Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Proteins ; 92(1): 37-43, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37497763

RESUMEN

Capping protein (CP) binds to the barbed end of an actin-filament and inhibits its elongation. CARMIL binds CP and dissociates it from the barbed end of the actin-filament. The binding of CARMIL peptide alters the flexibility of CP, which is considered to facilitate the dissociation. Twinfilin also binds to CP through its C-terminal tail. The complex structures of the CP/twinfilin-tail (TW-tail) peptide indicate that the binding sites of CARMIL and TW-tail overlap. However, TW-tail binding does not facilitate the dissociation of CP from the barbed end. We extensively investigated the flexibilities of CP in the CP/TW-tail or CP/CARMIL complexes using an elastic network model and concluded that TW-tail binding does not alter the flexibility of CP. Our extensive analysis also highlighted that the strong contacts of peptides with the two domains of CP, that is, the CP-L and CP-S domains, are key to changing the flexibilities of CP. CARMIL peptides can interact strongly with both of the domains, while TW-tail peptides exclusively interact with the CP-S domain because the binding site of TW-tail on CP relatively shifts to the CP-S domain compared with that of CP/CARMIL. This result supports our hypothesis that the dissociation of CP from the barbed end is regulated by the flexibility of CP.


Asunto(s)
Proteínas de Capping de la Actina , Proteínas de Microfilamentos , Proteínas de Microfilamentos/metabolismo , Proteínas de Capping de la Actina/química , Proteínas de Capping de la Actina/metabolismo , Unión Proteica , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo , Péptidos/química
2.
J Mol Biol ; 435(24): 168342, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37924863

RESUMEN

Actin capping protein (CP) can be regulated by steric and allosteric mechanisms. The molecular mechanism of the allosteric regulation at a biophysical level includes linkage between the binding sites for three ligands: F-actin, Capping-Protein-Interacting (CPI) motifs, and V-1/myotrophin, based on biochemical functional studies and solvent accessibility experiments. Here, we investigated the mechanism of allosteric regulation at the atomic level using single-molecule Förster resonance energy transfer (FRET) and molecular dynamics (MD) to assess the conformational and structural dynamics of CP in response to linked-binding site ligands. In the absence of ligand, both single-molecule FRET and MD revealed two distinct conformations of CP in solution; previous crystallographic studies revealed only one. Interaction with CPI-motif peptides induced conformations within CP that bring the cap and stalk closer, while interaction with V-1 moves them away from one another. Comparing CPI-motif peptides from different proteins, we identified variations in CP conformations and dynamics that are specific to each CPI motif. MD simulations for CP alone and in complex with a CPI motif and V-1 reveal atomistic details of the conformational changes. Analysis of the interaction of CP with wild-type (wt) and chimeric CPI-motif peptides using single-molecule FRET, isothermal calorimetry (ITC) and MD simulation indicated that conformational and affinity differences are intrinsic to the C-terminal portion of the CPI motif. We conclude that allosteric regulation of CP involves changes in conformation that disseminate across the protein to link distinct binding-site functions. Our results provide novel insights into the biophysical mechanism of the allosteric regulation of CP.


Asunto(s)
Proteínas de Capping de la Actina , Actinas , Proteínas de Capping de la Actina/química , Unión Proteica , Regulación Alostérica , Actinas/metabolismo , Péptidos/química
3.
Cell Mol Life Sci ; 79(2): 125, 2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35132495

RESUMEN

Apicomplexan parasites, such as Plasmodium spp., rely on an unusual actomyosin motor, termed glideosome, for motility and host cell invasion. The actin filaments are maintained by a small set of essential regulators, which provide control over actin dynamics in the different stages of the parasite life cycle. Actin filament capping proteins (CPs) are indispensable heterodimeric regulators of actin dynamics. CPs have been extensively characterized in higher eukaryotes, but their role and functional mechanism in Apicomplexa remain enigmatic. Here, we present the first crystal structure of a homodimeric CP from the malaria parasite and compare the homo- and heterodimeric CP structures in detail. Despite retaining several characteristics of a canonical CP, the homodimeric Plasmodium berghei (Pb)CP exhibits crucial differences to the canonical heterodimers. Both homo- and heterodimeric PbCPs regulate actin dynamics in an atypical manner, facilitating rapid turnover of parasite actin, without affecting its critical concentration. Homo- and heterodimeric PbCPs show partially redundant activities, possibly to rescue actin filament capping in life cycle stages where the ß-subunit is downregulated. Our data suggest that the homodimeric PbCP also influences actin kinetics by recruiting lateral actin dimers. This unusual function could arise from the absence of a ß-subunit, as the asymmetric PbCP homodimer lacks structural elements essential for canonical barbed end interactions suggesting a novel CP binding mode. These findings will facilitate further studies aimed at elucidating the precise actin filament capping mechanism in Plasmodium.


Asunto(s)
Proteínas de Capping de la Actina , Antígenos de Protozoos , Malaria/parasitología , Plasmodium/metabolismo , Proteínas Protozoarias , Proteínas de Capping de la Actina/química , Proteínas de Capping de la Actina/metabolismo , Antígenos de Protozoos/química , Antígenos de Protozoos/metabolismo , Cinética , Modelos Moleculares , Unión Proteica , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo
4.
Nat Commun ; 12(1): 5329, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34504078

RESUMEN

Heterodimeric capping protein (CP/CapZ) is an essential factor for the assembly of branched actin networks, which push against cellular membranes to drive a large variety of cellular processes. Aside from terminating filament growth, CP potentiates the nucleation of actin filaments by the Arp2/3 complex in branched actin networks through an unclear mechanism. Here, we combine structural biology with in vitro reconstitution to demonstrate that CP not only terminates filament elongation, but indirectly stimulates the activity of Arp2/3 activating nucleation promoting factors (NPFs) by preventing their association to filament barbed ends. Key to this function is one of CP's C-terminal "tentacle" extensions, which sterically masks the main interaction site of the terminal actin protomer. Deletion of the ß tentacle only modestly impairs capping. However, in the context of a growing branched actin network, its removal potently inhibits nucleation promoting factors by tethering them to capped filament ends. End tethering of NPFs prevents their loading with actin monomers required for activation of the Arp2/3 complex and thus strongly inhibits branched network assembly both in cells and reconstituted motility assays. Our results mechanistically explain how CP couples two opposed processes-capping and nucleation-in branched actin network assembly.


Asunto(s)
Proteínas de Capping de la Actina/metabolismo , Citoesqueleto de Actina/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/metabolismo , Citoesqueleto/metabolismo , Melanocitos/metabolismo , Proteínas de Capping de la Actina/química , Proteínas de Capping de la Actina/genética , Citoesqueleto de Actina/ultraestructura , Complejo 2-3 Proteico Relacionado con la Actina/química , Complejo 2-3 Proteico Relacionado con la Actina/genética , Actinas/química , Actinas/genética , Animales , Sitios de Unión , Bovinos , Citoesqueleto/ultraestructura , Gelsolina/química , Gelsolina/genética , Gelsolina/metabolismo , Regulación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intercelular/química , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Cinética , Melanocitos/citología , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Modelos Moleculares , Profilinas/química , Profilinas/genética , Profilinas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Timo/citología , Timo/metabolismo , Proteína Neuronal del Síndrome de Wiskott-Aldrich/química , Proteína Neuronal del Síndrome de Wiskott-Aldrich/genética , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo
5.
J Mol Biol ; 433(9): 166891, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33639213

RESUMEN

Twinfilin is a conserved actin regulator that interacts with actin capping protein (CP) via C terminus residues (TWtail) that exhibits sequence similarity with the CP interaction (CPI) motif of CARMIL. Here we report the crystal structure of TWtail in complex with CP. Our structure showed that although TWtail and CARMIL CPI bind CP to an overlapping surface via their middle regions, they exhibit different CP-binding modes at both termini. Consequently, TWtail and CARMIL CPI restrict the CP in distinct conformations of open and closed forms, respectively. Interestingly, V-1, which targets CP away from the TWtail binding site, also favors the open-form CP. Consistently, TWtail forms a stable ternary complex with CP and V-1, a striking contrast to CARMIL CPI, which rapidly dissociates V-1 from CP. Our results demonstrate that TWtail is a unique CP-binding motif that regulates CP in a manner distinct from CARMIL CPI.


Asunto(s)
Proteínas de Capping de la Actina/química , Proteínas de Capping de la Actina/metabolismo , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/metabolismo , Actinas/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Pollos , Cristalografía por Rayos X , Humanos , Péptidos y Proteínas de Señalización Intercelular/química , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Modelos Moleculares , Unión Proteica , Estructura Cuaternaria de Proteína
6.
PLoS Biol ; 18(9): e3000848, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32898131

RESUMEN

Improper lengths of actin-thin filaments are associated with altered contractile activity and lethal myopathies. Leiomodin, a member of the tropomodulin family of proteins, is critical in thin filament assembly and maintenance; however, its role is under dispute. Using nuclear magnetic resonance data and molecular dynamics simulations, we generated the first atomic structural model of the binding interface between the tropomyosin-binding site of cardiac leiomodin and the N-terminus of striated muscle tropomyosin. Our structural data indicate that the leiomodin/tropomyosin complex only forms at the pointed end of thin filaments, where the tropomyosin N-terminus is not blocked by an adjacent tropomyosin protomer. This discovery provides evidence supporting the debated mechanism where leiomodin and tropomodulin regulate thin filament lengths by competing for thin filament binding. Data from experiments performed in cardiomyocytes provide additional support for the competition model; specifically, expression of a leiomodin mutant that is unable to interact with tropomyosin fails to displace tropomodulin at thin filament pointed ends and fails to elongate thin filaments. Together with previous structural and biochemical data, we now propose a molecular mechanism of actin polymerization at the pointed end in the presence of bound leiomodin. In the proposed model, the N-terminal actin-binding site of leiomodin can act as a "swinging gate" allowing limited actin polymerization, thus making leiomodin a leaky pointed-end cap. Results presented in this work answer long-standing questions about the role of leiomodin in thin filament length regulation and maintenance.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/metabolismo , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Proteínas de Capping de la Actina/química , Proteínas de Capping de la Actina/metabolismo , Citoesqueleto de Actina/química , Actinas/química , Actinas/metabolismo , Animales , Animales Recién Nacidos , Sitios de Unión , Células Cultivadas , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/metabolismo , Humanos , Ratones , Modelos Moleculares , Simulación de Dinámica Molecular , Miocardio/metabolismo , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Ratas , Sarcómeros/metabolismo
7.
Biochem Biophys Res Commun ; 525(3): 681-686, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32139121

RESUMEN

Actin capping proteins belong to the core set of proteins minimally required for actin-based motility and are present in virtually all eukaryotic cells. They bind to the fast-growing barbed end of an actin filament, preventing addition and loss of monomers, thus restricting growth to the slow-growing pointed end. Actin capping proteins are usually heterodimers of two subunits. The Plasmodium orthologs are an exception, as their α subunits are able to form homodimers. We show here that, while the ß subunit alone is unstable, the α subunit of the Plasmodium actin capping protein forms functional homo- and heterodimers. This implies independent functions for the αα homo- and αß heterodimers in certain stages of the parasite life cycle. Structurally, the homodimers resemble canonical αß heterodimers, although certain rearrangements at the interface must be required. Both homo- and heterodimers bind to actin filaments in a roughly equimolar ratio, indicating they may also bind other sites than barbed ends.


Asunto(s)
Proteínas de Capping de la Actina/metabolismo , Malaria/parasitología , Parásitos/metabolismo , Multimerización de Proteína , Proteínas Protozoarias/metabolismo , Proteínas de Capping de la Actina/química , Citoesqueleto de Actina/metabolismo , Animales , Plasmodium/metabolismo , Unión Proteica , Pliegue de Proteína , Soluciones , Temperatura
8.
Nat Commun ; 9(1): 1892, 2018 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-29760438

RESUMEN

Actin polymerization powers key cellular processes, including motility, morphogenesis, and endocytosis. The actin turnover cycle depends critically on "re-charging" of ADP-actin monomers with ATP, but whether this reaction requires dedicated proteins in cells, and the underlying mechanism, have remained elusive. Here we report that nucleotide exchange catalyzed by the ubiquitous cytoskeletal regulator cyclase-associated protein (CAP) is critical for actin-based processes in vivo. We determine the structure of the CAP-actin complex, which reveals that nucleotide exchange occurs in a compact, sandwich-like complex formed between the dimeric actin-binding domain of CAP and two ADP-actin monomers. In the crystal structure, the C-terminal tail of CAP associates with the nucleotide-sensing region of actin, and this interaction is required for rapid re-charging of actin by both yeast and mammalian CAPs. These data uncover the conserved structural basis and biological role of protein-catalyzed re-charging of actin monomers.


Asunto(s)
Proteínas de Capping de la Actina/química , Citoesqueleto de Actina/ultraestructura , Actinas/química , Adenosina Difosfato/análogos & derivados , Adenosina Trifosfato/química , Proteínas Portadoras/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Capping de la Actina/genética , Proteínas de Capping de la Actina/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Adenosina Difosfato/química , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Cinética , Ratones , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
9.
J Biol Chem ; 292(33): 13566-13583, 2017 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-28642367

RESUMEN

Disheveled-associated activator of morphogenesis (DAAM) is a diaphanous-related formin protein essential for the regulation of actin cytoskeleton dynamics in diverse biological processes. The conserved formin homology 1 and 2 (FH1-FH2) domains of DAAM catalyze actin nucleation and processively mediate filament elongation. These activities are indirectly regulated by the N- and C-terminal regions flanking the FH1-FH2 domains. Recently, the C-terminal diaphanous-autoregulatory domain (DAD) and the C terminus (CT) of formins have also been shown to regulate actin assembly by directly interacting with actin. Here, to better understand the biological activities of DAAM, we studied the role of DAD-CT regions of Drosophila DAAM in its interaction with actin with in vitro biochemical and in vivo genetic approaches. We found that the DAD-CT region binds actin in vitro and that its main actin-binding element is the CT region, which does not influence actin dynamics on its own. However, we also found that it can tune the nucleating activity and the filament end-interaction properties of DAAM in an FH2 domain-dependent manner. We also demonstrate that DAD-CT makes the FH2 domain more efficient in antagonizing with capping protein. Consistently, in vivo data suggested that the CT region contributes to DAAM-mediated filopodia formation and dynamics in primary neurons. In conclusion, our results demonstrate that the CT region of DAAM plays an important role in actin assembly regulation in a biological context.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Modelos Moleculares , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Seudópodos/metabolismo , Proteínas de Capping de la Actina/química , Proteínas de Capping de la Actina/metabolismo , Citoesqueleto de Actina/química , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Sustitución de Aminoácidos , Animales , Células Cultivadas , Cristalografía por Rayos X , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/citología , Embrión no Mamífero/citología , Eliminación de Gen , Glutatión Transferasa/química , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Mutación , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Neuronas/citología , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Homología Estructural de Proteína
10.
Proteins ; 84(7): 948-56, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27028786

RESUMEN

The actin capping protein (CP) binds to actin filaments to block further elongation. The capping activity is inhibited by proteins V-1 and CARMIL interacting with CP via steric and allosteric mechanisms, respectively. The crystal structures of free CP, CP/V-1, and CP/CARMIL complexes suggest that the binding of CARMIL alters the flexibility of CP rather than the overall structure of CP, and this is an allosteric inhibition mechanism. Here, we performed molecular dynamics (MD) simulations of CP in the free form, and in complex with CARMIL or V-1. The resulting trajectories were analyzed exhaustively using Motion Tree, which identifies various rigid-body motions ranging from small local motions to large domain motions. After enumerating all the motions, CP flexibilities with different ligands were characterized by a list of frequencies for 20 dominant rigid-body motions, some of which were not identified in previous studies. The comparative analysis highlights the influence of the binding of the CARMIL peptide to CP flexibility. In free CP and the CP/V-1 complex, domain motions around a large crevice between the N-stalk and the CP-S domain occur frequently. The CARMIL peptide binds the crevice and suppresses the motions effectively. In addition, the binding of the CARMIL peptide enhances and alters local motions around the pocket that participates in V-1 binding. These newly identified motions are likely to suppress the binding of V-1 to CP. The observed changes in CP motion provide insights that describe the mechanism of allosteric regulation by CARMIL through modulating CP flexibility. Proteins 2016; 84:948-956. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Proteínas de Capping de la Actina/química , Proteínas de Capping de la Actina/metabolismo , Regulación Alostérica , Animales , Proteína CapZ/química , Proteína CapZ/metabolismo , Pollos , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/metabolismo , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Mapas de Interacción de Proteínas
11.
Nat Commun ; 6: 8730, 2015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-26564775

RESUMEN

Proteins targeting actin filament barbed ends play a pivotal role in motile processes. While formins enhance filament assembly, capping protein (CP) blocks polymerization. On their own, they both bind barbed ends with high affinity and very slow dissociation. Their barbed-end binding is thought to be mutually exclusive. CP has recently been shown to be present in filopodia and controls their morphology and dynamics. Here we explore how CP and formins may functionally coregulate filament barbed-end assembly. We show, using kinetic analysis of individual filaments by microfluidics-assisted fluorescence microscopy, that CP and mDia1 formin are able to simultaneously bind barbed ends. This is further confirmed using single-molecule imaging. Their mutually weakened binding enables rapid displacement of one by the other. We show that formin FMNL2 behaves similarly, thus suggesting that this is a general property of formins. Implications in filopodia regulation and barbed-end structural regulation are discussed.


Asunto(s)
Proteínas de Capping de la Actina/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas/metabolismo , Proteínas de Capping de la Actina/química , Citoesqueleto de Actina/química , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Forminas , Humanos , Cinética , Unión Proteica , Proteínas/química , Proteínas/genética , Conejos
12.
FEBS Lett ; 589(20 Pt B): 3085-9, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26348398

RESUMEN

The effects of toxofilin (an actin binding protein of Toxoplasma gondii) on G-actin was studied with spectroscopy techniques. Fluorescence anisotropy measurements proved that G-actin and toxofilin interact with 2:1 stoichiometry. The affinity of toxofilin to actin was also determined with a fluorescence anisotropy assay. Fluorescence quenching experiments showed that the accessibility of the actin bound ε-ATP decreased in the presence of toxofilin. The results can be explained by the shift of the nucleotide binding cleft into a closed conformational state. Differential scanning calorimetry measurements revealed that actin monomers become thermodynamically more stable due to the binding of toxofilin.


Asunto(s)
Proteínas de Capping de la Actina/química , Actinas/química , Proteínas Protozoarias/química , Termodinámica , Proteínas de Capping de la Actina/genética , Proteínas de Capping de la Actina/metabolismo , Actinas/metabolismo , Algoritmos , Animales , Sitios de Unión/genética , Unión Competitiva , Rastreo Diferencial de Calorimetría , Polarización de Fluorescencia , Calor , Cinética , Modelos Químicos , Músculo Esquelético/metabolismo , Nucleótidos/química , Nucleótidos/metabolismo , Unión Proteica , Desnaturalización Proteica , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Conejos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Temperatura de Transición
13.
PLoS One ; 9(5): e96326, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24788460

RESUMEN

The actin-Capping Protein heterodimer, composed of the α and ß subunits, is a master F-actin regulator. In addition to its role in many cellular processes, Capping Protein acts as a main tumor suppressor module in Drosophila and in humans, in part, by restricting the activity of Yorkie/YAP/TAZ oncogenes. We aimed in this report to understand how both subunits regulate each other in vivo. We show that the levels and capping activities of both subunits must be tightly regulated to control F-actin levels and consequently growth of the Drosophila wing. Overexpressing capping protein α and ß decreases both F-actin levels and tissue growth, while expressing forms of Capping Protein that have dominant negative effects on F-actin promote tissue growth. Both subunits regulate each other's protein levels. In addition, overexpressing one of the subunit in tissues knocked-down for the other increases the mRNA and protein levels of the subunit knocked-down and compensates for its loss. We propose that the ability of the α and ß subunits to control each other's levels assures that a pool of functional heterodimer is produced in sufficient quantities to restrict the development of tumor but not in excess to sustain normal tissue growth.


Asunto(s)
Proteínas de Capping de la Actina/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Multimerización de Proteína/genética , Proteínas de Capping de la Actina/química , Proteínas de Capping de la Actina/metabolismo , Actinas/metabolismo , Uniones Adherentes/metabolismo , Animales , Animales Modificados Genéticamente , Apoptosis/genética , Western Blotting , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Confocal , Mutación , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo
14.
Biophys J ; 106(3): 526-34, 2014 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-24507593

RESUMEN

The actin cortex has a well-documented ability to rapidly remodel and flow while maintaining long-range connectivity, but how this is achieved remains poorly understood. Here, we use computer simulations to explore how stress relaxation in cross-linked actin networks subjected to extensional stress depends on the interplay between network architecture and turnover. We characterize a regime in which a network response is nonaffine and stress relaxation is governed by the continuous dissipation of elastic energy via cyclic formation, elongation, and turnover of tension-bearing elements. Within this regime, for a wide range of network parameters, we observe a constant deformation (creep) rate that is linearly proportional to the rate of filament turnover, leading to a constant effective viscosity that is inversely proportional to turnover rate. Significantly, we observe a biphasic dependence of the creep rate on applied stress: below a critical stress threshold, the creep rate increases linearly with applied stress; above that threshold, the creep rate becomes independent of applied stress. We show that this biphasic stress dependence can be understood in terms of the nonlinear force-extension behavior of individual force-transmitting network elements. These results have important implications for understanding the origins and control of viscous flows both in the cortex of living cells and in other polymer networks.


Asunto(s)
Proteínas de Capping de la Actina/química , Citoesqueleto de Actina/química , Actinas/química , Simulación de Dinámica Molecular , Polimerizacion , Proteínas de Capping de la Actina/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Elasticidad , Humanos , Viscosidad
15.
Oncogene ; 33(16): 2027-39, 2014 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-23644660

RESUMEN

The Src family kinases c-Src, and its downstream effectors, the Rho family of small GTPases RhoA and Jun N-terminal kinase (JNK) have a significant role in tumorigenesis. In this report, using the Drosophila wing disc epithelium as a model system, we demonstrate that the actin-Capping Protein (CP) αß heterodimer, which regulates actin filament (F-actin) polymerization, limits Src-induced apoptosis or tissue overgrowth by restricting JNK activation. We show that overexpressing Src64B drives JNK-independent loss of epithelial integrity and JNK-dependent apoptosis via Btk29A, p120ctn and Rho1. However, when cells are kept alive with the Caspase inhibitor P35, JNK acts as a potent inducer of proliferation via activation of the Yorkie oncogene. Reducing CP levels direct apoptosis of overgrowing Src64B-overexpressing tissues. Conversely, overexpressing capping protein inhibits Src64B and Rho1, but not Rac1-induced JNK signaling. CP requires the actin-binding domain of the α-subunit to limit Src64B-induced apoptosis, arguing that the control of F-actin mediates this effect. In turn, JNK directs F-actin accumulation. Moreover, overexpressing capping protein also prevents apoptosis induced by ectopic JNK expression. Our data are consistent with a model in which the control of F-actin by CP limits Src-induced apoptosis or tissue overgrowth by acting downstream of Btk29A, p120ctn and Rho1, but upstream of JNK. In turn, JNK may counteract the effect of CP on F-actin, providing a positive feedback, which amplifies JNK activation. We propose that cytoskeletal changes triggered by misregulation of F-actin modulators may have a significant role in Src-mediated malignant phenotypes during the early stages of cellular transformation.


Asunto(s)
Proteínas de Capping de la Actina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Capping de la Actina/química , Proteínas de Capping de la Actina/genética , Actinas/genética , Actinas/metabolismo , Animales , Animales Modificados Genéticamente , Apoptosis/genética , Western Blotting , Cateninas/genética , Cateninas/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Epitelio/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Discos Imaginales/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Microscopía Confocal , Mutación , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Alas de Animales/metabolismo , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Catenina delta
16.
Nat Struct Mol Biol ; 20(9): 1069-76, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23912276

RESUMEN

Proteins containing repeats of the WASP homology 2 (WH2) actin-binding module are multifunctional regulators of actin nucleation and assembly. The bacterial effector VopF in Vibrio cholerae, like VopL in Vibrio parahaemolyticus, is a unique homodimer of three WH2 motifs linked by a C-terminal dimerization domain. We show that only the first and third WH2 domains of VopF bind G-actin in a non-nucleating, sequestered conformation. Moreover, dimeric WH2 domains in VopF give rise to unprecedented regulation of actin assembly. Specifically, two WH2 domains on opposite protomers of VopF direct filament assembly from actin or profilin-actin by binding terminal subunits and uncapping capping protein from barbed ends by a new mechanism. Thus, VopF does not nucleate filaments by capping a pointed-end F-actin hexamer. These properties may contribute to VopF pathogenicity, and they show how dimeric WH2 peptides may mediate processive filament growth.


Asunto(s)
Actinas/química , Actinas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Vibrio cholerae/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/química , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo , Proteínas de Capping de la Actina/química , Proteínas de Capping de la Actina/metabolismo , Animales , Proteínas Bacterianas/genética , Modelos Moleculares , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Conejos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Vibrio cholerae/genética , Familia de Proteínas del Síndrome de Wiskott-Aldrich/genética
17.
Mol Biol Cell ; 24(19): 3047-55, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23904264

RESUMEN

The regulation of free barbed ends is central to the control of dynamic actin assembly and actin-based motility in cells. Capping protein (CP) is known to regulate barbed ends and control actin assembly in cells. The CARMIL family of proteins can bind and inhibit CP in vitro, but the physiological significance of the interaction of CARMIL with CP in cells is poorly understood. Mammalian cells lacking CARMIL1 have defects in lamellipodia, macropinocytosis, cell migration, and Rac1 activation. Here we investigate the physiological significance of the CARMIL1-CP interaction, using a point mutant with a well-defined biochemical defect. We find that the CARMIL1-CP interaction is essential for the assembly of lamellipodia, the formation of ruffles, and the process of macropinocytosis. In contrast, the interaction of CARMIL1 with CP shows little to no importance for other functions of CARMIL1, including localization of CARMIL1 to the membrane, activation of Rac1, and cell migration. One implication is that lamellipodia are only marginally important for cell migration in a wound-healing model. The results also suggest that the ability of CARMIL1 to inhibit CP in cells may be regulated.


Asunto(s)
Proteínas de Capping de la Actina/metabolismo , Proteínas Portadoras/metabolismo , Movimiento Celular/genética , Proteína de Unión al GTP rac1/metabolismo , Proteínas de Capping de la Actina/química , Secuencias de Aminoácidos , Sitios de Unión , Proteínas Portadoras/química , Proteínas Portadoras/genética , Humanos , Proteínas de Microfilamentos , Pinocitosis/genética , Mutación Puntual , Unión Proteica , Seudópodos/metabolismo , Seudópodos/patología
18.
Science ; 339(6118): 452-6, 2013 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-23239625

RESUMEN

Actin and spectrin play important roles in neurons, but their organization in axons and dendrites remains unclear. We used stochastic optical reconstruction microscopy to study the organization of actin, spectrin, and associated proteins in neurons. Actin formed ringlike structures that wrapped around the circumference of axons and were evenly spaced along axonal shafts with a periodicity of ~180 to 190 nanometers. This periodic structure was not observed in dendrites, which instead contained long actin filaments running along dendritic shafts. Adducin, an actin-capping protein, colocalized with the actin rings. Spectrin exhibited periodic structures alternating with those of actin and adducin, and the distance between adjacent actin-adducin rings was comparable to the length of a spectrin tetramer. Sodium channels in axons were distributed in a periodic pattern coordinated with the underlying actin-spectrin-based cytoskeleton.


Asunto(s)
Actinas/ultraestructura , Axones/química , Axones/ultraestructura , Proteínas de Unión a Calmodulina/ultraestructura , Citoesqueleto/química , Citoesqueleto/ultraestructura , Espectrina/ultraestructura , Proteínas de Capping de la Actina/química , Proteínas de Capping de la Actina/ultraestructura , Citoesqueleto de Actina/química , Citoesqueleto de Actina/ultraestructura , Actinas/química , Animales , Proteínas de Unión a Calmodulina/química , Células Cultivadas , Dendritas/química , Dendritas/ultraestructura , Hipocampo/ultraestructura , Procesamiento de Imagen Asistido por Computador , Microscopía Fluorescente/métodos , Neuronas/química , Neuronas/ultraestructura , Multimerización de Proteína , Ratas , Ratas Wistar , Canales de Sodio/química , Canales de Sodio/ultraestructura , Espectrina/química
19.
PLoS Comput Biol ; 8(11): e1002765, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23133367

RESUMEN

The actin cytoskeleton is a dynamic structure that coordinates numerous fundamental processes in eukaryotic cells. Dozens of actin-binding proteins are known to be involved in the regulation of actin filament organization or turnover and many of these are stimulus-response regulators of phospholipid signaling. One of these proteins is the heterodimeric actin-capping protein (CP) which binds the barbed end of actin filaments with high affinity and inhibits both addition and loss of actin monomers at this end. The ability of CP to bind filaments is regulated by signaling phospholipids, which inhibit the activity of CP; however, the exact mechanism of this regulation and the residues on CP responsible for lipid interactions is not fully resolved. Here, we focus on the interaction of CP with two signaling phospholipids, phosphatidic acid (PA) and phosphatidylinositol (4,5)-bisphosphate (PIP(2)). Using different methods of computational biology such as homology modeling, molecular docking and coarse-grained molecular dynamics, we uncovered specific modes of high affinity interaction between membranes containing PA/phosphatidylcholine (PC) and plant CP, as well as between PIP(2)/PC and animal CP. In particular, we identified differences in the binding of membrane lipids by animal and plant CP, explaining previously published experimental results. Furthermore, we pinpoint the critical importance of the C-terminal part of plant CPα subunit for CP-membrane interactions. We prepared a GST-fusion protein for the C-terminal domain of plant α subunit and verified this hypothesis with lipid-binding assays in vitro.


Asunto(s)
Proteínas de Capping de la Actina/antagonistas & inhibidores , Proteínas de Capping de la Actina/química , Ácidos Fosfatidicos/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Capping de la Actina/genética , Proteínas de Capping de la Actina/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Aviares/antagonistas & inhibidores , Proteínas Aviares/química , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Pollos , Biología Computacional , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Ácidos Fosfatidicos/química , Fosfatos de Fosfatidilinositol/química , Filogenia , Unión Proteica , Alineación de Secuencia , Relación Estructura-Actividad
20.
BMC Struct Biol ; 12: 12, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22657106

RESUMEN

BACKGROUND: Capping protein (CP), also known as CapZ in muscle cells and Cap32/34 in Dictyostelium discoideum, plays a major role in regulating actin filament dynamics. CP is a ubiquitously expressed heterodimer comprising an α- and ß-subunit. It tightly binds to the fast growing end of actin filaments, thereby functioning as a "cap" by blocking the addition and loss of actin subunits. Vertebrates contain two somatic variants of CP, one being primarily found at the cell periphery of non-muscle tissues while the other is mainly localized at the Z-discs of skeletal muscles. RESULTS: To elucidate structural and functional differences between cytoplasmic and sarcomercic CP variants, we have solved the atomic structure of Cap32/34 (32=ß- and 34=α-subunit) from the cellular slime mold Dictyostelium at 2.2 Å resolution and compared it to that of chicken muscle CapZ. The two homologs display a similar overall arrangement including the attached α-subunit C-terminus (α-tentacle) and the flexible ß-tentacle. Nevertheless, the structures exhibit marked differences suggesting considerable structural flexibility within the α-subunit. In the α-subunit we observed a bending motion of the ß-sheet region located opposite to the position of the C-terminal ß-tentacle towards the antiparallel helices that interconnect the heterodimer. Recently, a two domain twisting attributed mainly to the ß-subunit has been reported. At the hinge of these two domains Cap32/34 contains an elongated and highly flexible loop, which has been reported to be important for the interaction of cytoplasmic CP with actin and might contribute to the more dynamic actin-binding of cytoplasmic compared to sarcomeric CP (CapZ). CONCLUSIONS: The structure of Cap32/34 from Dictyostelium discoideum allowed a detailed analysis and comparison between the cytoplasmic and sarcomeric variants of CP. Significant structural flexibility could particularly be found within the α-subunit, a loop region in the ß-subunit, and the surface of the α-globule where the amino acid differences between the cytoplasmic and sarcomeric mammalian CP are located. Hence, the crystal structure of Cap32/34 raises the possibility of different binding behaviours of the CP variants toward the barbed end of actin filaments, a feature, which might have arisen from adaptation to different environments.


Asunto(s)
Proteínas de Capping de la Actina/química , Secuencia Conservada , Citoplasma/metabolismo , Dictyostelium/química , Proteínas de Microfilamentos/química , Músculos/metabolismo , Proteínas Protozoarias/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Proteína CapZ/química , Pollos , Cristalografía por Rayos X , Lípidos , Modelos Moleculares , Datos de Secuencia Molecular , Especificidad de Órganos , Unión Proteica , Estructura Secundaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA