Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 525
Filtrar
1.
Bone Res ; 12(1): 40, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38987568

RESUMEN

Efficient cellular fusion of mononuclear precursors is the prerequisite for the generation of fully functional multinucleated bone-resorbing osteoclasts. However, the exact molecular factors and mechanisms controlling osteoclast fusion remain incompletely understood. Here we identify RANKL-mediated activation of caspase-8 as early key event during osteoclast fusion. Single cell RNA sequencing-based analyses suggested that activation of parts of the apoptotic machinery accompanied the differentiation of osteoclast precursors into mature multinucleated osteoclasts. A subsequent characterization of osteoclast precursors confirmed that RANKL-mediated activation of caspase-8 promoted the non-apoptotic cleavage and activation of downstream effector caspases that translocated to the plasma membrane where they triggered activation of the phospholipid scramblase Xkr8. Xkr8-mediated exposure of phosphatidylserine, in turn, aided cellular fusion of osteoclast precursors and thereby allowed generation of functional multinucleated osteoclast syncytia and initiation of bone resorption. Pharmacological blockage or genetic deletion of caspase-8 accordingly interfered with fusion of osteoclasts and bone resorption resulting in increased bone mass in mice carrying a conditional deletion of caspase-8 in mononuclear osteoclast precursors. These data identify a novel pathway controlling osteoclast biology and bone turnover with the potential to serve as target for therapeutic intervention during diseases characterized by pathologic osteoclast-mediated bone loss. Proposed model of osteoclast fusion regulated by caspase-8 activation and PS exposure. RANK/RANK-L interaction. Activation of procaspase-8 into caspase-8. Caspase-8 activates caspase-3. Active capase-3 cleaves Xkr8. Local PS exposure is induced. Exposed PS is recognized by the fusion partner. FUSION. PS is re-internalized.


Asunto(s)
Caspasa 8 , Fusión Celular , Osteoclastos , Fosfatidilserinas , Proteínas de Transferencia de Fosfolípidos , Caspasa 8/metabolismo , Caspasa 8/genética , Animales , Osteoclastos/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteínas de Transferencia de Fosfolípidos/genética , Ratones , Ratones Endogámicos C57BL , Resorción Ósea/metabolismo , Resorción Ósea/patología , Resorción Ósea/genética , Diferenciación Celular , Ligando RANK/metabolismo
2.
PLoS Genet ; 20(6): e1011335, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38913742

RESUMEN

The outer membrane of gram-negative bacteria is a barrier to chemical and physical stress. Phospholipid transport between the inner and outer membranes has been an area of intense investigation and, in E. coli K-12, it has recently been shown to be mediated by YhdP, TamB, and YdbH, which are suggested to provide hydrophobic channels for phospholipid diffusion, with YhdP and TamB playing the major roles. However, YhdP and TamB have different phenotypes suggesting distinct functions. It remains unclear whether these functions are related to phospholipid metabolism. We investigated a synthetic cold sensitivity caused by deletion of fadR, a transcriptional regulator controlling fatty acid degradation and unsaturated fatty acid production, and yhdP, but not by ΔtamB ΔfadR or ΔydbH ΔfadR. Deletion of tamB recuses the ΔyhdP ΔfadR cold sensitivity further demonstrating the phenotype is related to functional diversification between these genes. The ΔyhdP ΔfadR strain shows a greater increase in cardiolipin upon transfer to the non-permissive temperature and genetically lowering cardiolipin levels can suppress cold sensitivity. These data also reveal a qualitative difference between cardiolipin synthases in E. coli, as deletion of clsA and clsC suppresses cold sensitivity but deletion of clsB does not. Moreover, increased fatty acid saturation is necessary for cold sensitivity and lowering this level genetically or through supplementation of oleic acid suppresses the cold sensitivity of the ΔyhdP ΔfadR strain. Together, our data clearly demonstrate that the diversification of function between YhdP and TamB is related to phospholipid metabolism. Although indirect regulatory effects are possible, we favor the parsimonious hypothesis that YhdP and TamB have differential phospholipid-substrate transport preferences. Thus, our data provide a potential mechanism for independent control of the phospholipid composition of the inner and outer membranes in response to changing conditions based on regulation of abundance or activity of YhdP and TamB.


Asunto(s)
Proteínas de Escherichia coli , Fosfolípidos , Fosfolípidos/metabolismo , Fosfolípidos/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Transporte Biológico/genética , Cardiolipinas/metabolismo , Cardiolipinas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Frío , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ácidos Grasos/metabolismo , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo
3.
J Neurosci ; 44(27)2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38839301

RESUMEN

Phospholipids (PLs) are asymmetrically distributed at the plasma membrane. This asymmetric lipid distribution is transiently altered during calcium-regulated exocytosis, but the impact of this transient remodeling on presynaptic function is currently unknown. As phospholipid scramblase 1 (PLSCR1) randomizes PL distribution between the two leaflets of the plasma membrane in response to calcium activation, we set out to determine its role in neurotransmission. We report here that PLSCR1 is expressed in cerebellar granule cells (GrCs) and that PLSCR1-dependent phosphatidylserine egress occurred at synapses in response to neuron stimulation. Synaptic transmission is impaired at GrC Plscr1 -/- synapses, and both PS egress and synaptic vesicle (SV) endocytosis are inhibited in Plscr1 -/- cultured neurons from male and female mice, demonstrating that PLSCR1 controls PL asymmetry remodeling and SV retrieval following neurotransmitter release. Altogether, our data reveal a novel key role for PLSCR1 in SV recycling and provide the first evidence that PL scrambling at the plasma membrane is a prerequisite for optimal presynaptic performance.


Asunto(s)
Cerebelo , Proteínas de Transferencia de Fosfolípidos , Sinapsis , Transmisión Sináptica , Vesículas Sinápticas , Animales , Vesículas Sinápticas/metabolismo , Transmisión Sináptica/fisiología , Ratones , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteínas de Transferencia de Fosfolípidos/genética , Femenino , Masculino , Cerebelo/citología , Sinapsis/metabolismo , Sinapsis/fisiología , Células Cultivadas , Ratones Noqueados , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/fisiología , Endocitosis/fisiología
4.
Proc Natl Acad Sci U S A ; 121(27): e2311831121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38941274

RESUMEN

TMEM16F is a calcium-activated phospholipid scramblase and nonselective ion channel, which allows the movement of lipids bidirectionally across the plasma membrane. While the functions of TMEM16F have been extensively characterized in multiple cell types, the role of TMEM16F in the central nervous system remains largely unknown. Here, we sought to study how TMEM16F in the brain may be involved in neurodegeneration. Using a mouse model that expresses the pathological P301S human tau (PS19 mouse), we found reduced tauopathy and microgliosis in 6- to 7-mo-old PS19 mice lacking TMEM16F. Furthermore, this reduction of pathology can be recapitulated in the PS19 mice with TMEM16F removed from neurons, while removal of TMEM16F from microglia of PS19 mice did not significantly impact tauopathy at this time point. Moreover, TMEM16F mediated aberrant phosphatidylserine exposure in neurons with phospho-tau burden. These studies raise the prospect of targeting TMEM16F in neurons as a potential treatment of neurodegeneration.


Asunto(s)
Anoctaminas , Neuronas , Fosfatidilserinas , Tauopatías , Proteínas tau , Animales , Anoctaminas/metabolismo , Anoctaminas/genética , Fosfatidilserinas/metabolismo , Neuronas/metabolismo , Neuronas/patología , Proteínas tau/metabolismo , Proteínas tau/genética , Ratones , Tauopatías/metabolismo , Tauopatías/patología , Humanos , Microglía/metabolismo , Microglía/patología , Fosforilación , Ratones Transgénicos , Modelos Animales de Enfermedad , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteínas de Transferencia de Fosfolípidos/genética , Encéfalo/metabolismo , Encéfalo/patología , Ratones Noqueados
5.
Cell Mol Life Sci ; 81(1): 261, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878170

RESUMEN

Blood ultrafiltration in nephrons critically depends on specialized intercellular junctions between podocytes, named slit diaphragms (SDs). Here, by studying a homologous structure found in Drosophila nephrocytes, we identify the phospholipid scramblase Scramb1 as an essential component of the SD, uncovering a novel link between membrane dynamics and SD formation. In scramb1 mutants, SDs fail to form. Instead, the SD components Sticks and stones/nephrin, Polychaetoid/ZO-1, and the Src-kinase Src64B/Fyn associate in cortical foci lacking the key SD protein Dumbfounded/NEPH1. Scramb1 interaction with Polychaetoid/ZO-1 and Flotillin2, the presence of essential putative palmitoylation sites and its capacity to oligomerize, suggest a function in promoting SD assembly within lipid raft microdomains. Furthermore, Scramb1 interactors as well as its functional sensitivity to temperature, suggest an active involvement in membrane remodeling processes during SD assembly. Remarkably, putative Ca2+-binding sites in Scramb1 are essential for its activity raising the possibility that Ca2+ signaling may control the assembly of SDs by impacting on Scramb1 activity.


Asunto(s)
Proteínas de Drosophila , Proteínas de Transferencia de Fosfolípidos , Podocitos , Animales , Podocitos/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Microdominios de Membrana/metabolismo , Uniones Intercelulares/metabolismo
6.
Int J Med Sci ; 21(8): 1559-1574, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38903921

RESUMEN

Background: PtdIns (3,4,5) P3-dependent Rac exchanger 1 (PREX1), also known as PREX1, a member of the Rac guanine nucleotide exchange factors (Rac-GEF) family. Studies have suggested that PREX1 plays a role in mediating oncogenic pathway activation and controlling various biological mechanisms in different types of cancer, including liver hepatocellular carcinoma (LIHC). However, the function of PREX1 in the pathogenesis of LIHC and its potential role on immunological regulation is not clearly elucidated. Methods: The expression level and the clinical role of PREX1 in LIHC was analyzed based on database from the Cancer Genome Atlas (TCGA), TNM plotter and University of Alabama Cancer Database (UALCAN). We investigated the relationship between PREX1 and immunity in LIHC by TISIDB, CIBERSORT and single cell analysis. Immunotherapy responses were assessed by the immunophenoscores (IPS). Moreover, biological functional assays were performed to further investigate the roles of PREX1 in liver cancer cell lines. Results: Higher expression of PREX1 in LIHC tissues than in normal liver tissues was found based on public datasets. Further analysis revealed that PREX1 was associated with worse clinical characteristics and dismal prognosis. Pathway enrichment analysis indicated that PREX1 participated in immune-related pathways. Through CIBERSORT and single cell analysis, we found a remarkable correlation between the expression of PREX1 and various immune cells, especially macrophages. In addition, high PREX1 expression was found to be associated with a stronger response to immunotherapy. Furthermore, in vitro assays indicated that depletion of PREX1 can suppress invasion and proliferation of LIHC cells. Conclusion: Elevated expression of PREX1 indicates poor prognosis, influences immune modulation and predicts sensitivity of immunosuppression therapy in LIHC. Our results suggested that PREX1 may be a prognostic biomarker and therapeutic target, offering new treatment options for LIHC.


Asunto(s)
Biomarcadores de Tumor , Carcinoma Hepatocelular , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , Análisis de la Célula Individual , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Pronóstico , Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica , Línea Celular Tumoral , Factores de Intercambio de Guanina Nucleótido/genética , Masculino , Transcriptoma/inmunología , Transcriptoma/genética , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Femenino
7.
Biol Pharm Bull ; 47(6): 1136-1143, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38866522

RESUMEN

Ceramide (Cer) is synthesized de novo in the bilayer of the endoplasmic reticulum and transported to the cytosolic leaflet of the trans-Golgi apparatus for sphingomyelin (SM) synthesis. As the active site of SM synthase (SMS) is located on the luminal side of the Golgi membrane, Cer translocates to the lumen via transbilayer movement for SM synthesis. However, the mechanism of transbilayer movement is not fully understood. As the Cer-related translocases seem to localize near the SMS, the protein was identified using proximity-dependent biotin identification proteomics. Phospholipid scramblase 1 (PLSCR1), which is thought to act as a scramblase for phosphatidylserine and phosphatidylethanolamine, was identified as a protein proximal to the SMS isoforms SMS1 and SMS2. Although five isoforms of PLSCR have been reported in humans, only PLSCR1, PLSCR3, and PLSCR4 are expressed in HEK293T cells. Confocal microscopic analysis showed that PLSCR1 and PLSCR4 partially co-localized with p230, a trans-Golgi network marker, where SMS isoforms are localized. We established CRISPR/Cas9-mediated PLSCR1, PLSCR3, and PLSCR4 single-knockout cells and PLSCR1, 3, 4 triple knockout HEK293T cells. Liquid chromatography-tandem mass spectrometry revealed that the levels of species with distinct acyl chains in Cer and SM were not significantly different in single knockout cells or in the triple knockout cells compared to the wild-type cells. Our findings suggest that PLSCR1 is localized in the vicinity of SMS isoforms, however is not involved in the transbilayer movement of Cer for SM synthesis.


Asunto(s)
Proteínas de Transferencia de Fosfolípidos , Esfingomielinas , Transferasas (Grupos de Otros Fosfatos Sustitutos) , Humanos , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteínas de Transferencia de Fosfolípidos/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Células HEK293 , Esfingomielinas/metabolismo , Esfingomielinas/biosíntesis , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Isoenzimas/metabolismo , Isoenzimas/genética , Aparato de Golgi/metabolismo , Aparato de Golgi/enzimología
8.
Nat Commun ; 15(1): 5157, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886340

RESUMEN

The eukaryotic asparagine (N)-linked glycan is pre-assembled as a fourteen-sugar oligosaccharide on a lipid carrier in the endoplasmic reticulum (ER). Seven sugars are first added to dolichol pyrophosphate (PP-Dol) on the cytoplasmic face of the ER, generating Man5GlcNAc2-PP-Dol (M5GN2-PP-Dol). M5GN2-PP-Dol is then flipped across the bilayer into the lumen by an ER translocator. Genetic studies identified Rft1 as the M5GN2-PP-Dol flippase in vivo but are at odds with biochemical data suggesting Rft1 is dispensable for flipping in vitro. Thus, the question of whether Rft1 plays a direct or an indirect role during M5GN2-PP-Dol translocation has been controversial for over two decades. We describe a completely reconstituted in vitro assay for M5GN2-PP-Dol translocation and demonstrate that purified Rft1 catalyzes the translocation of M5GN2-PP-Dol across the lipid bilayer. These data, combined with in vitro results demonstrating substrate selectivity and rft1∆ phenotypes, confirm the molecular identity of Rft1 as the M5GN2-PP-Dol ER flippase.


Asunto(s)
Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Transporte Biológico , Oligosacáridos/metabolismo , Fosfatos de Dolicol/metabolismo , Fosfatos de Dolicol/genética , Membrana Dobles de Lípidos/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteínas de Transferencia de Fosfolípidos/genética , Membranas Intracelulares/metabolismo , Lipopolisacáridos
9.
Am J Hum Genet ; 111(6): 1184-1205, 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38744284

RESUMEN

Anoctamins are a family of Ca2+-activated proteins that may act as ion channels and/or phospholipid scramblases with limited understanding of function and disease association. Here, we identified five de novo and two inherited missense variants in ANO4 (alias TMEM16D) as a cause of fever-sensitive developmental and epileptic or epileptic encephalopathy (DEE/EE) and generalized epilepsy with febrile seizures plus (GEFS+) or temporal lobe epilepsy. In silico modeling of the ANO4 structure predicted that all identified variants lead to destabilization of the ANO4 structure. Four variants are localized close to the Ca2+ binding sites of ANO4, suggesting impaired protein function. Variant mapping to the protein topology suggests a preliminary genotype-phenotype correlation. Moreover, the observation of a heterozygous ANO4 deletion in a healthy individual suggests a dysfunctional protein as disease mechanism rather than haploinsufficiency. To test this hypothesis, we examined mutant ANO4 functional properties in a heterologous expression system by patch-clamp recordings, immunocytochemistry, and surface expression of annexin A5 as a measure of phosphatidylserine scramblase activity. All ANO4 variants showed severe loss of ion channel function and DEE/EE associated variants presented mild loss of surface expression due to impaired plasma membrane trafficking. Increased levels of Ca2+-independent annexin A5 at the cell surface suggested an increased apoptosis rate in DEE-mutant expressing cells, but no changes in Ca2+-dependent scramblase activity were observed. Co-transfection with ANO4 wild-type suggested a dominant-negative effect. In summary, we expand the genetic base for both encephalopathic sporadic and inherited fever-sensitive epilepsies and link germline variants in ANO4 to a hereditary disease.


Asunto(s)
Anoctaminas , Mutación Missense , Humanos , Anoctaminas/genética , Anoctaminas/metabolismo , Mutación Missense/genética , Masculino , Femenino , Epilepsia/genética , Niño , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo , Estudios de Asociación Genética , Linaje , Calcio/metabolismo , Genes Dominantes , Preescolar , Células HEK293 , Adolescente
10.
Microb Drug Resist ; 30(7): 279-287, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38727600

RESUMEN

Invasive fungal infections in humans with compromised immune systems are the primary cause of morbidity and mortality, which is becoming more widely acknowledged. Amphotericin B (AmB) is one of the antifungal drugs used to treat such infections. AmB binds with plasma membrane ergosterol, inducing cellular ions to leak and causing cell death. Reduction in ergosterol content and modification of cell walls have been described as AmB resistance mechanisms. In addition, when the sphingolipid level is decreased, the cell becomes more susceptible to AmB. Previously, PDR16, a gene that encodes phosphatidylinositol transfer protein in Saccharomyces cerevisiae, was shown to enhance AmB resistance upon overexpression. However, the mechanism of PDR16-mediated AmB resistance is not clear. Here, in this study, it was discovered that a plasma membrane proteolipid 3 protein encoded by PMP3 is essential for PDR16-mediated AmB resistance. PDR16-mediated AmB resistance does not depend on ergosterol, but a functional sphingolipid biosynthetic pathway is required. Additionally, PMP3-mediated alteration in membrane integrity abolishes PDR16 mediated AmB resistance, confirming the importance of PMP3 in the PDR16 mediated AmB resistance.


Asunto(s)
Anfotericina B , Antifúngicos , Farmacorresistencia Fúngica , Ergosterol , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de los fármacos , Anfotericina B/farmacología , Antifúngicos/farmacología , Farmacorresistencia Fúngica/genética , Proteínas de Saccharomyces cerevisiae/genética , Esfingolípidos/metabolismo , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo , Pruebas de Sensibilidad Microbiana , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos
11.
J Biol Chem ; 300(6): 107387, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38763336

RESUMEN

The cryo-EM resolution revolution has heralded a new era in our understanding of eukaryotic lipid flippases with a rapidly growing number of high-resolution structures. Flippases belong to the P4 family of ATPases (type IV P-type ATPases) that largely follow the reaction cycle proposed for the more extensively studied cation-transporting P-type ATPases. However, unlike the canonical P-type ATPases, no flippase cargos are transported in the phosphorylation half-reaction. Instead of being released into the intracellular or extracellular milieu, lipid cargos are transported to their destination at the inner leaflet of the membrane. Recent flippase structures have revealed multiple conformational states during the lipid transport cycle. Nonetheless, critical conformational states capturing the lipid cargo "in transit" are still missing. In this review, we highlight the amazing structural advances of these lipid transporters, discuss various perspectives on catalytic and regulatory mechanisms in the literature, and shed light on future directions in further deciphering the detailed molecular mechanisms of lipid flipping.


Asunto(s)
Adenosina Trifosfatasas , Humanos , Animales , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/química , Microscopía por Crioelectrón , Transporte Biológico , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteínas de Transferencia de Fosfolípidos/química , Proteínas de Transferencia de Fosfolípidos/genética , Metabolismo de los Lípidos , Conformación Proteica
12.
Int J Biol Macromol ; 267(Pt 2): 131240, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583827

RESUMEN

Lipids are intimately related to the unique flavor and nutritional values of goat milk. MicroRNAs (miRNA) participate in the regulation of various biological functions, including the synthesis and degradation of lipids. Several studies have shown that miR-103 is involved in the regulation of lipid metabolism, however, the molecular mechanism by which miR-103 regulates lipid metabolism in goat mammary gland is poorly understood. In this study, miR-103 was knocked out in goat mammary epithelial cells (GMECs) by CRISPR/Cas9, and the accumulation of lipid droplets, triglycerides, and cholesterol in the cells was suppressed subsequently. Overexpression or knockdown of miR-103-5p and miR-103-3p in GMECs revealed that it was miR-103-5p that promoted lipid accumulation but not miR-103-3p. In addition, Pantothenate Kinase 3 (PANK3), the host gene of miR-103, and Phospholipid Scramblase 4 (PLSCR4) were identified as the target genes of miR-103-5p by dual fluorescein and miRNA pulldown. Furthermore, we identified that cellular lipid levels were negatively regulated by PANK3 and PLSCR4. Lastly, in miR-103 knockout GMECs, the knockdown of PANK and PLSCR4 rescued the lipid accumulation. These findings suggest that miR-103-5p promotes lipid accumulation by targeting PLSCR4 and the host gene PANK3 in GMECs, providing new insights for the regulation of goat milk lipids via miRNAs.


Asunto(s)
Células Epiteliales , Cabras , Metabolismo de los Lípidos , Glándulas Mamarias Animales , MicroARNs , Fosfotransferasas (Aceptor de Grupo Alcohol) , Animales , MicroARNs/genética , MicroARNs/metabolismo , Cabras/genética , Metabolismo de los Lípidos/genética , Células Epiteliales/metabolismo , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/citología , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Femenino , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteínas de Transferencia de Fosfolípidos/deficiencia , Regulación hacia Arriba/genética , Gotas Lipídicas/metabolismo , Regulación de la Expresión Génica , Triglicéridos/metabolismo
13.
EMBO J ; 43(10): 2035-2061, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38627600

RESUMEN

Phosphatidylinositol (PI) is the precursor lipid for the minor phosphoinositides (PPIns), which are critical for multiple functions in all eukaryotic cells. It is poorly understood how phosphatidylinositol, which is synthesized in the ER, reaches those membranes where PPIns are formed. Here, we used VT01454, a recently identified inhibitor of class I PI transfer proteins (PITPs), to unravel their roles in lipid metabolism, and solved the structure of inhibitor-bound PITPNA to gain insight into the mode of inhibition. We found that class I PITPs not only distribute PI for PPIns production in various organelles such as the plasma membrane (PM) and late endosomes/lysosomes, but that their inhibition also significantly reduced the levels of phosphatidylserine, di- and triacylglycerols, and other lipids, and caused prominent increases in phosphatidic acid. While VT01454 did not inhibit Golgi PI4P formation nor reduce resting PM PI(4,5)P2 levels, the recovery of the PM pool of PI(4,5)P2 after receptor-mediated hydrolysis required both class I and class II PITPs. Overall, these studies show that class I PITPs differentially regulate phosphoinositide pools and affect the overall cellular lipid landscape.


Asunto(s)
Fosfatidilinositoles , Proteínas de Transferencia de Fosfolípidos , Humanos , Fosfatidilinositoles/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteínas de Transferencia de Fosfolípidos/genética , Metabolismo de los Lípidos , Membrana Celular/metabolismo , Células HeLa , Orgánulos/metabolismo , Endosomas/metabolismo , Animales
14.
Arch Biochem Biophys ; 756: 110002, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636689

RESUMEN

BACKGROUND: Phospholipid scramblase 1 (PLSCR1) is a calcium-dependent endofacial plasma-membrane protein that plays an essential role in multiple human cancers. However, little is known about its role in glioma. This study aimed to investigate PLSCR1 function in glioma, and elucidate its underlying molecular mechanisms. METHODS: PLSCR1 expression in human glioma cell lines (U87MG, U251, LN229, A172 and T98G) and human astrocytes was detected by western blot and qRT-PCR. PLSCR1 was silenced using si-PLSCR1-1 and si-PLSCR1-2 in LN229 and U251 cells. PLSCR1 was overexpressed using the pcDNA-PLSCR1 plasmid in T98G cells. Colony formation, 5-ethynyl-2'-deoxyuridine, flow cytometry and transwell assays were employed for measuring cell proliferation, apoptosis and mobility after PLSCR1 knockdown or overexpression. PLSCR1 function in glycolysis in glioma cells was determined through measuring the extracellular acidification rate, oxygen consumption rate, glucose consumption and lactate production. Besides, immunohistochemistry, western blot and qRT-PCR were utilized to assess mRNA and protein expression. Besides, the effect of PLSCR1 silencing on subcutaneous tumor was also monitored. RESULTS: PLSCR1 expression was upregulated in glioma. The downregulation of PLSCR1 repressed the proliferation, mobility, epithelial-to-mesenchymal transition (EMT) and glycolysis; however, it facilitated apoptosis in glioma cells. Whereas, PLSCR1 upregulation had the opposite effect. Moreover, PLSCR1 promoted the activation of the IL-6/JAK/STAT3 pathway in glioma cells. Besides, IL-6 treatment significantly reversed the function of PLSCR1 silencing on cell proliferation, mobility, EMT, apoptosis and glycolysis. In a nude mouse tumor model, silencing PLSCR1 suppressed tumor growth via inactivating IL-6/JAK/STAT3 signaling. CONCLUSION: Our results indicated that PLSCR1 could facilitate proliferation, mobility, EMT and glycolysis, but repress apoptosis through activating IL-6/JAK/STAT3 signaling in glioma. Therefore, PLSCR1 may function as a potential therapeutic target for glioma.


Asunto(s)
Proliferación Celular , Glioma , Interleucina-6 , Proteínas de Transferencia de Fosfolípidos , Factor de Transcripción STAT3 , Transducción de Señal , Humanos , Glioma/metabolismo , Glioma/patología , Glioma/genética , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteínas de Transferencia de Fosfolípidos/genética , Línea Celular Tumoral , Animales , Interleucina-6/metabolismo , Ratones , Ratones Desnudos , Quinasas Janus/metabolismo , Apoptosis , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Glucólisis , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Ratones Endogámicos BALB C , Movimiento Celular
15.
Apoptosis ; 29(7-8): 1090-1108, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38519636

RESUMEN

Neutrophil extracellular traps (NETs) are novel inflammatory cell death in neutrophils. Emerging studies demonstrated NETs contributed to cancer progression and metastases in multiple ways. This study intends to provide a prognostic NETs signature and therapeutic target for lung adenocarcinoma (LUAD) patients. Consensus cluster analysis performed by 38 reported NET-related genes in TCGA-LUAD cohorts. Then, WGCNA network was conducted to investigate characteristics genes in clusters. Seven machine learning algorithms were assessed for training of the model, the optimal model was picked by C-index and 1-, 3-, 5-year ROC value. Then, we constructed a NETs signature to predict the overall survival of LUAD patients. Moreover, multi-omics validation was performed based on NETs signature. Finally, we constructed stable knockdown critical gene LUAD cell lines to verify biological functions of Phospholipid Scramblase 1 (PLSCR1) in vitro and in vivo. Two NETs-related clusters were identified in LUAD patients. Among them, C2 cluster was provided as "hot" tumor phenotype and exhibited a better prognosis. Then, WGCNA network identified 643 characteristic genes in C2 cluster. Then, Coxboost algorithm proved its optimal performance and provided a prognostic NETs signature. Multi-omics revealed that NETs signature was involved in an immunosuppressive microenvironment and predicted immunotherapy efficacy. In vitro and in vivo experiments demonstrated that knockdown of PLSCR1 inhibited tumor growth and EMT ability. Besides, cocultural assay indicated that the knockdown of PLSCR1 impaired the ability of neutrophils to generate NETs. Finally, tissue microarray (TMA) for LUAD patients verified the prognostic value of PLSCR1 expression. In this study, we focus on emerging hot topic NETs in LUAD. We provide a prognostic NETs signature and identify PLSCR1 with multiple roles in LUAD. This work can contribute to risk stratification and screen novel therapeutic targets for LUAD patients.


Asunto(s)
Adenocarcinoma del Pulmón , Trampas Extracelulares , Inmunoterapia , Neoplasias Pulmonares , Aprendizaje Automático , Humanos , Trampas Extracelulares/metabolismo , Trampas Extracelulares/inmunología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Animales , Ratones , Pronóstico , Neutrófilos/inmunología , Neutrófilos/metabolismo , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Microambiente Tumoral/inmunología
16.
Dis Model Mech ; 17(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38436085

RESUMEN

P4-ATPases flip lipids from the exoplasmic to cytoplasmic leaflet of cell membranes, a property crucial for many biological processes. Mutations in P4-ATPases are associated with severe inherited and complex human disorders. We determined the expression, localization and ATPase activity of four variants of ATP8A2, the P4-ATPase associated with the neurodevelopmental disorder known as cerebellar ataxia, impaired intellectual development and disequilibrium syndrome 4 (CAMRQ4). Two variants, G447R and A772P, harboring mutations in catalytic domains, expressed at low levels and mislocalized in cells. In contrast, the E459Q variant in a flexible loop displayed wild-type expression levels, Golgi-endosome localization and ATPase activity. The R1147W variant expressed at 50% of wild-type levels but showed normal localization and activity. These results indicate that the G447R and A772P mutations cause CAMRQ4 through protein misfolding. The E459Q mutation is unlikely to be causative, whereas the R1147W may display a milder disease phenotype. Using various programs that predict protein stability, we show that there is a good correlation between the experimental expression of the variants and in silico stability assessments, suggesting that such analysis is useful in identifying protein misfolding disease-associated variants.


Asunto(s)
Adenosina Trifosfatasas , Simulación por Computador , Enfermedades Genéticas Congénitas , Mutación , Proteínas de Transferencia de Fosfolípidos , Humanos , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , Ataxia Cerebelosa/genética , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/enzimología , Aparato de Golgi/metabolismo , Células HEK293 , Discapacidad Intelectual/genética , Mutación/genética , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo , Estabilidad Proteica , Transporte de Proteínas
17.
Life Sci Alliance ; 7(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38499328

RESUMEN

Lipid transfer proteins mediate the transfer of lipids between organelle membranes, and the loss of function of these proteins has been linked to neurodegeneration. However, the mechanism by which loss of lipid transfer activity leads to neurodegeneration is not understood. In Drosophila photoreceptors, depletion of retinal degeneration B (RDGB), a phosphatidylinositol transfer protein, leads to defective phototransduction and retinal degeneration, but the mechanism by which loss of this activity leads to retinal degeneration is not understood. RDGB is localized to membrane contact sites through the interaction of its FFAT motif with the ER integral protein VAP. To identify regulators of RDGB function in vivo, we depleted more than 300 VAP-interacting proteins and identified a set of 52 suppressors of rdgB The molecular identity of these suppressors indicates a role of novel lipids in regulating RDGB function and of transcriptional and ubiquitination processes in mediating retinal degeneration in rdgB9 The human homologs of several of these molecules have been implicated in neurodevelopmental diseases underscoring the importance of VAP-mediated processes in these disorders.


Asunto(s)
Proteínas Portadoras , Proteínas de Drosophila , Degeneración Retiniana , Animales , Humanos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Degeneración Retiniana/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Transferencia de Fosfolípidos/genética , Lípidos
19.
J Biol Chem ; 300(3): 105755, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38364890

RESUMEN

XK-related 8 (XKR8), in complex with the transmembrane glycoprotein basigin, functions as a phospholipid scramblase activated by the caspase-mediated cleavage or phosphorylation of its C-terminal tail. It carries a putative phospholipid translocation path of multiple hydrophobic and charged residues in the transmembrane region. It also has a crucial tryptophan at the exoplasmic end of the path that regulates its scrambling activity. We herein investigated the tertiary structure of the human XKR8-basigin complex embedded in lipid nanodiscs at an overall resolution of 3.66 Å. We found that the C-terminal tail engaged in intricate polar and van der Waals interactions with a groove at the cytoplasmic surface of XKR8. These interactions maintained the inactive state of XKR8. Point mutations to disrupt these interactions strongly enhanced the scrambling activity of XKR8, suggesting that the activation of XKR8 is mediated by releasing the C-terminal tail from the cytoplasmic groove. We speculate that the cytoplasmic tail region of XKR8 functions as a plug to prevent the scrambling of phospholipids.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Basigina , Proteínas de la Membrana , Proteínas de Transferencia de Fosfolípidos , Humanos , Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/genética , Basigina/química , Membrana Celular/metabolismo , Liposomas/química , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Nanopartículas/química , Proteínas de Transferencia de Fosfolípidos/química , Proteínas de Transferencia de Fosfolípidos/genética , Fosfolípidos , Conformación Proteica en Hélice alfa , Imagen Individual de Molécula
20.
Blood ; 143(4): 357-369, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38033286

RESUMEN

ABSTRACT: Cell-surface exposure of phosphatidylserine (PS) is essential for phagocytic clearance and blood clotting. Although a calcium-activated phospholipid scramblase (CaPLSase) has long been proposed to mediate PS exposure in red blood cells (RBCs), its identity, activation mechanism, and role in RBC biology and disease remain elusive. Here, we demonstrate that TMEM16F, the long-sought-after RBC CaPLSase, is activated by calcium influx through the mechanosensitive channel PIEZO1 in RBCs. PIEZO1-TMEM16F functional coupling is enhanced in RBCs from individuals with hereditary xerocytosis (HX), an RBC disorder caused by PIEZO1 gain-of-function channelopathy. Enhanced PIEZO1-TMEM16F coupling leads to an increased propensity to expose PS, which may serve as a key risk factor for HX clinical manifestations including anemia, splenomegaly, and postsplenectomy thrombosis. Spider toxin GsMTx-4 and antigout medication benzbromarone inhibit PIEZO1, preventing force-induced echinocytosis, hemolysis, and PS exposure in HX RBCs. Our study thus reveals an activation mechanism of TMEM16F CaPLSase and its pathophysiological function in HX, providing insights into potential treatment.


Asunto(s)
Anemia Hemolítica Congénita , Calcio , Femenino , Humanos , Anemia Hemolítica Congénita/genética , Calcio/metabolismo , Eritrocitos/metabolismo , Hidropesía Fetal/genética , Canales Iónicos/genética , Proteínas de Transferencia de Fosfolípidos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA