Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 793
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731834

RESUMEN

Tripartite motif (TRIM) proteins are a multifunctional E3 ubiquitin ligase family that participates in various cellular processes. Recent studies have shown that TRIM proteins play important roles in regulating host-virus interactions through specific pathways, but their involvement in response to rabies virus (RABV) infection remains poorly understood. Here, we identified that several TRIM proteins are upregulated in mouse neuroblastoma cells (NA) after infection with the rabies virus using RNA-seq sequencing. Among them, TRIM44 was found to regulate RABV replication. This is supported by the observations that downregulation of TRIM44 inhibits RABV replication, while overexpression of TRIM44 promotes RABV replication. Mechanistically, TRIM44-induced RABV replication is brought about by activating autophagy, as inhibition of autophagy with 3-MA attenuates TRIM44-induced RABV replication. Additionally, we found that inhibition of autophagy with rapamycin reverses the TRIM44-knockdown-induced decrease in LC3B expression and autophagosome formation as well as RABV replication. The results suggest that TRIM44 promotes RABV replication by an autophagy-dependent mechanism. Our work identifies TRIM44 as a key host factor for RABV replication, and targeting TRIM44 expression may represent an effective therapeutic strategy.


Asunto(s)
Autofagia , Virus de la Rabia , Proteínas de Motivos Tripartitos , Replicación Viral , Autofagia/genética , Animales , Ratones , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Virus de la Rabia/fisiología , Virus de la Rabia/genética , Línea Celular Tumoral , Humanos , Rabia/virología , Rabia/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Interacciones Huésped-Patógeno
2.
Nutrients ; 16(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38732549

RESUMEN

Oleocanthal (OC) is a monophenol of extra-virgin olive oil (EVOO) endowed with antibiotic, cardioprotective and anticancer effects, among others, mainly in view of its antioxidant and anti-inflammatory properties. OC has been largely investigated in terms of its anticancer activity, in Alzheimer disease and in collagen-induced arthritis; however, the possibility that it can also affect muscle biology has been totally overlooked so far. This study is the first to describe that OC modulates alterations induced in C2C12 myotubes by stimuli known to induce muscle wasting in vivo, namely TNF-α, or in the medium conditioned by the C26 cachexia-inducing tumor (CM-C26). C2C12 myotubes were exposed to CM-C26 or TNF-α in the presence or absence of OC for 24 and 48 h and analyzed by immunofluorescence and Western blotting. In combination with TNF-α or CM-C26, OC was revealed to be able to restore both the myotube's original size and morphology and normal levels of both atrogin-1 and MuRF1. OC seems unable to impinge on the autophagic-lysosomal proteolytic system or protein synthesis. Modulations towards normal levels of the expression of molecules involved in myogenesis, such as Pax7, myogenin and MyHC, were also observed in the myotube cultures exposed to OC and TNF-α or CM-C26. In conclusion, the data presented here show that OC exerts a protective action in C2C12 myotubes exposed to TNF-α or CM-C26, with mechanisms likely involving the downregulation of ubiquitin-proteasome-dependent proteolysis and the partial relief of myogenic differentiation impairment.


Asunto(s)
Catecoles , Monoterpenos Ciclopentánicos , Fibras Musculares Esqueléticas , Proteínas Musculares , Atrofia Muscular , Factor de Necrosis Tumoral alfa , Animales , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Ratones , Factor de Necrosis Tumoral alfa/metabolismo , Atrofia Muscular/prevención & control , Atrofia Muscular/metabolismo , Proteínas Musculares/metabolismo , Monoterpenos Ciclopentánicos/farmacología , Catecoles/farmacología , Línea Celular , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas Ligasas SKP Cullina F-box/genética , Desarrollo de Músculos/efectos de los fármacos , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/metabolismo , Autofagia/efectos de los fármacos , Fenoles/farmacología , Caquexia/prevención & control , Medios de Cultivo Condicionados/farmacología , Aldehídos
3.
Int Immunopharmacol ; 133: 112133, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38652962

RESUMEN

There is an increasing tendency for sepsis patients to suffer from diaphragm atrophy as well as mortality. Therefore, reducing diaphragm atrophy could benefit sepsis patients' prognoses. Studies have shown that Anisodamine (Anis) can exert antioxidant effects when blows occur. However, the role of Anisodamine in diaphragm atrophy in sepsis patients has not been reported. Therefore, this study investigated the antioxidant effect of Anisodamine in sepsis-induced diaphragm atrophy and its mechanism. We used cecal ligation aspiration (CLP) to establish a mouse septic mode and stimulated the C2C12 myotube model with lipopolysaccharide (LPS). After treatment with Anisodamine, we measured the mice's bodyweight, diaphragm weight, fiber cross-sectional area and the diameter of C2C12 myotubes. The malondialdehyde (MDA) levels in the diaphragm were detected using the oxidative stress kit. The expression of MuRF1, Atrogin1 and JAK2/STAT3 signaling pathway components in the diaphragm and C2C12 myotubes was measured by RT-qPCR and Western blot. The mean fluorescence intensity of ROS in C2C12 myotubes was measured by flow cytometry. Meanwhile, we also measured the levels of Drp1 and Cytochrome C (Cyt-C) in vivo and in vitro by Western blot. Our study revealed that Anisodamine alleviated the reduction in diaphragmatic mass and the loss of diaphragmatic fiber cross-sectional area and attenuated the atrophy of the C2C12 myotubes by inhibiting the expression of E3 ubiquitin ligases. In addition, we observed that Anisodamine inhibited the JAK2/STAT3 signaling pathway and protects mitochondrial function. In conclusion, Anisodamine alleviates sepsis-induced diaphragm atrophy, and the mechanism may be related to inhibiting the JAK2/STAT3 signaling pathway.


Asunto(s)
Diafragma , Janus Quinasa 2 , Atrofia Muscular , Factor de Transcripción STAT3 , Sepsis , Transducción de Señal , Alcaloides Solanáceos , Animales , Janus Quinasa 2/metabolismo , Factor de Transcripción STAT3/metabolismo , Sepsis/tratamiento farmacológico , Sepsis/complicaciones , Alcaloides Solanáceos/uso terapéutico , Alcaloides Solanáceos/farmacología , Ratones , Transducción de Señal/efectos de los fármacos , Diafragma/efectos de los fármacos , Diafragma/patología , Diafragma/metabolismo , Masculino , Línea Celular , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/etiología , Modelos Animales de Enfermedad , Lipopolisacáridos , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Proteínas Musculares/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas Ligasas SKP Cullina F-box/genética , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/metabolismo , Atrofia
4.
FASEB J ; 38(7): e23582, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38568853

RESUMEN

Breast cancer (BC) stands as a prominent contributor to global cancer-related mortality, with an increasing incidence annually. This study aims to investigate AGRN gene expression in BC, as well as explore its influence on the tumor immune microenvironment. AGRN displayed a pronounced upregulation in BC tissues relative to paracancerous tissues. Single-cell RNA analysis highlighted AGRN-specific elevation within cancer cell clusters and also showed expression expressed in stromal as well as immune cell clusters. AGRN upregulation was positively correlated with clinicopathological stage and negatively correlated with BC prognosis. As revealed by the in vitro experiment, AGRN knockdown effectively hinders BC cells in terms of proliferation, invasion as well as migration. AGRN protein, which may interact with EXT1, LRP4, RAPSN, etc., was primarily distributed in the cell cytoplasm. Notably, immune factors might interact with AGRN in BC, evidenced by its discernible associations with immunofactors like IL10, CD274, and PVRL2. Mass spectrometry and immunohistochemistry revealed that the reduction of AGRN led to an increase in CD8+ T cells with triple-negative breast cancer (TNBC). Mechanistically, the connection between TRIM7 and PD-L1 is improved by AGRN, acting as a scaffold, thereby facilitating the accelerated degradation of PD-L1 by TRIM7. Downregulation of AGRN inhibits BC progression and increases CD8+ T cell recruitment. Targeting AGRN may contribute to BC treatment. The biomarker AGRN, serving as a therapeutic target for BC, emerges as a prospective avenue for enhancing both diagnosis and prognosis in BC cases.


Asunto(s)
Antígeno B7-H1 , Neoplasias de la Mama Triple Negativas , Humanos , Linfocitos T CD8-positivos , Estudios Prospectivos , Neoplasias de la Mama Triple Negativas/metabolismo , Biomarcadores de Tumor/genética , Microambiente Tumoral , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
5.
Cells ; 13(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38667290

RESUMEN

Excessive secretion of pro-inflammatory cytokines leads to the disruption of intestinal barrier in inflammatory bowel disease (IBD). The inflammatory cytokine tumor necrosis factor alpha (TNFα) induces the assembly of the NLRP3 inflammasome, resulting in the augmented secretion of inflammatory cytokines implicated in the pathogenesis of inflammatory bowel disease (IBD). TNFα has also been known to induce the formation of immunoproteasome (IP), which incorporates immunosubunits LMP2, LMP7, and MECL-1. Inhibition of IP activity using the IP subunit LMP2-specific inhibitor YU102, a peptide epoxyketone, decreased the protein levels of NLRP3 and increased the K48-linked polyubiquitination levels of NLRP3 in TNFα-stimulated intestinal epithelial cells. We observed that inhibition of IP activity caused an increase in the protein level of the ubiquitin E3 ligase, tripartite motif-containing protein 31 (TRIM31). TRIM31 facilitated K48-linked polyubiquitination and proteasomal degradation of NLRP3 with an enhanced interaction between NLRP3 and TRIM31 in intestinal epithelial cells. In addition, IP inhibition using YU102 ameliorated the symptoms of colitis in the model mice inflicted with dextran sodium sulfate (DSS). Administration of YU102 in the DSS-treated colitis model mice caused suppression of the NLRP3 protein levels and accompanied inflammatory cytokine release in the intestinal epithelium. Taken together, we demonstrated that inhibiting IP under inflammatory conditions induces E3 ligase TRIM31-mediated NLRP3 degradation, leading to attenuation of the NLRP3 inflammatory response that triggers disruption of intestinal barrier.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Complejo de la Endopetidasa Proteasomal , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas , Ubiquitinación , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Inflamasomas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ratones , Humanos , Ubiquitinación/efectos de los fármacos , Ratones Endogámicos C57BL , Colitis/inducido químicamente , Colitis/patología , Colitis/metabolismo , Colitis/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Sulfato de Dextran , Modelos Animales de Enfermedad
6.
Cell Mol Life Sci ; 81(1): 167, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581570

RESUMEN

Hepatocellular carcinoma (HCC) is a malignant tumor with high incidence and mortality rates. NFKBIZ, a member of the nuclear factor kappa B inhibitory family, is closely related to tumor progression. However, the precise role of NFKBIZ in HCC remains unclear. To explore this, we conducted a series of experiments from clinic to cells. Western blot and qPCR revealed a significant downregulation of NFKBIZ in human HCC tissues. Clinical character analysis showed that the patients with lower NFKBIZ expression had poorer prognosis and higher clinical stage. By using CCK-8, wound healing, transwell invasion and migration assay, we discovered that NFKBIZ expression was reversely associated with the proliferation, invasion, and migration ability of HCC cells in vitro. Additionally, the results obtained from xenograft assay and lung metastasis models showed that NFKBIZ overexpression inhibited the growth and metastasis of HCC cells in vivo. Western blot and immunofluorescence assay further revealed that NFKBIZ mediated HCC cell growth and migration by regulating NFκB signaling transduction. Finally, flow cytometry, protein degradation assay and Co-immunoprecipitation indicated that TRIM16 can enhance NFKBIZ ubiquitination by direct interactions at its K48 site, which may thereby alleviate HCC cell apoptosis to induce the insensitivity to sorafenib. In conclusion, our study demonstrated that NFKBIZ regulated HCC tumorigenesis and metastasis by mediating NFκB signal transduction and TRIM16/NFKBIZ/NFκB axis may be the underlying mechanism of sorafenib insensitivity in HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Sorafenib/farmacología , Línea Celular Tumoral , Movimiento Celular , Transducción de Señal , Carcinogénesis/genética , Transformación Celular Neoplásica , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo
7.
Discov Med ; 36(183): 699-713, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38665019

RESUMEN

BACKGROUND: The usage of life-saving mechanical ventilation (MV) could cause ventilator-induced diaphragmatic dysfunction (VIDD), increasing both mortality and morbidity. Aminophylline (AP) has the potential to enhance the contractility of animal skeletal muscle fibers and improve the activity of human respiratory muscles, and the insulin-like growth factor-1 (IGF-1)- forkhead box protein O1 (FOXO1)-muscle RING finger-1 (MURF1) pathway plays a crucial role in skeletal muscle dysfunction. This study aimed to investigate the impact of AP on VIDD and to elucidate the role of the IGF-1-FOXO1-MURF1 pathway as an underlying mechanism. METHODS: Rat models of VIDD were established through MV treatment. IGF-1 lentiviral (LV) interference (LV-IGF-1-shRNA; controlled by lentiviral negative control LV-NC) was employed to inhibit IGF-1 expression and thereby block the IGF-1-FOXO1-MURF1 pathway. Protein and mRNA levels of IGF-1, FOXO1, and MURF1 were assessed using western blot and real-time reverse transcriptase-polymerase chain reaction (RT-qPCR), respectively. Diaphragm contractility and morphometry were examined through measurement of compound muscle action potentials (CMAPs) and hematoxylin and eosin (H&E) staining. Oxidative stress was evaluated by levels of hydrogen peroxide (H2O2), superoxide dismutase (SOD), antioxidant glutathione (GSH), and carbonylated protein. Mitochondrial stability was assessed by measuring the mitochondrial membrane potential (MMP), and mitochondrial fission and mitophagy were examined through protein levels of dynamin-related protein 1 (DRP1), mitofusin 2 protein (MFN2), phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1), and Parkin (western blot). Apoptosis was evaluated using the terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate (UTP) nick-end labeling (TUNEL) assay and levels of Bax, B-cell lymphoma 2 (BCL-2), and Caspase-3. Levels of Atrogin-1, neuronally expressed developmentally downregulated 4 (NEDD4), and muscle ubiquitin ligase of SCF complex in atrophy-1 (MUSA1) mRNA, as well as ubiquitinated protein, were utilized to determine protein degradation. Furthermore, the SUnSET (surface sensing of translation) method was employed to determine rates of protein synthesis. RESULTS: MV treatment upregulated IGF-1 while downregulated FOXO1 and MURF1 (p < 0.05). AP administration reversed IGF-1, FOXO1 and MURF1 (p < 0.05), which was suppressed again by IGF-1 inhibition (p < 0.05), demonstrating the blockage of the IGF-1-FOXO1-MURF1 pathway. MV treatment caused decreased CMAP and cross-sectional areas of diaphragm muscle fibers, and increased time course of CMAP (p < 0.05). Additionally, oxidative stress, cell apoptosis, and protein degradation were increased and mitochondrial stability was decreased by MV treatment (p < 0.05). Conversely, AP administration reversed all these changes induced by MV, but this reversal was disrupted by the blockage of the IGF-1-FOXO1-MURF1 pathway. CONCLUSIONS: In this study, MV treatment induced symptoms of VIDD in rats, which were all effectively reversed by AP regulating the IGF-1-FOXO1-MURF1 pathway, demonstrating the potential of AP in ameliorating VIDD.


Asunto(s)
Aminofilina , Diafragma , Animales , Masculino , Ratas , Aminofilina/farmacología , Diafragma/efectos de los fármacos , Diafragma/patología , Diafragma/fisiopatología , Diafragma/metabolismo , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , Respiración Artificial/efectos adversos , Transducción de Señal/efectos de los fármacos , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética
8.
BMC Cancer ; 24(1): 537, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678238

RESUMEN

BACKGROUND: The tripartite motif (TRIM) proteins have been reported to play crucial roles in various malignancies. However, the clinical significance of TRIM proteins in colorectal cancer (CRC) remains controversial. This study aimed to evaluate the association between TRIM proteins and the clinicopathological features and survival outcomes in patients with CRC. METHODS: We performed a meta-analysis to investigate whether TRIM is a prognostic factor in CRC. PubMed, Embase, Web of Science, CNKI and Weipu databases were searched to identify eligible studies that evaluated the association between TRIM proteins and overall survival (OS), as well as the clinicopathological features of patients with CRC. Hazard ratios (HR) or odds ratios (OR) with 95% confidence interval (CI) were derived and pooled using a fixed-effects model. RESULTS: From inception to March 2023, we extracted study characteristics and prognostic data for each identified study. Twelve studies enrolling 1608 patients were eligible for inclusion. Data on OS and recurrence-free survival (RFS) were available for 12 and 2 studies, respectively. The pooled analysis results showed a significant correlation between the elevated TRIM proteins and shorter OS (HR = 2.42, 95% CI: 1.96-2.99) and worse RFS (HR = 2.51, 95% CI: 1.78-3.54) in patients with CRC. The combined ORs indicated that TRIM protein over-expression was significantly associated with advanced TNM stage (OR = 2.26, 95% CI: 1.25-4.10), deep tumor invasion (OR = 2.01, 95% CI: 1.04-3.88), lymph node metastasis (OR = 2.99, 95% CI: 2.19-4.09) and perineural invasion (OR = 1.95, 95% CI: 1.18-3.23). CONCLUSIONS: Our findings suggest that TRIM proteins can predict tumor progression and poor prognosis in CRC. Therefore, TRIM proteins may be promising therapeutic targets for patients with CRC.


Asunto(s)
Neoplasias Colorrectales , Proteínas de Motivos Tripartitos , Humanos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/mortalidad , Neoplasias Colorrectales/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Pronóstico , Biomarcadores de Tumor/metabolismo , Estadificación de Neoplasias
9.
Cell Rep ; 43(3): 113945, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38483900

RESUMEN

U1 small nuclear RNA (snRNA) is an abundant and evolutionarily conserved 164-nucleotide RNA species that functions in pre-mRNA splicing, and it is considered to be a housekeeping non-coding RNA. However, the role of U1 snRNA in regulating host antiviral immunity remains largely unexplored. Here, we find that RNVU1-18, a U1 pseudogene, is significantly upregulated in the host infected with RNA viruses, including influenza and respiratory syncytial virus. Overexpression of U1 snRNA protects cells against RNA viruses, while knockdown of U1 snRNA leads to more viral burden in vitro and in vivo. Knockout of RNVU1-18 is sufficient to impair the type I interferon-dependent antiviral innate immunity. U1 snRNA is required to fully activate the retinoic acid-inducible gene I (RIG-I)-dependent antiviral signaling, since it interacts with tripartite motif 25 (TRIM25) and enhances the RIG-I-TRIM25 interaction to trigger K63-linked ubiquitination of RIG-I. Our study reveals the important role of housekeeping U1 snRNA in regulating host antiviral innate immunity and restricting RNA virus infection.


Asunto(s)
Factores de Transcripción , Ubiquitina-Proteína Ligasas , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteína 58 DEAD Box/metabolismo , Inmunidad Innata , ARN Nuclear Pequeño , Ubiquitinación , Proteínas de Motivos Tripartitos/metabolismo
10.
J Clin Invest ; 134(6)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38488012

RESUMEN

As the leading cause of disability worldwide, low back pain (LBP) is recognized as a pivotal socioeconomic challenge to the aging population and is largely attributed to intervertebral disc degeneration (IVDD). Elastic nucleus pulposus (NP) tissue is essential for the maintenance of IVD structural and functional integrity. The accumulation of senescent NP cells with an inflammatory hypersecretory phenotype due to aging and other damaging factors is a distinctive hallmark of IVDD initiation and progression. In this study, we reveal a mechanism of IVDD progression in which aberrant genomic DNA damage promoted NP cell inflammatory senescence via activation of the cyclic GMP-AMP synthase/stimulator of IFN genes (cGAS/STING) axis but not of absent in melanoma 2 (AIM2) inflammasome assembly. Ataxia-telangiectasia-mutated and Rad3-related protein (ATR) deficiency destroyed genomic integrity and led to cytosolic mislocalization of genomic DNA, which acted as a powerful driver of cGAS/STING axis-dependent inflammatory phenotype acquisition during NP cell senescence. Mechanistically, disassembly of the ATR-tripartite motif-containing 56 (ATR-TRIM56) complex with the enzymatic liberation of ubiquitin-specific peptidase 5 (USP5) and TRIM25 drove changes in ATR ubiquitination, with ATR switching from K63- to K48-linked modification, c thereby promoting ubiquitin-proteasome-dependent dynamic instability of ATR protein during NP cell senescence progression. Importantly, an engineered extracellular vesicle-based strategy for delivering ATR-overexpressing plasmid cargo efficiently diminished DNA damage-associated NP cell senescence and substantially mitigated IVDD progression, indicating promising targets and effective approaches to ameliorate the chronic pain and disabling effects of IVDD.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Humanos , Anciano , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo , Envejecimiento , Senescencia Celular , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Disco Intervertebral/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/farmacología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo
11.
Adv Sci (Weinh) ; 11(16): e2306915, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38357830

RESUMEN

Recent studies suggest that circular RNA (circRNA)-mediated post-translational modification of RNA-binding proteins (RBP) plays a pivotal role in metastasis of hepatocellular carcinoma (HCC). However, the specific mechanism and potential clinical therapeutic significance remain vague. This study attempts to profile the regulatory networks of circRNA and RBP using a multi-omics approach. Has_circ_0006646 (circ0006646) is an unreported circRNA in HCC and is associated with a poor prognosis. Silencing of circ0006646 significantly hinders metastasis in vivo. Mechanistically, circ0006646 prevents the interaction between nucleolin (NCL) and the E3 ligase tripartite motif-containing 21 to reduce the proteasome-mediated degradation of NCL via K48-linked polyubiquitylation. Furthermore, the change of NCL expression is proven to affect the phosphorylation levels of multiple proteins and inhibit p53 translation. Moreover, patient-derived tumor xenograft and lentivirus injection, which is conducted to simulate clinical treatment confirmed the potential therapeutic value. Overall, this study describes the integrated multi-omics landscape of circRNA-mediated NCL ubiquitination degradation in HCC metastasis and provides a novel therapeutic target.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , ARN Circular , Ubiquitinación , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Humanos , ARN Circular/genética , ARN Circular/metabolismo , Ubiquitinación/genética , Ratones , Animales , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Línea Celular Tumoral , Nucleolina , Metástasis de la Neoplasia/genética , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Modelos Animales de Enfermedad , Multiómica
12.
Atherosclerosis ; 390: 117430, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301602

RESUMEN

BACKGROUND AND AIMS: Tripartite motif (TRIM65) is an important member of the TRIM protein family, which is a newly discovered E3 ligase that interacts with and ubiquitinates various substrates and is involved in diverse pathological processes. However, the function of TRIM65 in atherosclerosis remains unarticulated. In this study, we investigated the role of TRIM65 in the pathogenesis of atherosclerosis, specifically in vascular smooth muscle cells (VSMCs) phenotype transformation, which plays a crucial role in formation of atherosclerotic lesions. METHODS AND RESULTS: Both non-atherosclerotic and atherosclerotic lesions during autopsy were collected singly or pairwise from each individual (n = 16) to investigate the relationship between TRIM65 and the development of atherosclerosis. In vivo, Western diet-fed ApoE-/- mice overexpressing or lacking TRIM65 were used to assess the physiological function of TRIM65 on VSMCs phenotype, proliferation and atherosclerotic lesion formation. In vitro, VSMCs phenotypic transformation was induced by platelet-derived growth factor-BB (PDGF-BB). TRIM65-overexpressing or TRIM65-abrogated primary mouse aortic smooth muscle cells (MOASMCs) and human aortic smooth muscle cells (HASMCs) were used to investigate the mechanisms underlying the progression of VSMCs phenotypic transformation, proliferation and migration. Increased TRIM65 expression was detected in α-SMA-positive cells in the medial and atherosclerotic lesions of autopsy specimens. TRIM65 overexpression increased, whereas genetic knockdown of TRIM65 remarkably inhibited, atherosclerotic plaque development. Mechanistically, TRIM65 overexpression activated PI3K/Akt/mTOR signaling, resulting in the loss of the VSMCs contractile phenotype, including calponin, α-SMA, and SM22α, as well as cell proliferation and migration. However, opposite phenomena were observed when TRIM65 was deficient in vivo or in vitro. Moreover, in cultured PDGF-BB-induced TRIM65-overexpressing VSMCs, inhibition of PI3K by treatment with the inhibitor LY-294002 for 24 h markedly attenuated PI3K/Akt/mTOR activation, regained the VSMCs contractile phenotype, and blocked the progression of cell proliferation and migration. CONCLUSIONS: TRIM65 overexpression enhances atherosclerosis development by promoting phenotypic transformation of VSMCs from contractile to synthetic state through activation of the PI3K/Akt/mTOR signal pathway.


Asunto(s)
Aterosclerosis , Proteínas Proto-Oncogénicas c-akt , Humanos , Ratones , Animales , Becaplermina/genética , Becaplermina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Músculo Liso Vascular/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Movimiento Celular , Transducción de Señal , Proliferación Celular , Serina-Treonina Quinasas TOR/metabolismo , Aterosclerosis/patología , Miocitos del Músculo Liso/patología , Fenotipo , Células Cultivadas , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/genética
13.
Front Immunol ; 15: 1327898, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38348047

RESUMEN

Tripartite-motif 56 (TRIM56) is a member of the TRIM family, and was shown to be an interferon-inducible E3 ubiquitin ligase that can be overexpressed upon stimulation with double-stranded DNA to regulate stimulator of interferon genes (STING) to produce type I interferon and thus mediate innate immune responses. Its role in tumors remains unclear. In this study, we investigated the relationship between the expression of the TRIM56 gene and its prognostic value in pan-cancer, identifying TRIM56 expression as an adverse prognostic factor in glioma patients. Therefore, glioma was selected as the primary focus of our investigation. We explored the differential expression of TRIM56 in various glioma subtypes and verified its role as an independent prognostic factor in gliomas. Our research revealed that TRIM56 is associated with malignant biological behaviors in gliomas, such as proliferation, migration, and invasion. Additionally, it can mediate M2 polarization of macrophages in gliomas. The results were validated in vitro and in vivo. Furthermore, we utilized single-cell analysis to investigate the impact of TRIM56 expression on cell communication between glioma cells and non-tumor cells. We constructed a multi-gene signature based on cell markers of tumor cells with high TRIM56 expression to enhance the prediction of cancer patient prognosis. In conclusion, our study demonstrates that TRIM56 serves as a reliable immune-related prognostic biomarker in glioma.


Asunto(s)
Glioma , Interferones , Humanos , Pronóstico , Glioma/genética , Biomarcadores , Análisis de la Célula Individual , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas
14.
PLoS Pathog ; 20(2): e1011718, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38408103

RESUMEN

The tripartite motif (TRIM) protein family is the largest subfamily of E3 ubiquitin ligases, playing a crucial role in the antiviral process. In this study, we found that TRIM72, a member of the TRIM protein family, was increased in neuronal cells and mouse brains following rabies lyssavirus (RABV) infection. Over-expression of TRIM72 significantly reduced the viral titer of RABV in neuronal cells and mitigated the pathogenicity of RABV in mice. Furthermore, we found that TRIM72 over-expression effectively prevents the assembly and/or release of RABV. In terms of the mechanism, TRIM72 promotes the K48-linked ubiquitination of RABV Matrix protein (M), leading to the degradation of M through the proteasome pathway. TRIM72 directly interacts with M and the interaction sites were identified and confirmed through TRIM72-M interaction model construction and mutation analysis. Further investigation revealed that the degradation of M induced by TRIM72 was attributed to TRIM72's promotion of ubiquitination at site K195 in M. Importantly, the K195 site was found to be partially conserved among lyssavirus's M proteins, and TRIM72 over-expression induced the degradation of these lyssavirus M proteins. In summary, our study has uncovered a TRIM family protein, TRIM72, that can restrict lyssavirus replication by degrading M, and we have identified a novel ubiquitination site (K195) in lyssavirus M.


Asunto(s)
Lyssavirus , Complejo de la Endopetidasa Proteasomal , Ratones , Animales , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas/metabolismo , Ubiquitinación , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Lyssavirus/genética , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo
15.
Stem Cells ; 42(5): 460-474, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38381592

RESUMEN

Cell therapy based on mesenchymal stem cells (MSCs) alleviate muscle atrophy caused by diabetes and aging; however, the impact of human umbilical cord mesenchymal stem cells on muscle atrophy following nerve injury and the underlying mechanisms remain unclear. In this study, we evaluated the therapeutic efficacy of human umbilical cord MSCs (hucMSCs) and hucMSC-derived exosomes (hucMSC-EXOs) for muscle atrophy following nerve injury and identified the underlying molecular mechanisms. Sciatic nerve crush injury in rats and the induction of myotubes in L6 cells were used to determine the ameliorating effect of hucMSCs and hucMSC-EXOs on muscle atrophy. Q-PCR and Western blot analyses were used to measure the expression of muscle-specific ubiquitin ligases Fbxo32 (Atrogin1, MAFbx) and Trim63 (MuRF-1). Dual-luciferase reporter gene experiments were conducted to validate the direct binding of miRNAs to their target genes. Local injection of hucMSCs and hucMSC-EXOs mitigated atrophy in the rat gastrocnemius muscle following sciatic nerve crush injury. In vitro, hucMSC-EXOs alleviated atrophy in L6 myotubes. Mechanistic analysis indicated the upregulation of miR-23b-3p levels in L6 myotubes following hucMSC-EXOs treatment. MiR-23b-3p significantly inhibited the expression of its target genes, Fbxo32 and Trim63, and suppressed myotube atrophy. Notably, an miR-23b-3p inhibitor reversed the inhibitory effect of miR-23b-3p on myotube atrophy in vitro. These results suggest that hucMSCs and their exosomes alleviate muscle atrophy following nerve injury. MiR-23b-3p in exosomes secreted by hucMSCs contributes to this mechanism by inhibiting the muscle-specific ubiquitination ligases Fbxo32 and Trim63.


Asunto(s)
Exosomas , Células Madre Mesenquimatosas , Atrofia Muscular , Traumatismos de los Nervios Periféricos , Ubiquitina-Proteína Ligasas , Exosomas/metabolismo , Animales , Atrofia Muscular/patología , Atrofia Muscular/metabolismo , Atrofia Muscular/terapia , Atrofia Muscular/genética , Humanos , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Células Madre Mesenquimatosas/metabolismo , Ratas , Traumatismos de los Nervios Periféricos/metabolismo , Traumatismos de los Nervios Periféricos/patología , Traumatismos de los Nervios Periféricos/terapia , Ratas Sprague-Dawley , Proteínas Ligasas SKP Cullina F-box/metabolismo , Proteínas Ligasas SKP Cullina F-box/genética , Cordón Umbilical/citología , Músculo Esquelético/patología , Músculo Esquelético/metabolismo , Masculino , Proteínas de Motivos Tripartitos/metabolismo , Proteínas de Motivos Tripartitos/genética , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología
16.
Am J Physiol Gastrointest Liver Physiol ; 326(4): G426-G437, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38290991

RESUMEN

This study aims to investigate the role and molecular mechanism of anthocyanin in improving liver fibrosis through ferroptosis, providing a basis for drug development and targeted therapy. In this study, a mouse model of liver fibrosis was established using CCl4, and the anthocyanin treatment groups were administered 100 mg/kg anthocyanin daily via gavage. Furthermore, real-time fluorescent quantitative PCR (qRT-PCR), Western blotting (WB), and enzyme-linked immunosorbent assay were used to assess liver fibrosis indicators and liver injury markers. Histopathological methods were used to confirm the morphology of liver injury in different treatment groups. The effects of anthocyanins on ferroptosis markers, NCOA4 and FTH1 expression, were examined through qRT-PCR, WB, and Co-IP. Confocal microscopy was used to validate the colocalization of ferritin and lysosomes. A differential expression model of TRIM7 was constructed to verify its impact on the progression of liver fibrosis. The present study demonstrates the hepatoprotective effects of anthocyanins in liver fibrosis, highlighting their ability to enhance hepatic stellate cell (HSC) ferroptosis and regulate ferritin autophagy. Moreover, TRIM7 is identified as a key mediator of anthocyanin-induced regulation of hepatic stellate cells activation for liver fibrosis treatment through modulation of ferroautophagy. Mechanistic investigations further reveal that TRIM7 exerts its influence on the process of ferroautophagy by controlling NCOA4 ubiquitination. Our study discovered that anthocyanins could improve liver fibrosis by regulating NCOA4 ubiquitination through TRIM7, thereby affecting hepatic stellate cells' ferroptosis levels.NEW & NOTEWORTHY This was the first study to demonstrate that anthocyanins can improve the progression of liver fibrosis by promoting hepatic stellate cell (HSC) ferroptosis. Anthocyanins could affect the content of Fe2+ by promoting ferroautophagy in HSCs, thereby promoting the level of ferroptosis. This study demonstrates for the first time that anthocyanins can inhibit the expression of TRIM7 and then affect the ubiquitination of NCOA4 to regulate the level of ferritin autophagy and ferroptosis.


Asunto(s)
Antocianinas , Arándanos Azules (Planta) , Ferroptosis , Cirrosis Hepática , Animales , Ratones , Antocianinas/farmacología , Antocianinas/metabolismo , Antocianinas/uso terapéutico , Arándanos Azules (Planta)/química , Ferritinas , Ferroptosis/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Ubiquitinación/efectos de los fármacos , Coactivadores de Receptor Nuclear/efectos de los fármacos , Coactivadores de Receptor Nuclear/metabolismo , Proteínas de Motivos Tripartitos/efectos de los fármacos , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/efectos de los fármacos , Ubiquitina-Proteína Ligasas/metabolismo
17.
Sci Rep ; 14(1): 2511, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291200

RESUMEN

Cerebral ischaemia/reperfusion (I/R) injury induces irreversible brain injury and causes functional impairment. Ubiquitination plays a crucial role in protein degradation, but its role in cerebral I/R injury remains unclear. Differentially expressed genes in stroke were identified by analysing the microarray dataset GSE119121. Cerebral I/R was simulated in vitro by treating human microglial HMC3 cells with oxygen-glucose deprivation/reperfusion (OGD/R). Cell viability was tested by Cell Counting Kit 8 (CCK-8) assays, and pyroptosis was examined by flow cytometry. Lactate dehydrogenase (LDH) and inflammatory cytokine secretion were measured by LDH cytotoxicity assays and enzyme-linked immunosorbent assay (ELISA), respectively. The cerebral I/R animal model was established by middle cerebral artery occlusion (MCAO) surgery in rats. Bioinformatic analysis indicated that tripartite motif-containing protein 59 (TRIM59) is downregulated in stroke, which was verified in cerebral I/R models. The upregulation of TRIM59 promoted viability and inhibited pyroptosis in OGD/R-treated microglia and alleviated cerebral I/R injury in vivo. TRIM59 attenuated NOD-like receptor family pyrin domain containing 3 (NLRP3) protein expression through ubiquitination, thus degrading NLRP3 and alleviating OGD/R-induced injury. TRIM59 relieves cerebral I/R injury in vivo and in vivo. Mechanistically, TRIM59 directly interacts with NLRP3 and inhibits NLRP3 through ubiquitination. Targeting the TRIM59/NLRP3 signalling axis may be an effective therapeutic strategy for cerebral I/R.


Asunto(s)
Isquemia Encefálica , Daño por Reperfusión , Accidente Cerebrovascular , Animales , Humanos , Ratas , Isquemia Encefálica/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Inflamasomas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Microglía/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , Daño por Reperfusión/metabolismo , Accidente Cerebrovascular/metabolismo , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitinación
18.
Int Immunopharmacol ; 128: 111494, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38218012

RESUMEN

BACKGROUND & AIMS: Tumor-associated macrophages (TAMs) are main components of immune cells in tumor microenvironment (TME), and play a crucial role in tumor progression. Tripartite motif-containing protein 65 (TRIM65) has been associated with tumor progression. However, whether TRIM65 regulate the interaction of tumor cell and TAMs in HCC and the underlying mechanisms remain unknown. In this study, we investigated the role of TRIM65 in TME of HCC and explored its underlying mechanisms. METHODS: The relation of TRIM65 expression level with tumor grades, TNM stages, and worse prognosis of HCC patients was evaluated by bioinformatics analysis, as well as immune infiltration level of macrophages. TRIM65 shRNA was transfected into HepG2 cells, and TRIM65 overexpression plasmid was transfected into Huh7 cells, and the effect of TRIM65 on cell growth was examined by EdU assay. The mouse subcutaneous Hep1-6 tumor-bearing model with WT and TRIM65-/- mice was established to study the role of TRIM65 in HCC. Immunohistochemistry staining, Immunofluorescence staining, qRT-PCR and western blot were performed to evaluate the effect of TRIM65 on TAM infiltration, TAM polarization and JAK1/STAT1 signaling pathway. RESULTS: Bioinformatics analysis revealed that TRIM65 was upregulated in 16 types of cancer especially in HCC, and high level of TRIM65 was strongly correlated with higher tumor grades, TNM stages, and worse prognosis of patients with HCC as well as immune infiltration level of macrophages (M0, M1, and M2). Moreover, we observed that TRIM65 shRNA-mediated TRIM65 knockdown significantly inhibited the HepG2 cells growth while TRIM65 overexpression highly increased the Huh7 cells growth in vitro. TRIM65 knockout significantly inhibited the tumor growth as well as macrophages polarization towards M2 but promoted macrophages polarization towards M1 in vivo. Mechanistically, the results demonstrate that TRIM65 knockout promoted macrophage M1 polarization in conditioned medium-stimulated peritoneal macrophages and in tumor tissues by activating JAK1/STAT1 signaling pathway. CONCLUSIONS: Taken together, our study suggests that tumor cells utilize TRIM65-JAK1/STAT1 axis to inhibit macrophage M1 polarization and promote tumor growth, reveals the role of TRIM65 in TAM-targeting tumor immunotherapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Humanos , Ratones , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Janus Quinasa 1/metabolismo , Neoplasias Hepáticas/metabolismo , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Factor de Transcripción STAT1/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Microambiente Tumoral , Macrófagos Asociados a Tumores/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
19.
J Diabetes Investig ; 15(5): 572-583, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38268239

RESUMEN

AIMS/INTRODUCTION: The molecular mechanisms of diabetic nephropathy (DN) are poorly identified. However, the advantage of an increasing amount on microarray data of diabetic nephropathy intrigued us to explore the mechanisms based on bioinformatics prediction for diabetic nephropathy. MATERIALS AND METHODS: Bioinformatics analysis was conducted to screen the hub genes associated with diabetic nephropathy. The average human renal tubular epithelial cells were exposed to high glucose (HG) to generate an in vitro cell model. In addition, a mouse model of diabetic nephropathy was established using a high-fat diet and streptozotocin injection. Finally, the shRNA targeting immunoglobulin heavy constant gamma 1 (IGHG1) was introduced in vitro and in vivo to illustrate its effect on downstream factors and on the development diabetic nephropathy. RESULTS: Bioinformatics analysis revealed that IGHG1, TRIM11 (tripartite motif protein 11), and TonEBP are highly expressed in diabetic nephropathy. In vitro cell experiments demonstrated that IGHG1 positively regulates the expression of TRIM11 and TonEBP (tonicity-responsive enhancer binding protein) in HK2 cells treated with high glucose. Furthermore, TRIM11 upregulates the expression of TonEBP through activation of the MEK/ERK (mitogen-activated protein kinase/extracellular signal-regulated kinase) signaling pathway in HK2 cells treated with high glucose. In vivo, animal experiments further confirmed that silencing IGHG1 could prevent the occurrence and development of diabetic nephropathy. CONCLUSION: The silencing of IGHG1 alleviated diabetic nephropathy by inhibiting the TRIM11/MEK/ERK axis and by downregulating TonEBP.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Animales , Humanos , Masculino , Ratones , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Silenciador del Gen , Ratones Endogámicos C57BL , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo
20.
Mod Pathol ; 37(4): 100438, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38278485

RESUMEN

We recently described novel dermal tumors with melanocytic differentiation and morphologic and biological similarities to cutaneous clear cell sarcoma, including CRTC1::TRIM11 cutaneous tumor, and clear cell tumors with melanocytic differentiation and either ACTIN::MITF or MITF::CREM. Here, we describe a series of 3 patients presenting with tumors reminiscent of CRTC1::TRIM11 cutaneous tumor, found to demonstrate a novel MED15::ATF1 fusion. All 3 patients were children (5-16 years old). Primary excision of case 1 showed a circumscribed wedge-shaped silhouette with peripheral intercalation into collagen fibers and scattered lymphoid aggregates. All 3 tumors abutted the epidermis; one showed a junctional component. Tumors were highly cellular and comprised of monomorphic, oval-to-round epithelioid cells arranged in vague nests and short fascicles in variably fibrotic stroma. Mitotic rate was high (hotspot 6-12/mm2), without atypical mitoses. Necrosis was focally present in case 3. All cases showed strong, diffuse nuclear staining for SOX10 and MITF (2/2) but showed variable expression for S100 protein (1/3) and other melanocytic markers-Melan-A (focal in 2/3), HMB45 (focal in 1/3), and Pan-Melanoma (patchy in 1/1). Whole-exome RNA sequencing demonstrated a MED15::ATF1 fusion without any other notable alterations. Cases 1 and 2 were completely excised without recurrence (12 months). Case 3 developed a grossly apparent regional lymph node spread shortly after primary biopsy. The patient was treated with wide excision, radiation, cervical lymph node dissection (4/46 with >75% lymph node replacement), and neoadjuvant and adjuvant nivolumab (alive without disease at cycle 11). This series is presented to aid in future diagnosis of this novel dermal tumor with melanocytic differentiation and emphasize the potential for aggressive biologic behavior, which should be considered in patient management planning.


Asunto(s)
Melanoma , Sarcoma de Células Claras , Neoplasias Cutáneas , Adolescente , Niño , Preescolar , Humanos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Complejo Mediador , Melanoma/diagnóstico , Sarcoma de Células Claras/diagnóstico , Sarcoma de Células Claras/genética , Sarcoma de Células Claras/patología , Neoplasias Cutáneas/patología , Factores de Transcripción/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA