Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Theor Appl Genet ; 137(9): 204, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39141110

RESUMEN

KEY MESSAGE: Five QTL for wheat grain protein content were identified, and the effects of two dwarfing genes Rht-B1b and Rht-D1b on grain protein content were validated in multiple populations. Grain protein content (GPC) plays an important role in wheat quality. Here, a recombinant inbred line (RIL) population derived from a cross between Yangmai 12 (YM12) and Yanzhan 1 (YZ1) was used to identify quantitative trait loci (QTL) for GPC. Two hundred and five RILs and their parents were grown in three years in randomized complete blocks each with two replications, and genotyped using the wheat 55 K SNP array. Five QTL were identified for GPC on chromosomes 1A, 1B, 2D, 4B, and 4D. Notably, QGpc.yaas-4B (co-located with Rht-B1) and QGpc.yaas-4D (co-located with Rht-D1) were consistently detected across all experiments and best linear unbiased estimating, accounting for 6.61-8.39% and 6.05-10.21% of the phenotypic variances, respectively. The effects of these two dwarfing alleles Rht-B1b and Rht-D1b on reducing GPC and plant height were validated in two additional RIL populations and one natural population. This study lays a foundation for further investigating the effects of dwarfing genes Rht-B1b and Rht-D1b on wheat GPC.


Asunto(s)
Mapeo Cromosómico , Proteínas de Granos , Fenotipo , Sitios de Carácter Cuantitativo , Triticum , Triticum/genética , Triticum/metabolismo , Proteínas de Granos/metabolismo , Genes de Plantas , Genotipo , Polimorfismo de Nucleótido Simple , Grano Comestible/genética , Grano Comestible/metabolismo , Pleiotropía Genética , Pan , Cromosomas de las Plantas/genética
2.
Int J Mol Sci ; 25(12)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38928076

RESUMEN

A high alkaline pH was previously demonstrated to enhance the extraction yield of brewer's spent grains (BSG) proteins. The effects of extraction pH beyond the extraction yield, however, has not been investigated before. The present work examined the effects of extraction pH (pH 8-12) on BSG proteins' (1) amino acid compositions, (2) secondary structures, (3) thermal stability, and (4) functionalities (i.e., water/oil holding capacity, emulsifying, and foaming properties). The ideal extraction temperature (60 °C) and BSG-to-solvent ratio (1:20 w/v) for maximizing the extraction yield were first determined to set the conditions for the pH effect study. The results showed that a higher extraction pH led to more balanced compositions between hydrophilic and hydrophobic amino acids and higher proportions of random coils structures indicating increased protein unfolding. This led to superior emulsifying properties of the extracted proteins with more than twofold improvement between pH 8 and a pH larger than 10. The extraction pH, nevertheless, had minimal impact on the water/oil holding capacity, foaming properties, and thermal denaturation propensity of the proteins. The present work demonstrated that a high alkaline pH at pH 11-12 was indeed ideal for both maximizing the extraction yield (37-46 wt.%) and proteins' functionalities.


Asunto(s)
Aminoácidos , Estabilidad Proteica , Estructura Secundaria de Proteína , Concentración de Iones de Hidrógeno , Aminoácidos/química , Aminoácidos/análisis , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de Granos/química , Temperatura , Grano Comestible/química
3.
Food Chem ; 446: 138863, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38428084

RESUMEN

Brewer's spent grain (BSG) is an abundant agro-industrial residue and a sustainable low-cost source for extracting proteins. The composition and functionality of BSG protein concentrates are affected by extraction conditions. This study examined the use of citric acid (CA) and HCl to precipitate BSG proteins. The resultant protein concentrates were compared in terms of their composition and functional properties. The BSG protein concentrate precipitated by CA had 10% lower protein content, 5.8% higher carbohydrate, and 5.4% higher lipid content than the sample precipitated by HCl. Hydrophilic/hydrophobic protein and saturated/unsaturated fatty acid ratios increased by 16.9% and 26.5% respectively, in the sample precipitated by CA. The formation of CA-cross-linkages was verified using shotgun proteomics and Fourier transform infrared spectroscopy. Precipitation by CA adversely affected protein solubility and emulsifying properties, while improving foaming properties. This study provides insights into the role of precipitants in modulating the properties of protein concentrates.


Asunto(s)
Proteínas de Granos , Proteínas de Granos/análisis , Ácido Clorhídrico , Grano Comestible/química
4.
Plant Cell Environ ; 47(6): 2310-2321, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38494960

RESUMEN

Grain protein content (GPC) is a crucial quality trait in bread wheat, which is influenced by the key transcription factor TaNAM. However, the regulatory mechanisms of TaNAM have remained largely elusive. In this study, a new role of TaNAM was unveiled in regulating nitrogen remobilisation which impacts GPC. The TaNAM knockout mutants generated by clustered regularly interspaced short palindromic repeats/Cas9 exhibited significantly delayed senescence and lower GPC, while overexpression of TaNAM-6A resulted in premature senility and much higher GPC. Further analysis revealed that TaNAM directly activates the genes TaNRT1.1 and TaNPF5.5s, which are involved in nitrogen remobilisation. This activity aids in the transfer of nitrogen from leaves to grains for protein synthesis. In addition, an elite allele of TaNAM-6A, associated with high GPC, was identified as a candidate gene for breeding high-quality wheat. Overall, our work not only elucidates the potential mechanism of TaNAM-6A affecting bread wheat GPC, but also highlights the significance of nitrogen remobilisation from senescent leaves to grains for protein accumulation. Moreover, our research provides a new target and approach for improving the quality traits of wheat, particularly the GPC.


Asunto(s)
Nitrógeno , Triticum , Triticum/genética , Triticum/metabolismo , Nitrógeno/metabolismo , Proteínas de Granos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Grano Comestible/metabolismo , Grano Comestible/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/genética
5.
Braz J Biol ; 83: e280919, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38422279

RESUMEN

Improving grain quality in rice breeding is one of the main tasks. This concerns the creation of rice varieties with colored pericarp uncommon in the Republic of Kazakhstan, and the assessment of its quality is an important stage of breeding. Rice with colored pericarp is an important dietary crop, more useful for the human body than white rice. Regardless of the type of rice, the amount of amylose in rice grain is a crucial indicator that determines the quality of rice. The paper presents the results of electrophoretic separation of spare grain proteins of rice hybrids and dihaploids with colored pericarp and their parent forms obtained as a result of the hybridization of varieties with colored pericarp (Black Rice (China), Mavr (Russia), and Yir 5815 (Ukraine)) with white rice varieties zoned in Kazakhstan. The hybridization of the rice varieties with colored pericarp with white rice varieties was carried out to obtain rice varieties with colored pericarp oriented to the soil and climate of Kazakhstan. Analyzing the results of electrophoresis and the amount of amylose, it was found that hybrid lines differed in amylose content. One of the studied hybrids was high in amylose, four had a medium amylose content, ten had a low amylose content, three had a very low amylose content, and six were glutinous. According to the results of electrophoretic separation of spare rice grain proteins, the spectrum of the enzyme determining amylose was detected in five hybrids, which corresponds to the results of spectrophotometric determination of amylose: high amylose in one hybrid and medium amylose content in four. The results show that the hybrids obtained as a result of hybridization are true hybrids and as a result of long-term selection, the amylose content in the F7-F8 hybrids stabilized. The hybrids can be used in further breeding of rice with colored pericarp.


Asunto(s)
Proteínas de Granos , Oryza , Humanos , Oryza/genética , Amilosa , Fitomejoramiento , Hibridación Genética , Grano Comestible
6.
Food Chem ; 441: 138392, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38211475

RESUMEN

Although wheat (Triticum aestivum L.) grain protein content is increased by shade stress, the relationship between the baking quality of wheat flour and protein composition and structure remains unclear. Here, we investigated the effects of shade stress on wheat flour protein composition and structure. The contents of the flour protein, α/ß-gliadins and disulfide and hydrogen bonds were significantly increased by shade stress. Glutenins, UPP%, and ß-sheet contents also increased, whereas that of α-helices decreased. Spearman correlations revealed that the flour protein content, Glu:Gli ratio, and disulfide, hydrogen, and ionic bonds can predict the specific volume and number of crumb cells in bread, whereas α/ß-gliadins content can predict the crumb cell wall thickness and diameter of bread. Under shade stress, variations in protein composition and structure help increase the specific volume and crumb cells number and decrease crumb cell wall thickness and diameter of bread, ultimately leading to improved baking quality.


Asunto(s)
Proteínas de Granos , Triticum , Triticum/química , Harina , Gliadina , Disulfuros , Pan
7.
Sci Rep ; 13(1): 22736, 2023 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-38123623

RESUMEN

The expression of cereal grain storage protein (GSP) genes is controlled by a complex network of transcription factors (TFs). Storage protein activator (SPA) is a major TF acting in this network but its specific function in wheat (Triticum aestivum L.) remains to be determined. Here we generated an RNAi line in which expression of the three SPA homoeologs was reduced. In this line and its null segregant we analyzed GSP accumulation and expression of GSP and regulatory TF genes under two regimes of nitrogen availability. We show that down regulation of SPA decreases grain protein concentration at maturity under low but not high nitrogen supply. Under low nitrogen supply, the decrease in SPA expression also caused a reduction in the total quantity of GSP per grain and in the ratio of GSP to albumin-globulins, without significantly affecting GSP composition. The slight reduction in GSP gene expression measured in the SPA RNAi line under low nitrogen supply did not entirely account for the more significant decrease in GSP accumulation, suggesting that SPA regulates additional levels of GSP synthesis. Our results demonstrate a clear role of SPA in the regulation of grain nitrogen metabolism when nitrogen is a limiting resource.


Asunto(s)
Proteínas de Granos , Proteínas de Granos/metabolismo , Triticum/genética , Triticum/metabolismo , Nitrógeno/metabolismo , Pan , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Grano Comestible/genética , Grano Comestible/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA