D remission but also for restoration of ß-cell function following remission of T2D diabetes.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa/efectos adversos , Activadores de Enzimas/farmacología , Expresión Génica/efectos de los fármacos , Código de Histonas/efectos de los fármacos , Código de Histonas/genética , Histonas/metabolismo , Islotes Pancreáticos/metabolismo , Obesidad/metabolismo , Tiadiazoles/farmacología , Proteínas Quinasas Activadas por AMP/fisiología , Familia de Aldehído Deshidrogenasa 1/genética , Familia de Aldehído Deshidrogenasa 1/metabolismo , Animales , Diabetes Mellitus Tipo 2/fisiopatología , Modelos Animales de Enfermedad , Glucosa/metabolismo , Homeostasis/efectos de los fármacos , Células Secretoras de Insulina/fisiología , Ratones , Ratones Endogámicos CBA , Obesidad/etiología , Retinal-Deshidrogenasa/genética , Retinal-Deshidrogenasa/metabolismo
9.
J Clin Invest ; 131(22)2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34779410

RESUMEN

Growing tumors exist in metabolically compromised environments that require activation of multiple pathways to scavenge nutrients to support accelerated rates of growth. The folliculin (FLCN) tumor suppressor complex (FLCN, FNIP1, FNIP2) is implicated in the regulation of energy homeostasis via 2 metabolic master kinases: AMPK and mTORC1. Loss-of-function mutations of the FLCN tumor suppressor complex have only been reported in renal tumors in patients with the rare Birt-Hogg-Dube syndrome. Here, we revealed that FLCN, FNIP1, and FNIP2 are downregulated in many human cancers, including poor-prognosis invasive basal-like breast carcinomas where AMPK and TFE3 targets are activated compared with the luminal, less aggressive subtypes. FLCN loss in luminal breast cancer promoted tumor growth through TFE3 activation and subsequent induction of several pathways, including autophagy, lysosomal biogenesis, aerobic glycolysis, and angiogenesis. Strikingly, induction of aerobic glycolysis and angiogenesis in FLCN-deficient cells was dictated by the activation of the PGC-1α/HIF-1α pathway, which we showed to be TFE3 dependent, directly linking TFE3 to Warburg metabolic reprogramming and angiogenesis. Conversely, FLCN overexpression in invasive basal-like breast cancer models attenuated TFE3 nuclear localization, TFE3-dependent transcriptional activity, and tumor growth. These findings support a general role of a deregulated FLCN/TFE3 tumor suppressor pathway in human cancers.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/fisiología , Neoplasias de la Mama/patología , Neovascularización Patológica/prevención & control , Proteínas Proto-Oncogénicas/fisiología , Proteínas Supresoras de Tumor/fisiología , Efecto Warburg en Oncología , Proteínas Quinasas Activadas por AMP/fisiología , Línea Celular Tumoral , Femenino , Humanos , Fosforilación Oxidativa
10.
Cell Rep ; 37(7): 110024, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34788610

RESUMEN

To reshape neuronal connectivity in adult stages, Drosophila sensory neurons prune their dendrites during metamorphosis using a genetic degeneration program that is induced by the steroid hormone ecdysone. Metamorphosis is a nonfeeding stage that imposes metabolic constraints on development. We find that AMP-activated protein kinase (AMPK), a regulator of energy homeostasis, is cell-autonomously required for dendrite pruning. AMPK is activated by ecdysone and promotes oxidative phosphorylation and pyruvate usage, likely to enable neurons to use noncarbohydrate metabolites such as amino acids for energy production. Loss of AMPK or mitochondrial deficiency causes specific defects in pruning factor translation and the ubiquitin-proteasome system. Our findings distinguish pruning from pathological neurite degeneration, which is often induced by defects in energy production, and highlight how metabolism is adapted to fit energy-costly developmental transitions.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas de Drosophila/metabolismo , Plasticidad Neuronal/fisiología , Proteínas Quinasas Activadas por AMP/fisiología , Animales , Proteínas Portadoras/metabolismo , Dendritas/metabolismo , Proteínas de Drosophila/fisiología , Drosophila melanogaster/metabolismo , Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/genética , Metamorfosis Biológica/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Pupa/genética , Células Receptoras Sensoriales/metabolismo , Transcriptoma/genética , Ubiquitina/metabolismo
11.
Front Immunol ; 12: 754083, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34712241

RESUMEN

Myeloid-derived suppressor cells (MDSCs) are a hetero geneous group of cells, which can suppress the immune response, promote tumor progression and impair the efficacy of immunotherapies. Consequently, the pharmacological targeting of MDSC is emerging as a new immunotherapeutic strategy to stimulate the natural anti-tumor immune response and potentiate the efficacy of immunotherapies. Herein, we leveraged genetically modified models and a small molecule inhibitor to validate Calcium-Calmodulin Kinase Kinase 2 (CaMKK2) as a druggable target to control MDSC accumulation in tumor-bearing mice. The results indicated that deletion of CaMKK2 in the host attenuated the growth of engrafted tumor cells, and this phenomenon was associated with increased antitumor T cell response and decreased accumulation of MDSC. The adoptive transfer of MDSC was sufficient to restore the ability of the tumor to grow in Camkk2-/- mice, confirming the key role of MDSC in the mechanism of tumor rejection. In vitro studies indicated that blocking of CaMKK2 is sufficient to impair the yield of MDSC. Surprisingly, MDSC generated from Camkk2-/- bone marrow cells also showed a higher ability to terminally differentiate toward more immunogenic cell types (e.g inflammatory macrophages and dendritic cells) compared to wild type (WT). Higher intracellular levels of reactive oxygen species (ROS) accumulated in Camkk2-/- MDSC, increasing their susceptibility to apoptosis and promoting their terminal differentiation toward more mature myeloid cells. Mechanistic studies indicated that AMP-activated protein kinase (AMPK), which is a known CaMKK2 proximal target controlling the oxidative stress response, fine-tunes ROS accumulation in MDSC. Accordingly, failure to activate the CaMKK2-AMPK axis can account for the elevated ROS levels in Camkk2-/- MDSC. These results highlight CaMKK2 as an important regulator of the MDSC lifecycle, identifying this kinase as a new druggable target to restrain MDSC expansion and enhance the efficacy of anti-tumor immunotherapy.


Asunto(s)
Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/fisiología , Células Supresoras de Origen Mieloide/enzimología , Proteínas de Neoplasias/fisiología , Proteínas Quinasas Activadas por AMP/fisiología , Traslado Adoptivo , Animales , Apoptosis , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/deficiencia , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Femenino , Depleción Linfocítica , Linfoma/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Mitocondrias/metabolismo , Células Supresoras de Origen Mieloide/fisiología , Células Supresoras de Origen Mieloide/trasplante , Mielopoyesis , Especies Reactivas de Oxígeno , Microambiente Tumoral
12.
Mol Cell ; 81(18): 3803-3819.e7, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34547240

RESUMEN

Mitochondrial dynamics regulated by mitochondrial fusion and fission maintain mitochondrial functions, whose alterations underline various human diseases. Here, we show that inositol is a critical metabolite directly restricting AMPK-dependent mitochondrial fission independently of its classical mode as a precursor for phosphoinositide generation. Inositol decline by IMPA1/2 deficiency elicits AMPK activation and mitochondrial fission without affecting ATP level, whereas inositol accumulation prevents AMPK-dependent mitochondrial fission. Metabolic stress or mitochondrial damage causes inositol decline in cells and mice to elicit AMPK-dependent mitochondrial fission. Inositol directly binds to AMPKγ and competes with AMP for AMPKγ binding, leading to restriction of AMPK activation and mitochondrial fission. Our study suggests that the AMP/inositol ratio is a critical determinant for AMPK activation and establishes a model in which AMPK activation requires inositol decline to release AMPKγ for AMP binding. Hence, AMPK is an inositol sensor, whose inactivation by inositol serves as a mechanism to restrict mitochondrial fission.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Inositol/metabolismo , Dinámicas Mitocondriales/fisiología , Proteínas Quinasas Activadas por AMP/fisiología , Animales , Línea Celular , Humanos , Inositol/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Células PC-3 , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación , Estrés Fisiológico/fisiología
13.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34502388

RESUMEN

To achieve growth, microbial organisms must cope with stresses and adapt to the environment, exploiting the available nutrients with the highest efficiency. In Saccharomyces cerevisiae, Ras/PKA and Snf1/AMPK pathways regulate cellular metabolism according to the supply of glucose, alternatively supporting fermentation or mitochondrial respiration. Many reports have highlighted crosstalk between these two pathways, even without providing a comprehensive mechanism of regulation. Here, we show that glucose-dependent inactivation of Snf1/AMPK is independent from the Ras/PKA pathway. Decoupling glucose uptake rate from glucose concentration, we highlight a strong coordination between glycolytic metabolism and Snf1/AMPK, with an inverse correlation between Snf1/AMPK phosphorylation state and glucose uptake rate, regardless of glucose concentration in the medium. Despite fructose-1,6-bisphosphate (F1,6BP) being proposed as a glycolytic flux sensor, we demonstrate that glucose-6-phosphate (G6P), and not F1,6BP, is involved in the control of Snf1/AMPK phosphorylation state. Altogether, this study supports a model by which Snf1/AMPK senses glucose flux independently from PKA activity, and thanks to conversion of glucose into G6P.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Proteínas Quinasas Activadas por AMP/fisiología , Transporte Biológico , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fermentación , Glucosa/metabolismo , Glucosa-6-Fosfato/metabolismo , Glucólisis , Mitocondrias/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas ras/metabolismo
14.
Investig Clin Urol ; 62(5): 600-609, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34387036

RESUMEN

PURPOSE: Ischemia disrupts cellular energy homeostasis. Adenosine monophosphate-activated protein kinase alpha-2 (AMPK-α2) is a subunit of AMPK that senses cellular energy deprivation and signals metabolic stress. Our goal was to examine the expression levels and functional role of AMPK-α2 in bladder ischemia. MATERIALS AND METHODS: Iliac artery atherosclerosis and bladder ischemia were engendered in apolipoprotein E knockout rats by partial arterial endothelial denudation using a balloon catheter. After eight weeks, total and phosphorylated AMPK-α2 expression was analyzed by western blotting. Structural integrity of AMPK-α2 protein was assessed by Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS). Functional role of AMPK-α2 was examined by treating animals with the AMPK activator 5-aminoimidazole-4-carboxamide-1-beta-D ribofuranoside (AICAR). Tissue contractility was measured in the organ bath and bladder nerve density was examined by immunostaining. RESULTS: Total AMPK-α2 expression increased in bladder ischemia, while phosphorylated AMPK-α2 was significantly downregulated. LC-MS/MS suggested post-translational modification of AMPK-α2 functional domains including phosphorylation sites, suggesting accumulation of catalytically inactive AMPK-α2 in bladder ischemia. Treatment of rats with AICAR diminished the force of overactive detrusor contractions and increased bladder capacity but did not have a significant effect on the frequency of bladder contractions. AICAR diminished contractile reactivity of ischemic tissues in the organ bath and prevented loss of nerve fibers in bladder ischemia. CONCLUSIONS: Ischemia induces post-translational modification of AMPK-α2 protein. Impairment of AMPK-α2 may contribute to overactive detrusor contractions and loss of nerve fibers in bladder ischemia. AMPK activators may have therapeutic potential against detrusor overactivity and neurodegeneration in bladder conditions involving ischemia.


Asunto(s)
Proteínas Quinasas Activadas por AMP/fisiología , Isquemia/fisiopatología , Contracción Muscular , Vejiga Urinaria/irrigación sanguínea , Vejiga Urinaria/fisiopatología , Animales , Ratas
15.
Mol Nutr Food Res ; 65(20): e2100167, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34268878

RESUMEN

SCOPE: Adiponectin (ADPN), a kind of adipokines, plays an important role in the regulation of lipid metabolism. The objective of this study is focused on the ADPN to investigate the functional mechanisms of pectin oligosaccharide (POS) from hawthorn fruit in the improvement of hepatic fatty acid oxidation. METHOD AND RESULTS: High-fat fed mice are used in this experiment. POS is administrated with the doses of 0.25, 0.75, and 1.5 g kg-1 diet, respectively. The results demonstrate that gene and protein expressions of ADPN synthesis regulators involved in PKA/ERK/CREB and C/EBPα/PPARγ pathways are upregulated by POS administration. POS also activates the AdiopR1/AMPKα/PGC1 and AdipoR2/PPARα signaling pathways to improve the fatty acid oxidation in the liver, which is further accelerated by the enhancement of mitochondrial functions. CONCLUSION: POS can act as an ADPN activator to improve lipid metabolism, leading it to the applications of biomedical and functional foods for ameliorating chronic liver diseases resulted from a high-energy diet.


Asunto(s)
Adiponectina/biosíntesis , Crataegus/química , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Pectinas/farmacología , Proteínas Quinasas Activadas por AMP/fisiología , Animales , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Masculino , Ratones , Oxidación-Reducción , PPAR gamma/fisiología , Receptores de Adiponectina/fisiología , Transducción de Señal/fisiología
16.
Cancer Res ; 81(20): 5147-5160, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34301761

RESUMEN

Ovarian cancer is the most lethal gynecologic cancer to date. High-grade serous ovarian carcinoma (HGSOC) accounts for most ovarian cancer cases, and it is most frequently diagnosed at advanced stages. Here, we developed a novel strategy to generate somatic ovarian cancer mouse models using a combination of in vivo electroporation and CRISPR-Cas9-mediated genome editing. Mutation of tumor suppressor genes associated with HGSOC in two different combinations (Brca1, Tp53, Pten with and without Lkb1) resulted in successfully generation of HGSOC, albeit with different latencies and pathophysiology. Implementing Cre lineage tracing in this system enabled visualization of peritoneal micrometastases in an immune-competent environment. In addition, these models displayed copy number alterations and phenotypes similar to human HGSOC. Because this strategy is flexible in selecting mutation combinations and targeting areas, it could prove highly useful for generating mouse models to advance the understanding and treatment of ovarian cancer. SIGNIFICANCE: This study unveils a new strategy to generate genetic mouse models of ovarian cancer with high flexibility in selecting mutation combinations and targeting areas.


Asunto(s)
Proteínas Quinasas Activadas por AMP/fisiología , Sistemas CRISPR-Cas , Cistadenocarcinoma Seroso/patología , Modelos Animales de Enfermedad , Trompas Uterinas/patología , Edición Génica , Neoplasias Ováricas/patología , Animales , Proteína BRCA1/fisiología , Cistadenocarcinoma Seroso/genética , Variaciones en el Número de Copia de ADN , Electroporación , Trompas Uterinas/metabolismo , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Neoplasias Ováricas/genética , Fosfohidrolasa PTEN/fisiología , Proteína p53 Supresora de Tumor/fisiología
17.
Cells ; 10(5)2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-34066631

RESUMEN

Obesity is becoming a pandemic, and its prevalence is still increasing. Considering that obesity increases the risk of developing cardiometabolic diseases, research efforts are focusing on new ways to combat obesity. Brown adipose tissue (BAT) has emerged as a possible target to achieve this for its functional role in energy expenditure by means of increasing thermogenesis. An important metabolic sensor and regulator of whole-body energy balance is AMP-activated protein kinase (AMPK), and its role in energy metabolism is evident. This review highlights the mechanisms of BAT activation and investigates how AMPK can be used as a target for BAT activation. We review compounds and other factors that are able to activate AMPK and further discuss the therapeutic use of AMPK in BAT activation. Extensive research shows that AMPK can be activated by a number of different kinases, such as LKB1, CaMKK, but also small molecules, hormones, and metabolic stresses. AMPK is able to activate BAT by inducing adipogenesis, maintaining mitochondrial homeostasis and inducing browning in white adipose tissue. We conclude that, despite encouraging results, many uncertainties should be clarified before AMPK can be posed as a target for anti-obesity treatment via BAT activation.


Asunto(s)
Proteínas Quinasas Activadas por AMP/fisiología , Tejido Adiposo Pardo/metabolismo , Obesidad/metabolismo , Tejido Adiposo Pardo/citología , Tejido Adiposo Pardo/patología , Animales , Técnicas de Cultivo de Célula , Metabolismo Energético , Humanos , Mitocondrias/metabolismo , Termogénesis
18.
Front Immunol ; 12: 675660, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34025674

RESUMEN

Microglia are the resident immune cells of the central nervous system (CNS). It is well established that microglia are activated and polarized to acquire different inflammatory phenotypes, either pro-inflammatory or anti-inflammatory phenotypes, which act as a critical component in the neuroinflammation following intracerebral hemorrhage (ICH). Microglia produce pro-inflammatory mediators at the early stages after ICH onset, anti-inflammatory microglia with neuroprotective effects appear to be suppressed. Previous research found that driving microglia towards an anti-inflammatory phenotype could restrict inflammation and engulf cellular debris. The principal objective of this review is to analyze the phenotypes and dynamic profiles of microglia as well as their shift in functional response following ICH. The results may further the understanding of the body's self-regulatory functions involving microglia following ICH. On this basis, suggestions for future clinical development and research are provided.


Asunto(s)
Hemorragia Cerebral/inmunología , Microglía/fisiología , Proteínas Quinasas Activadas por AMP/fisiología , Barrera Hematoencefálica , Polaridad Celular , Glucógeno Sintasa Quinasa 3 beta/fisiología , Humanos , Inflamación/etiología , Sistema de Señalización de MAP Quinasas/fisiología , MicroARNs/fisiología
19.
Metab Brain Dis ; 36(7): 1501-1521, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33988807

RESUMEN

As progressive, chronic, incurable and common reasons for disability and death, neurodegenerative diseases (NDDs) are significant threats to human health. Besides, the increasing prevalence of neuronal gradual degeneration and death during NDDs has made them a global concern. Since yet, no effective treatment has been developed to combat multiple dysregulated pathways/mediators and related complications in NDDs. Therefore, there is an urgent need to create influential and multi-target factors to combat neuronal damages. Accordingly, the plant kingdom has drawn a bright future. Among natural entities, flavonoids are considered a rich source of drug discovery and development with potential biological and medicinal activities. Growing studies have reported multiple dysregulated pathways in NDDs, which among those mediator AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) play critical roles. In this line, critical role of flavonoids in the upregulation of AMPK/PGC-1α pathway seems to pave the road in the treatment of Alzheimer's disease (AD), Parkinson's disease (PD), aging, central nervous system (brain/spinal cord) damages, stroke, and other NDDs. In the present study, the regulatory role of flavonoids in managing various NDDs has been shown to pass through AMPK/PGC-1α signaling pathway.


Asunto(s)
Proteínas Quinasas Activadas por AMP/fisiología , Flavonoides/farmacología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/fisiología , Envejecimiento/efectos de los fármacos , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Lesiones Traumáticas del Encéfalo/tratamiento farmacológico , Flavonoides/uso terapéutico , Humanos , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Trastornos de la Memoria/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos
20.
Front Immunol ; 12: 630318, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33790902

RESUMEN

Macrophages comprise the front line of defense against various pathogens. Classically activated macrophages (M1), induced by IFN-γ and LPS, highly express inflammatory cytokines and contribute to inflammatory processes. By contrast, alternatively activated macrophages (M2) are induced by IL-4 and IL-13, produce IL-10, and display anti-inflammatory activity. Adenylate kinase 4 (Ak4), an enzyme that transfers phosphate group among ATP/GTP, AMP, and ADP, is a key modulator of ATP and maintains the homeostasis of cellular nucleotides which is essential for cell functions. However, its role in regulating the function of macrophages is not fully understood. Here we report that Ak4 expression is induced in M1 but not M2 macrophages. Suppressing the expression of Ak4 in M1 macrophages with shRNA or siRNA enhances ATP production and decreases ROS production, bactericidal ability and glycolysis in M1 cells. Moreover, Ak4 regulates the expression of inflammation genes, including Il1b, Il6, Tnfa, Nos2, Nox2, and Hif1a, in M1 macrophages. We further demonstrate that Ak4 inhibits the activation of AMPK and forms a positive feedback loop with Hif1α to promote the expression of inflammation-related genes in M1 cells. Furthermore, RNA-seq analysis demonstrates that Ak4 also regulates other biological processes in addition to the expression of inflammation-related genes in M1 cells. Interestingly, Ak4 does not regulate M1/M2 polarization. Taken together, our study uncovers a potential mechanism linking energy consumption and inflammation in macrophages.


Asunto(s)
Proteínas Quinasas Activadas por AMP/fisiología , Adenilato Quinasa/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Inflamación/etiología , Macrófagos/fisiología , Adenosina Trifosfato/metabolismo , Animales , Polaridad Celular , Células Cultivadas , Femenino , Glucólisis , Inflamación/metabolismo , Ratones , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA