Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.650
Filtrar
1.
PeerJ ; 12: e17946, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39308828

RESUMEN

Background: Aspergillus cristatus was a filamentous fungus that produced sexual spores under hypotonic stress and asexual spores under hypertonic stress. It could be useful for understanding filamentous fungi's sporulation mechanism. Previously, we conducted functional studies on Achog1, which regulated the hyperosmotic glycerol signaling (HOG) pathway and found that SI65_02513 was significantly downregulated in the transcriptomics data of ΔAchog1 knockout strain. This gene was located at multiple locations in the HOG pathway, indicating that it might play an important role in the HOG pathway of A. cristatus. Furthermore, the function of this gene had not been identified in Aspergillus fungi, necessitating further investigation. This gene's conserved domain study revealed that it has the same protein tyrosine phosphatases (PTPs) functional domain as Saccharomyces cerevisiae, hence SI65_02513 was named Acptp2,3. Methods: The function of this gene was mostly validated using gene knockout and gene complementation approaches. Knockout strains exhibited sexual and asexual development, as well as pigments synthesis. Morphological observations of the knockout strain were carried out under several stress conditions (osmotic stress, oxidative stress, Congo Red, and sodium dodecyl sulfate (SDS). Real-time fluorescence polymerase chain reaction (PCR) identified the expression of genes involved in sporulation, stress response, and pigments synthesis. Results: The deletion of Acptp2,3 reduced sexual and asexual spore production by 4.4 and 4.6 times, demonstrating that Acptp2,3 positively regulated the sporulation of A. cristatus. The sensitivity tests to osmotic stress revealed that ΔAcptp2,3 strains did not respond to sorbitol-induced osmotic stress. However, ΔAcptp2.3 strains grew considerably slower than the wild type in high concentration sucrose medium. The ΔAcptp2,3 strains grew slower than the wild type on media containing hydrogen peroxide, Congo red, and SDS. These findings showed that Acptp2,3 favorably controlled osmotic stress, oxidative stress, and cell wall-damaging chemical stress in A. cristatus. Deleting Acptp2,3 resulted in a deeper colony color, demonstrating that Apctp2,3 regulated pigment synthesis in A. cistatus. The expression levels of numerous stress-and pigments-related genes matched the phenotypic data. Conclusion: According to our findings, Acptp2,3 played an important role in the regulation of sporulation, stress response, and pigments synthesis in A. cristatus. This was the first study on the function of PTPs in Aspergillus fungi.


Asunto(s)
Aspergillus , Proteínas Fúngicas , Presión Osmótica , Esporas Fúngicas , Esporas Fúngicas/genética , Esporas Fúngicas/metabolismo , Aspergillus/metabolismo , Aspergillus/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Pigmentos Biológicos/metabolismo , Pigmentos Biológicos/biosíntesis , Estrés Fisiológico , Regulación Fúngica de la Expresión Génica , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Tirosina Fosfatasas/genética , Técnicas de Inactivación de Genes , Estrés Oxidativo , Rojo Congo/farmacología
2.
J Vis Exp ; (211)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39311602

RESUMEN

Tyrosine phosphatases are an important family of enzymes that regulate critical physiological functions. They are often dysregulated in human diseases, making them key targets of biological studies. Tools that enable the regulation of phosphatase activity are instrumental in the dissection of their function. Traditional approaches, such as overexpression of constitutively active or dominant negative mutants, or downregulation using siRNA, lack temporal control. Phosphatase inhibitors often have poor specificity, and they only allow researchers to determine what processes are affected by the inhibition of the phosphatase. We developed a chemogenetic approach, the Rapamycin-regulated (RapR) system, which allows for allosteric regulation of a phosphatase catalytic domain that enables tight temporal control of phosphatase activation. The RapR system consists of an iFKBP domain inserted into an allosteric site in the phosphatase. The intrinsic structural dynamics of the RapR domain disrupt the catalytic domain, leading to the inactivation of the enzyme. The addition of rapamycin mediates the formation of a complex between iFKBP and a co-expressed FRB protein, which stabilizes iFKBP and restores activity to the phosphatase's catalytic domain. This system provides high specificity and tight temporal control of phosphatase activation in living cells. The unique capabilities of this system enable the identification of transient events and interrogation of individual signaling pathways downstream of a phosphatase. This protocol describes guidelines for the development of a RapR-phosphatase, its biochemical characterization, and the analysis of its effects on downstream signaling and regulation of cell morphodynamics. It also provides a detailed description of a protein engineering strategy, in vitro assays analyzing phosphatase activity, and live cell imaging experiments identifying changes in cell morphology.


Asunto(s)
Proteínas Tirosina Fosfatasas , Sirolimus , Sirolimus/farmacología , Humanos , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/química , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Regulación Alostérica/efectos de los fármacos , Dominio Catalítico
3.
Hum Vaccin Immunother ; 20(1): 2395680, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-39208856

RESUMEN

We have previously reported two single-agent phase I trials, evaluating the dose or schedule, of a DNA vaccine (pTVG-HP) encoding prostatic acid phosphatase (PAP) administered with GM-CSF as the adjuvant. These were in patients with PSA-recurrent, radiographically non-metastatic, prostate cancer (PCa). We report here the long-term safety and overall survival of these patients. Specifically, 22 patients with non-metastatic, castration-sensitive PCa (nmCSPC) were treated with pTVG-HP, 100-1500 µg, administered over 12 weeks and followed for 15 y. 17 patients with non-metastatic castration-resistant PCa (nmCRPC) were treated with 100 µg pTVG-HP with different schedules of administration over 1 y and followed for 5 y. No adverse events were detected in long-term follow-up from either trial that were deemed possibly related to vaccination. Patients with nmCSPC had a median overall survival of 12.3 y, with 5/22 (23%) alive at 15 y. 8/22 (36%) died due to prostate cancer with a median survival of 11.0 y, and 9/22 (41%) died of other causes. Patients with nmCRPC had a median overall survival of 4.5 y, with 8/17 (47%) alive at 5 y. The presence of T-cells specific for the PAP target antigen was detectable in 6/10 (60%) individuals with nmCSPC, and 3/5 (60%) individuals with nmCRPC, many years after immunization. The detection of immune responses to the vaccine target years after immunization suggests durable immunity can be elicited in patients using a DNA vaccine encoding a tumor-associated antigen.Trial Registration: NCT00582140 and NCT00849121.


Asunto(s)
Vacunas contra el Cáncer , Antígeno Prostático Específico , Neoplasias de la Próstata , Vacunas de ADN , Humanos , Masculino , Vacunas de ADN/inmunología , Vacunas de ADN/administración & dosificación , Vacunas de ADN/efectos adversos , Antígeno Prostático Específico/inmunología , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/efectos adversos , Vacunas contra el Cáncer/administración & dosificación , Anciano , Estudios de Seguimiento , Neoplasias de la Próstata/inmunología , Persona de Mediana Edad , Adyuvantes Inmunológicos/administración & dosificación , Adyuvantes Inmunológicos/efectos adversos , Resultado del Tratamiento , Anciano de 80 o más Años , Factor Estimulante de Colonias de Granulocitos y Macrófagos/inmunología , Recurrencia Local de Neoplasia , Análisis de Supervivencia , Fosfatasa Ácida , Proteínas Tirosina Fosfatasas/inmunología
4.
PLoS Genet ; 20(8): e1011219, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39173071

RESUMEN

Protein tyrosine phosphatases non-receptor type (PTPNs) have been studied extensively in the context of the adaptive immune system; however, their roles beyond immunoregulation are less well explored. Here we identify novel functions for the conserved C. elegans phosphatase PTPN-22, establishing its role in nematode molting, cell adhesion, and cytoskeletal regulation. Through a non-biased genetic screen, we found that loss of PTPN-22 phosphatase activity suppressed molting defects caused by loss-of-function mutations in the conserved NIMA-related kinases NEKL-2 (human NEK8/NEK9) and NEKL-3 (human NEK6/NEK7), which act at the interface of membrane trafficking and actin regulation. To better understand the functions of PTPN-22, we carried out proximity labeling studies to identify candidate interactors of PTPN-22 during development. Through this approach we identified the CDC42 guanine-nucleotide exchange factor DNBP-1 (human DNMBP) as an in vivo partner of PTPN-22. Consistent with this interaction, loss of DNBP-1 also suppressed nekl-associated molting defects. Genetic analysis, co-localization studies, and proximity labeling revealed roles for PTPN-22 in several epidermal adhesion complexes, including C. elegans hemidesmosomes, suggesting that PTPN-22 plays a broad role in maintaining the structural integrity of tissues. Localization and proximity labeling also implicated PTPN-22 in functions connected to nucleocytoplasmic transport and mRNA regulation, particularly within the germline, as nearly one-third of proteins identified by PTPN-22 proximity labeling are known P granule components. Collectively, these studies highlight the utility of combined genetic and proteomic approaches for identifying novel gene functions.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Caenorhabditis elegans/genética , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Humanos , Muda/genética , Adhesión Celular/genética , Quinasas Relacionadas con NIMA/genética , Quinasas Relacionadas con NIMA/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/genética , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Tirosina Fosfatasas/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Regulación del Desarrollo de la Expresión Génica , Citoesqueleto/metabolismo , Citoesqueleto/genética , Mutación con Pérdida de Función
5.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39125727

RESUMEN

Branchio-oto-renal (BOR) and branchio-otic (BO) syndromes are characterized by anomalies affecting the ears, often accompanied by hearing loss, as well as abnormalities in the branchial arches and renal system. These syndromes exhibit a broad spectrum of phenotypes and a complex genomic landscape, with significant contributions from the EYA1 gene and the SIX gene family, including SIX1 and SIX5. Due to their diverse phenotypic presentations, which can overlap with other genetic syndromes, molecular genetic confirmation is essential. As sequencing technologies advance, whole-genome sequencing (WGS) is increasingly used in rare disease diagnostics. We explored the genomic landscape of 23 unrelated Korean families with typical or atypical BOR/BO syndrome using a stepwise approach: targeted panel sequencing and exome sequencing (Step 1), multiplex ligation-dependent probe amplification (MLPA) with copy number variation screening (Step 2), and WGS (Step 3). Integrating WGS into our diagnostic pipeline detected structure variations, including cryptic inversion and complex genomic rearrangement, eventually enhancing the diagnostic yield to 91%. Our findings expand the genomic architecture of BOR/BO syndrome and highlight the need for WGS to address the genetic diagnosis of clinically heterogeneous rare diseases.


Asunto(s)
Síndrome Branquio Oto Renal , Variaciones en el Número de Copia de ADN , Secuenciación Completa del Genoma , Humanos , Síndrome Branquio Oto Renal/genética , República de Corea , Secuenciación Completa del Genoma/métodos , Femenino , Masculino , Variaciones en el Número de Copia de ADN/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Enfermedades Raras/genética , Proteínas Nucleares/genética , Proteínas de Homeodominio/genética , Niño , Proteínas Tirosina Fosfatasas/genética , Preescolar , Adulto , Genómica/métodos , Fenotipo , Linaje , Adolescente , Lactante
6.
DNA Repair (Amst) ; 141: 103729, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39089192

RESUMEN

The Eyes Absent family (EYA1-4) are a group of dual function proteins that act as both tyrosine phosphatases and transcriptional co-activators. EYA proteins play a vital role in development, but are also aberrantly overexpressed in cancers, where they often confer an oncogenic effect. Precisely how the EYAs impact cell biology is of growing interest, fuelled by the therapeutic potential of an expanding repertoire of EYA inhibitors. Recent functional studies suggest that the EYAs are important players in the regulation of genome maintenance pathways including DNA repair, mitosis, and DNA replication. While the characterized molecular mechanisms have predominantly been ascribed to EYA phosphatase activities, EYA co-transcriptional activity has also been found to impact the expression of genes that support these pathways. This indicates functional convergence of EYA phosphatase and co-transcriptional activities, highlighting the emerging importance of the EYA protein family at the intersection of genome maintenance mechanisms. In this review, we discuss recent progress in defining EYA protein substrates and transcriptional effects, specifically in the context of genome maintenance. We then outline future directions relevant to the field and discuss the clinical utility of EYA inhibitors.


Asunto(s)
Reparación del ADN , Replicación del ADN , Mitosis , Proteínas Tirosina Fosfatasas , Humanos , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Tirosina Fosfatasas/genética , Animales , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas del Ojo/metabolismo , Proteínas del Ojo/genética , Neoplasias/genética , Neoplasias/metabolismo
7.
Neurobiol Dis ; 200: 106641, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39159894

RESUMEN

STriatal-Enriched protein tyrosine Phosphatase (STEP) is a brain-specific tyrosine phosphatase that is associated with numerous neurological and neuropsychiatric disorders. STEP dephosphorylates and inactivates various kinases and phosphatases critical for neuronal function and health including Fyn, Pyk2, ERK1/2, p38, and PTPα. Importantly, STEP dephosphorylates NMDA and AMPA receptors, two major glutamate receptors that mediate fast excitatory synaptic transmission. This STEP-mediated dephosphorylation leads to their internalization and inhibits both Hebbian synaptic potentiation and homeostatic synaptic scaling. Hence, STEP has been widely accepted to weaken excitatory synaptic strength. However, emerging evidence implicates a novel role of STEP in neuronal hyperexcitability and seizure disorders. Genetic deletion and pharmacological blockade of STEP reduces seizure susceptibility in acute seizure mouse models and audiogenic seizures in a mouse model of Fragile X syndrome. Pharmacologic inhibition of STEP also decreases hippocampal activity and neuronal intrinsic excitability. Here, we will highlight the divergent roles of STEP in excitatory synaptic transmission and neuronal intrinsic excitability, present the potential underlying mechanisms, and discuss their impact on STEP-associated neurologic and neuropsychiatric disorders.


Asunto(s)
Proteínas Tirosina Fosfatasas no Receptoras , Animales , Humanos , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/genética , Encefalopatías/metabolismo , Encefalopatías/fisiopatología , Transmisión Sináptica/fisiología , Convulsiones/metabolismo , Convulsiones/fisiopatología , Neuronas/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Tirosina Fosfatasas/genética
8.
Theranostics ; 14(9): 3423-3438, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948056

RESUMEN

PRL1 and PRL3, members of the protein tyrosine phosphatase family, have been associated with cancer metastasis and poor prognosis. Despite extensive research on their protein phosphatase activity, their potential role as lipid phosphatases remains elusive. Methods: We conducted comprehensive investigations to elucidate the lipid phosphatase activity of PRL1 and PRL3 using a combination of cellular assays, biochemical analyses, and protein interactome profiling. Functional studies were performed to delineate the impact of PRL1/3 on macropinocytosis and its implications in cancer biology. Results: Our study has identified PRL1 and PRL3 as lipid phosphatases that interact with phosphoinositide (PIP) lipids, converting PI(3,4)P2 and PI(3,5)P2 into PI(3)P on the cellular membranes. These enzymatic activities of PRLs promote the formation of membrane ruffles, membrane blebbing and subsequent macropinocytosis, facilitating nutrient extraction, cell migration, and invasion, thereby contributing to tumor development. These enzymatic activities of PRLs promote the formation of membrane ruffles, membrane blebbing and subsequent macropinocytosis. Additionally, we found a correlation between PRL1/3 expression and glioma development, suggesting their involvement in glioma progression. Conclusions: Combining with the knowledge that PRLs have been identified to be involved in mTOR, EGFR and autophagy, here we concluded the physiological role of PRL1/3 in orchestrating the nutrient sensing, absorbing and recycling via regulating macropinocytosis through its lipid phosphatase activity. This mechanism could be exploited by tumor cells facing a nutrient-depleted microenvironment, highlighting the potential therapeutic significance of targeting PRL1/3-mediated macropinocytosis in cancer treatment.


Asunto(s)
Pinocitosis , Proteínas Tirosina Fosfatasas , Proteínas Tirosina Fosfatasas/metabolismo , Humanos , Línea Celular Tumoral , Animales , Proteínas de Neoplasias/metabolismo , Movimiento Celular , Ratones , Membrana Celular/metabolismo , Fosfatidilinositoles/metabolismo , Proteínas de la Membrana , Proteínas de Ciclo Celular
9.
Adv Cancer Res ; 162: 45-74, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39069369

RESUMEN

Protein Tyrosine Phosphatases (PTPs) help to maintain the balance of protein phosphorylation signals that drive cell division, proliferation, and differentiation. These enzymes are also well-suited to redox-dependent signaling and oxidative stress response due to their cysteine-based catalytic mechanism, which requires a deprotonated thiol group at the active site. This review focuses on PTP structural characteristics, active site chemical properties, and vulnerability to change by reactive oxygen species (ROS). PTPs can be oxidized and inactivated by H2O2 through three non-exclusive mechanisms. These pathways are dependent on the coordinated actions of other H2O2-sensitive proteins, such as peroxidases like Peroxiredoxins (Prx) and Thioredoxins (Trx). PTPs undergo reversible oxidation by converting their active site cysteine from thiol to sulfenic acid. This sulfenic acid can then react with adjacent cysteines to form disulfide bonds or with nearby amides to form sulfenyl-amide linkages. Further oxidation of the sulfenic acid form to the sulfonic or sulfinic acid forms causes irreversible deactivation. Understanding the structural changes involved in both reversible and irreversible PTP oxidation can help with their chemical manipulation for therapeutic intervention. Nonetheless, more information remains unidentified than is presently known about the precise dynamics of proteins participating in oxidation events, as well as the specific oxidation states that can be targeted for PTPs. This review summarizes current information on PTP-specific oxidation patterns and explains how ROS-mediated signal transmission interacts with phosphorylation-based signaling machinery controlled by growth factor receptors and PTPs.


Asunto(s)
Oxidación-Reducción , Proteínas Tirosina Fosfatasas , Especies Reactivas de Oxígeno , Humanos , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Tirosina Fosfatasas/química , Especies Reactivas de Oxígeno/metabolismo , Animales , Transducción de Señal , Estrés Oxidativo , Dominio Catalítico , Peróxido de Hidrógeno/metabolismo
10.
Artículo en Chino | MEDLINE | ID: mdl-38973045

RESUMEN

Objective:To investigate the clinical phenotype of a family with branchio-oto syndrome (BOS) and to explore the genetic etiology of the syndrome in this family. Methods:Clinical data were collected from a child diagnosed with BOS and his family members. Genomic DNA was extracted from peripheral blood of the proband and his family members. Whole-exome sequencing was performed, and the mutation sites were verified and analyzed by Sanger sequencing. Results:The family consists of two generations with four members, three of whom exhibit the phenotype. Two members have hearing loss and bilateral preauricular fistulas and bilateral branchial cleft fistulas. One member has bilateral preauricular fistulas and bilateral branchial cleft fistulas. All of which were in line with the clinical diagnosis of gill ear syndrome, the inheritance mode of the family was autosomal dominant inheritance, genetic testing showed that all members of the family had c. 1744delC(p. L592Cfs*47) mutation in the EYA1 gene, while unaffected members have the wild-type allele at this locus. This mutation is a frameshift mutation, which results in the early appearance of the stop codon, and has not been reported so far. According to ACMG guidelines, the variant was preliminarily determined to be suspected pathogenic. Conclusion:The newly discovered EYA1c. 1744delC(p. L592Cfs*47) mutation in this family is the pathogenic mutant gene of the patients in this family, which further expands the mutation spectrum of EYA1 gene, gives us a new understanding of the disease, and provides an important reference for clinical diagnosis and genetic counseling.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Proteínas Nucleares , Linaje , Fenotipo , Proteínas Tirosina Fosfatasas , Humanos , Masculino , Proteínas Tirosina Fosfatasas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Nucleares/genética , Femenino , Secuenciación del Exoma , Síndrome Branquio Oto Renal/genética , Mutación del Sistema de Lectura , Mutación , Pruebas Genéticas , Niño , Adulto
11.
Cell Rep ; 43(7): 114492, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39002125

RESUMEN

In budding yeast, the nucleolus serves as the site to sequester Cdc14, a phosphatase essential for mitotic exit. Nucleolar proteins Tof2, Net1, and Fob1 are required for this sequestration. Although it is known that these nucleolar proteins are SUMOylated, how SUMOylation regulates their activity remains unknown. Here, we show that Tof2 exhibits cell-cycle-regulated nucleolar delocalization and turnover. Depletion of the nuclear small ubiquitin-like modifier (SUMO) protease Ulp2 not only causes Tof2 polySUMOylation, nucleolar delocalization, and degradation but also leads to Cdc14 nucleolar release and activation. This outcome depends on polySUMOylation and the activity of downstream enzymes, including SUMO-targeted ubiquitin ligase and Cdc48/p97 segregase. We further developed a system to tether SUMO machinery to Tof2 and generated a SUMO-deficient tof2 mutant, and the results indicate that Tof2 polySUMOylation is necessary and sufficient for its nucleolar delocalization and degradation. Together, our work reveals a polySUMO-dependent mechanism that delocalizes Tof2 from the nucleolus to facilitate mitotic exit.


Asunto(s)
Nucléolo Celular , Mitosis , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Sumoilación , Nucléolo Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Nucleares/metabolismo , Endopeptidasas/metabolismo , Proteína que Contiene Valosina/metabolismo
12.
ChemMedChem ; 19(18): e202400179, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-38861151

RESUMEN

The Eyes Absent (EYA) family of developmental proteins, often in partnership with the sine oculis (SIX) homeobox proteins, promote cancer metastasis and recurrence in numerous tumor types. In addition to being a transcriptional coactivator, EYA2 is a Tyr phosphatase that dephosphorylates H2AX which leads to repair instead of apoptosis upon DNA damage and ERß which inhibits the anti-tumor transcriptional activity of ERß. The SIX members of the EYA-SIX complex are difficult to target, therefore, we targeted the EYA2 to promote cell death and prevent cancer progression. We conducted structural optimization of a previously discovered allosteric inhibitor of EYA2, 9987, using the combination of in silico modeling, biochemical and cell-based assays. A new series of compounds was developed with significantly improved cellular activity and physiochemical properties desirable for brain targets. Specifically, compound 2 e showed >30-fold improvement in the medulloblastoma cell line D458, relative to 9987, while maintaining potent and selective inhibitory activity against EYA2 Tyr phosphatase activity and a good multiparameter optimization score for central nervous system drugs.


Asunto(s)
Antineoplásicos , Diseño de Fármacos , Péptidos y Proteínas de Señalización Intracelular , Proteínas Nucleares , Proteínas Tirosina Fosfatasas , Humanos , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Regulación Alostérica/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Relación Estructura-Actividad , Línea Celular Tumoral , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Proteínas Nucleares/química , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Estructura Molecular , Ensayos de Selección de Medicamentos Antitumorales , Relación Dosis-Respuesta a Droga , Proliferación Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química
13.
Expert Opin Ther Pat ; 34(4): 187-209, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38920057

RESUMEN

INTRODUCTION: Protein tyrosine phosphatases (PTPs), essential and evolutionarily highly conserved enzymes, govern cellular functions by modulating tyrosine phosphorylation, a pivotal post-translational modification for signal transduction. The recent strides in phosphatase drug discovery, leading to the identification of selective modulators for enzymes, restoring interest in the therapeutic targeting of protein phosphatases. AREAS COVERED: The compilation of patents up to the year 2023 focuses on the efficacy of various classes of Tyrosine phosphatases and their inhibitors, detailing their chemical structure and biochemical characteristics. These findings have broad implications, as they can be applied to treating diverse conditions like cancer, diabetes, autoimmune disorders, and neurological diseases. The search for scientific articles and patent literature was conducted using well known different platforms to gather information up to 2023. EXPERT OPINION: The latest improvements in protein tyrosine phosphatase (PTP) research include the discovery of new inhibitors targeting specific PTP enzymes, with a focus on developing allosteric site covalent inhibitors for enhanced efficacy and specificity. These advancements have not only opened up new possibilities for therapeutic interventions in various disease conditions but also hold the potential for innovative treatments. PTPs offer promising avenues for drug discovery efforts and innovative treatments across a spectrum of health conditions.


Asunto(s)
Diseño de Fármacos , Desarrollo de Medicamentos , Descubrimiento de Drogas , Inhibidores Enzimáticos , Patentes como Asunto , Proteínas Tirosina Fosfatasas , Humanos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Animales , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas/metabolismo , Transducción de Señal/efectos de los fármacos , Fosforilación , Sitio Alostérico , Procesamiento Proteico-Postraduccional
14.
J Sex Med ; 21(7): 596-604, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38808370

RESUMEN

BACKGROUND: There are varying reports of immunohistochemically detected prostatic marker protein distribution in glands associated with the female urethra that may be related to tissue integrity at the time of fixation. AIM: In this study we used tissue derived from rapid autopsies of female patients to determine the distribution of glandular structures expressing prostate-specific antigen (PSA) and prostate-specific acid phosphatase (PSAP) along the female urethra and in surrounding tissues, including the anterior vaginal wall (AVW). METHODS: Tissue blocks from 7 donors that contained the entire urethra and adjacent AVW were analyzed. These tissue samples were fixed within 4-12 hours of death and divided into 5-mm transverse slices that were paraffin embedded. Sections cut from each slice were immunolabeled for PSA or PSAP and a neighboring section was stained with hematoxylin and eosin. The sections were reviewed by light microscopy and analyzed using QuPath software. OBSERVATIONS: In tissue from all donors, glandular structures expressing PSA and/or PSAP were located within the wall of the urethra and were present along its whole length. RESULTS: In the proximal half of the urethra from all donors, small glands expressing PSAP, but not PSA, were observed adjacent to the and emptying into the lumen. In the distal half of the urethra from 5 of the 7 donors, tubuloacinar structures lined by a glandular epithelium expressed both PSA and PSAP. In addition, columnar cells at the surface of structures with a multilayered transitional epithelium in the distal half of the urethra from all donors expressed PSAP. No glands expressing PSA or PSAP were found in tissues surrounding the urethra, including the AVW. CLINICAL IMPLICATIONS: Greater understanding of the distribution of urethral glands expressing prostatic proteins in female patients is important because these glands are reported to contribute to the female sexual response and to urethral pathology, including urethral cysts, diverticula, and adenocarcinoma. STRENGTHS AND LIMITATIONS: Strengths of the present study include the use of rapid autopsy to minimize protein degradation and autolysis, and the preparation of large tissue sections to demonstrate precise anatomical relations within all the tissues surrounding the urethral lumen. Limitations include the sample size and that all donors had advanced malignancy and had undergone previous therapy which may have had unknown tissue effects. CONCLUSION: Proximal and distal glands expressing prostate-specific proteins were observed in tissue from all donors, and these glands were located only within the wall of the urethra.


Asunto(s)
Fosfatasa Ácida , Autopsia , Antígeno Prostático Específico , Uretra , Vagina , Humanos , Femenino , Uretra/patología , Vagina/patología , Vagina/química , Antígeno Prostático Específico/análisis , Fosfatasa Ácida/análisis , Fosfatasa Ácida/metabolismo , Persona de Mediana Edad , Anciano , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Tirosina Fosfatasas/análisis , Adulto , Biomarcadores/metabolismo , Inmunohistoquímica
15.
Ageing Res Rev ; 98: 102320, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38719161

RESUMEN

Aging is a gradual and irreversible natural process. With aging, the body experiences a functional decline, and the effects amplify the vulnerability to a range of age-related diseases, including neurodegenerative, cardiovascular, and metabolic diseases. Within the aging process, the morphology and function of mitochondria and the endoplasmic reticulum (ER) undergo alterations, particularly in the structure connecting these organelles known as mitochondria-associated membranes (MAMs). MAMs serve as vital intracellular signaling hubs, facilitating communication between the ER and mitochondria when regulating various cellular events, including calcium homeostasis, lipid metabolism, mitochondrial function, and apoptosis. The formation of MAMs is partly dependent on the interaction between the vesicle-associated membrane protein-associated protein-B (VAPB) and protein tyrosine phosphatase-interacting protein-51 (PTPIP51). Accumulating evidence has begun to elucidate the pivotal role of the VAPB-PTPIP51 tether in the initiation and progression of age-related diseases. In this study, we delineate the intricate structure and multifunctional role of the VAPB-PTPIP51 tether and discuss its profound implications in aging-associated diseases. Moreover, we provide a comprehensive overview of potential therapeutic interventions and pharmacological agents targeting the VAPB-PTPIP51-mediated MAMs, thereby offering a glimmer of hope in mitigating aging processes and treating age-related disorders.


Asunto(s)
Envejecimiento , Retículo Endoplásmico , Mitocondrias , Proteínas de Transporte Vesicular , Humanos , Envejecimiento/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Animales , Proteínas de Transporte Vesicular/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo
16.
J Med Chem ; 67(11): 8817-8835, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38768084

RESUMEN

Together with protein tyrosine kinases, protein tyrosine phosphatases (PTPs) control protein tyrosine phosphorylation and regulate numerous cellular functions. Dysregulated PTP activity is associated with the onset of multiple human diseases. Nevertheless, understanding of the physiological function and disease biology of most PTPs remains limited, largely due to the lack of PTP-specific chemical probes. In this study, starting from a well-known nonhydrolyzable phosphotyrosine (pTyr) mimetic, phosphonodifluoromethyl phenylalanine (F2Pmp), we synthesized 7 novel phosphonodifluoromethyl-containing bicyclic/tricyclic aryl derivatives with improved cell permeability and potency toward various PTPs. Furthermore, with fragment- and structure-based design strategies, we advanced compound 9 to compound 15, a first-in-class, potent, selective, and bioavailable inhibitor of human CDC14A and B phosphatases. This study demonstrates the applicability of the fragment-based design strategy in creating potent, selective, and bioavailable PTP inhibitors and provides a valuable probe for interrogating the biological roles of hCDC14 phosphatases and assessing their potential for therapeutic interventions.


Asunto(s)
Inhibidores Enzimáticos , Fosfotirosina , Humanos , Fosfotirosina/metabolismo , Fosfotirosina/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/síntesis química , Relación Estructura-Actividad , Proteínas Tirosina Fosfatasas no Receptoras/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Proteínas Tirosina Fosfatasas no Receptoras/química , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas/metabolismo , Estructura Molecular , Disponibilidad Biológica
17.
J Biol Chem ; 300(7): 107408, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38796066

RESUMEN

The eyes absent (Eya) proteins were first identified as co-activators of the six homeobox family of transcription factors and are critical in embryonic development. These proteins are also re-expressed in cancers after development is complete, where they drive tumor progression. We have previously shown that the Eya3 N-terminal domain (NTD) contains Ser/Thr phosphatase activity through an interaction with the protein phosphatase 2A (PP2A)-B55α holoenzyme and that this interaction increases the half-life of Myc through pT58 dephosphorylation. Here, we showed that Eya3 directly interacted with the NTD of Myc, recruiting PP2A-B55α to Myc. We also showed that Eya3 increased the Ser/Thr phosphatase activity of PP2A-B55α but not PP2A-B56α. Furthermore, we demonstrated that the NTD (∼250 amino acids) of Eya3 was completely disordered, and it used a 38-residue segment to interact with B55α. In addition, knockdown and phosphoproteomic analyses demonstrated that Eya3 and B55α affected highly similar phosphosite motifs with a preference for Ser/Thr followed by Pro, consistent with Eya3's apparent Ser/Thr phosphatase activity being mediated through its interaction with PP2A-B55α. Intriguingly, mutating this Pro to other amino acids in a Myc peptide dramatically increased dephosphorylation by PP2A. Not surprisingly, MycP59A, a naturally occurring mutation hotspot in several cancers, enhanced Eya3-PP2A-B55α-mediated dephosphorylation of pT58 on Myc, leading to increased Myc stability and cell proliferation, underscoring the critical role of this phosphosite in regulating Myc stability.


Asunto(s)
Proteína Fosfatasa 2 , Proteínas Proto-Oncogénicas c-myc , Humanos , Proteína Fosfatasa 2/metabolismo , Proteína Fosfatasa 2/genética , Fosforilación , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Unión Proteica , Células HEK293 , Dominios Proteicos , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/química , Proteínas de Unión al ADN
18.
Cancer Commun (Lond) ; 44(6): 637-653, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38741380

RESUMEN

BACKGROUND: Tyrosine phosphorylation of intracellular proteins is a post-translational modification that plays a regulatory role in signal transduction during cellular events. Dephosphorylation of signal transduction proteins caused by protein tyrosine phosphatases (PTPs) contributed their role as a convergent node to mediate cross-talk between signaling pathways. In the context of cancer, PTP-mediated pathways have been identified as signaling hubs that enabled cancer cells to mitigate stress induced by clinical therapy. This is achieved by the promotion of constitutive activation of growth-stimulatory signaling pathways or modulation of the immune-suppressive tumor microenvironment. Preclinical evidences suggested that anticancer drugs will release their greatest therapeutic potency when combined with PTP inhibitors, reversing drug resistance that was responsible for clinical failures during cancer therapy. AREAS COVERED: This review aimed to elaborate recent insights that supported the involvement of PTP-mediated pathways in the development of resistance to targeted therapy and immune-checkpoint therapy. EXPERT OPINION: This review proposed the notion of PTP inhibition in anticancer combination therapy as a potential strategy in clinic to achieve long-term tumor regression. Ongoing clinical trials are currently underway to assess the safety and efficacy of combination therapy in advanced-stage tumors.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias , Proteínas Tirosina Fosfatasas , Humanos , Neoplasias/tratamiento farmacológico , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas/metabolismo , Transducción de Señal/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Animales
19.
BMC Med Genomics ; 17(1): 89, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38627775

RESUMEN

OBJECTIVE: Branchio-oto-renal syndrome (BOR, OMIM#113,650) is a rare autosomal dominant disorder that presents with a variety of symptoms, including hearing loss (sensorineural, conductive, or mixed), structural abnormalities affecting the outer, middle, and inner ear, branchial fistulas or cysts, as well as renal abnormalities.This study aims to identify the pathogenic variants by performing genetic testing on a family with Branchio-oto-renal /Branchio-otic (BO, OMIM#602,588) syndrome using whole-exome sequencing, and to explore possible pathogenic mechanisms. METHODS: The family spans 4 generations and consists of 9 individuals, including 4 affected by the BOR/BO syndrome. Phenotypic information, including ear malformation and branchial cleft, was collected from family members. Audiological, temporal bone imaging, and renal ultrasound examinations were also performed. Whole-exome sequencing was conducted to identify candidate pathogenic variants and explore the underlying molecular etiology of BOR/BO syndrome by minigene experiments. RESULTS: Intra-familial variability was observed in the clinical phenotypes of BOR/BO syndrome in this family. The severity and nature of hearing loss varied in family members, with mixed or sensorineural hearing loss. The proband, in particular, had profound sensorineural hearing loss on the left and moderate conductive hearing loss on the right. Additionally, the proband exhibited developmental delay, and her mother experienced renal failure during pregnancy and terminated the pregnancy prematurely. Genetic testing revealed a novel heterozygous variant NM_000503.6: c.639 + 3 A > C in the EYA1 gene in affected family members. In vitro minigene experiments demonstrated its effect on splicing. According to the American College of Medical Genetics (ACMG) guidelines, this variant was classified as likely pathogenic. CONCLUSION: This study highlights the phenotypic heterogeneity within the same family, reports the occurrence of renal failure and adverse pregnancy outcomes in a female patient at reproductive age with BOR syndrome, and enriches the mutational spectrum of pathogenic variants in the EYA1 gene.


Asunto(s)
Síndrome Branquio Oto Renal , Sordera , Pérdida Auditiva Sensorineural , Pérdida Auditiva , Insuficiencia Renal , Humanos , Embarazo , Femenino , Síndrome Branquio Oto Renal/genética , Síndrome Branquio Oto Renal/patología , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Tirosina Fosfatasas/genética , Pérdida Auditiva/genética , Linaje , Proteínas Nucleares/genética
20.
Molecules ; 29(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38611852

RESUMEN

Moonlighting enzymes are multifunctional proteins that perform multiple functions beyond their primary role as catalytic enzymes. Extensive research and clinical practice have demonstrated their pivotal roles in the development and progression of cancer, making them promising targets for drug development. This article delves into multiple notable moonlighting enzymes, including GSK-3, GAPDH, and ENO1, and with a particular emphasis on an enigmatic phosphatase, PTP4A3. We scrutinize their distinct roles in cancer and the mechanisms that dictate their ability to switch roles. Lastly, we discuss the potential of an innovative approach to develop drugs targeting these moonlighting enzymes: target protein degradation. This strategy holds promise for effectively tackling moonlighting enzymes in the context of cancer therapy.


Asunto(s)
Glucógeno Sintasa Quinasa 3 , Neoplasias , Humanos , Monoéster Fosfórico Hidrolasas , Neoplasias/tratamiento farmacológico , Catálisis , Desarrollo de Medicamentos , Proteínas de Neoplasias , Proteínas Tirosina Fosfatasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA