Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Int J Mol Sci ; 20(18)2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31510000

RESUMEN

Members of the mitochondrial carrier (MC) protein family transport various molecules across the mitochondrial inner membrane to interlink steps of metabolic pathways and biochemical processes that take place in different compartments; i.e., are localized partly inside and outside the mitochondrial matrix. MC substrates consist of metabolites, inorganic anions (such as phosphate and sulfate), nucleotides, cofactors and amino acids. These compounds have been identified by in vitro transport assays based on the uptake of radioactively labeled substrates into liposomes reconstituted with recombinant purified MCs. By using this approach, 18 human, plant and yeast MCs for amino acids have been characterized and shown to transport aspartate, glutamate, ornithine, arginine, lysine, histidine, citrulline and glycine with varying substrate specificities, kinetics, influences of the pH gradient, and capacities for the antiport and uniport mode of transport. Aside from providing amino acids for mitochondrial translation, the transport reactions catalyzed by these MCs are crucial in energy, nitrogen, nucleotide and amino acid metabolism. In this review we dissect the transport properties, phylogeny, regulation and expression levels in different tissues of MCs for amino acids, and summarize the main structural aspects known until now about MCs. The effects of their disease-causing mutations and manipulation of their expression levels in cells are also considered as clues for understanding their physiological functions.


Asunto(s)
Aminoácidos/metabolismo , Ácido Aspártico/metabolismo , Ácido Glutámico/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas de Arabidopsis/clasificación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Humanos , Proteínas de Transporte de Membrana Mitocondrial/clasificación , Proteínas de Transporte de Membrana Mitocondrial/genética , Filogenia , Proteínas de Saccharomyces cerevisiae/clasificación , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
BMC Genomics ; 18(1): 997, 2017 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-29284403

RESUMEN

BACKGROUND: The existence of mitochondria-related organelles (MROs) is proposed for eukaryotic organisms. The Amoebozoa includes some organisms that are known to have mitosomes but also organisms that have aerobic mitochondria. However, the mitochondrial protein apparatus of this supergroup remains largely unsampled, except for the mitochondrial outer membrane import complexes studied recently. Therefore, in this study we investigated the mitochondrial inner membrane and intermembrane space complexes, using the available genome and transcriptome sequences. RESULTS: When compared with the canonical cognate complexes described for the yeast Saccharomyces cerevisiae, amoebozoans with aerobic mitochondria, display lower differences in the number of subunits predicted for these complexes than the mitochondrial outer membrane complexes, although the predicted subunits appear to display different levels of diversity in regard to phylogenetic position and isoform numbers. For the putative mitosome-bearing amoebozoans, the number of predicted subunits suggests the complex elimination distinctly more pronounced than in the case of the outer membrane ones. CONCLUSION: The results concern the problem of mitochondrial and mitosome protein import machinery structural variability and the reduction of their complexity within the currently defined supergroup of Amoebozoa. This results are crucial for better understanding of the Amoebozoa taxa of both biomedical and evolutionary importance.


Asunto(s)
Amebozoos/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Acanthamoeba castellanii/genética , Amebozoos/clasificación , Células Cultivadas , Dictyostelium/genética , Perfilación de la Expresión Génica , Genómica , Proteínas de Transporte de Membrana Mitocondrial/clasificación , Filogenia , Subunidades de Proteína/genética
3.
Nat Commun ; 4: 2558, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24153405

RESUMEN

Proteins containing nucleotide-binding and leucine-rich repeat domains (NB-LRRs) serve as immune receptors in plants and animals. Negative regulation of immunity mediated by NB-LRR proteins is crucial, as their overactivation often leads to autoimmunity. Here we describe a new mutant, snc1-enhancing (muse) forward genetic screen, targeting unknown negative regulators of NB-LRR-mediated resistance in Arabidopsis. From the screen, we identify MUSE5, which is renamed as AtPAM16 because it encodes the ortholog of yeast PAM16, part of the mitochondrial inner membrane protein import motor. Consistently, AtPAM16-GFP localizes to the mitochondrial inner membrane. AtPAM16L is a paralog of AtPAM16. Double mutant Atpam16-1 Atpam16l is lethal, indicating that AtPAM16 function is essential. Single mutant Atpam16 plants exhibit a smaller size and enhanced resistance against virulent pathogens. They also display elevated reactive oxygen species (ROS) accumulation. Therefore, AtPAM16 seems to be involved in importing a negative regulator of plant immunity into mitochondria, thus protecting plants from over-accumulation of ROS and preventing autoimmunity.


Asunto(s)
Proteínas de Arabidopsis/inmunología , Arabidopsis/inmunología , Regulación de la Expresión Génica de las Plantas/inmunología , Mitocondrias/inmunología , Proteínas de Transporte de Membrana Mitocondrial/inmunología , Inmunidad de la Planta/genética , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Proteínas Fluorescentes Verdes , Ensayos Analíticos de Alto Rendimiento , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial/clasificación , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Mutación , Oomicetos/inmunología , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/inmunología , Homología de Secuencia de Aminoácido , Transducción de Señal
4.
Biochim Biophys Acta ; 1807(12): 1647-57, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21888892

RESUMEN

Most mitochondrial proteins are imported into mitochondria from the cytosolic compartment. Proteins destined for the outer or inner membrane, the inter-membrane space, or the matrix are recognized and translocated by the TOM machinery containing the specialized protein import channel Tom40. The latter is a protein with ß-barrel shape, which is suggested to have evolved from a porin-type protein. To obtain structural insights in the absence of a crystal structure the membrane topology of Tom40 from Neurospora crassa was determined by limited proteolysis combined with mass spectrometry. The results were interpreted on the basis of a structural model that has been generated for NcTom40 by using the structure of mouse VDAC-1 as a template and amino acid sequence information of approximately 270 different Tom40 and approximately 480 VDAC amino acid sequences for refinement. The model largely explains the observed accessible cleavage sites and serves as a structural basis for the investigation of physicochemical properties of the ensemble of our Tom40 sequence data set. By this means we discovered two conserved polar slides in the pore interior. One is possibly involved in the positioning of a pore-inserted helix; the other one might be important for mitochondrial pre-sequence peptide binding as it is only present in Tom40 but not in VDAC proteins. The outer surface of the Tom40 barrel reveals two conserved amino acid clusters. They may be involved in binding other components of the TOM complex or bridging components of the TIM machinery of the mitochondrial inner membrane.


Asunto(s)
Biología Computacional/métodos , Proteínas Fúngicas/química , Espectrometría de Masas/métodos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Secuencia de Aminoácidos , Animales , Proteínas Fúngicas/clasificación , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ratones , Proteínas de Transporte de Membrana Mitocondrial/clasificación , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Neurospora crassa/química , Neurospora crassa/citología , Filogenia , Canal Aniónico 1 Dependiente del Voltaje/química , Canal Aniónico 1 Dependiente del Voltaje/genética
5.
Mol Biol Evol ; 28(1): 781-91, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20871025

RESUMEN

Core proteins of mitochondrial protein import are found in all mitochondria, suggesting a common origin of this import machinery. Despite the presence of a universal core import mechanism, there are specific proteins found only in a few groups of organisms. One of these proteins is the translocase of outer membrane 70 (Tom70), a protein that is essential for the import of preproteins with internal targeting sequences into the mitochondrion. Until now, Tom70 has only been found in animals and Fungi. We have identified a tom70 gene in the human parasitic anaerobic stramenopile Blastocystis sp. that is neither an animal nor a fungus. Using a combination of bioinformatics, genetic complementation, and immunofluorescence microscopy analyses, we demonstrate that this protein functions as a typical Tom70 in Blastocystis mitochondrion-related organelles. Additionally, we identified putative tom70 genes in the genomes of other stramenopiles and a haptophyte, that, in phylogenies, form a monophyletic group distinct from the animal and the fungal homologues. The presence of Tom70 in these lineages significantly expands the evolutionary spectrum of eukaryotes that contain this protein and suggests that it may have been part of the core mitochondrial protein import apparatus of the last common ancestral eukaryote.


Asunto(s)
Evolución Biológica , Blastocystis/genética , Blastocystis/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Blastocystis/ultraestructura , Técnicas de Silenciamiento del Gen , Prueba de Complementación Genética , Humanos , Mitocondrias/genética , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/clasificación , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Modelos Moleculares , Filogenia , Conformación Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
FEBS Lett ; 582(19): 2817-25, 2008 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-18639549

RESUMEN

Mia40-dependent disulphide bond exchange is used by animals, yeast, and probably plants for import of small, cysteine-rich proteins into the mitochondrial intermembrane space (IMS). During import, electrons are transferred from the imported substrate to Mia40 then, via the sulphydryl oxidase Erv1, into the respiratory chain. Curiously, however, there are protozoa which contain substrates for Mia40-dependent import, but lack Mia40. There are also organisms where Erv1 is present in the absence of respiratory chain components. In accommodating these and other relevant observations pertaining to mitochondrial cell biology, we hypothesise that the ancestral IMS import pathway for disulphide-bonded proteins required only Erv1 (but not Mia40) and identify parasites in which O(2) is the likely physiological oxidant for Erv1.


Asunto(s)
Citocromos c/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma/metabolismo , Secuencia de Aminoácidos , Anaerobiosis , Animales , Cisteína/metabolismo , Reductasas del Citocromo/antagonistas & inhibidores , Reductasas del Citocromo/metabolismo , Disulfuros/metabolismo , Transporte de Electrón , Evolución Molecular , Proteínas de Transporte de Membrana Mitocondrial/clasificación , Proteínas de Transporte de Membrana Mitocondrial/genética , Datos de Secuencia Molecular , Oxidación-Reducción , Oxígeno/metabolismo , Filogenia , Transporte de Proteínas , Proteínas Protozoarias/clasificación , Proteínas Protozoarias/genética , Trypanosoma/genética , Trypanosoma/ultraestructura
7.
Proc Biol Sci ; 273(1596): 1943-52, 2006 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-16822756

RESUMEN

Mitochondria originated by permanent enslavement of purple non-sulphur bacteria. These endosymbionts became organelles through the origin of complex protein-import machinery and insertion into their inner membranes of protein carriers for extracting energy for the host. A chicken-and-egg problem exists: selective advantages for evolving import machinery were absent until inner membrane carriers were present, but this very machinery is now required for carrier insertion. I argue here that this problem was probably circumvented by conversion of the symbiont protein-export machinery into protein-import machinery, in three phases. I suggest that the first carrier entered the periplasmic space via pre-existing beta-barrel proteins in the bacterial outer membrane that later became Tom40, and inserted into the inner membrane probably helped by a pre-existing inner membrane protein, thereby immediately providing the protoeukaryote host with photosynthesate. This would have created a powerful selective advantage for evolving more efficient carrier import by inserting Tom70 receptors. Massive gene transfer to the nucleus inevitably occurred by mutation pressure. Finally, pressure from harmful, non-selected gene transfer to the nucleus probably caused evolution of the presequence mechanism, and photosynthesis was lost.


Asunto(s)
Evolución Biológica , Mitocondrias/metabolismo , Proteobacteria/metabolismo , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , Células Eucariotas/ultraestructura , Transferencia de Gen Horizontal , Genoma , Proteínas de la Membrana/clasificación , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/fisiología , Mitocondrias/genética , Mitocondrias/ultraestructura , Proteínas de Transporte de Membrana Mitocondrial/clasificación , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/ultraestructura , Proteínas Mitocondriales/clasificación , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/fisiología , Modelos Biológicos , Fagocitosis , Fotosíntesis , Proteobacteria/genética , Proteobacteria/ultraestructura , Simbiosis
8.
Biochim Biophys Acta ; 1709(2): 157-68, 2005 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-16122696

RESUMEN

Protein sequence similarities and predicted structures identified 75 mitochondrial transport proteins (37 subfamilies) from among the 28,994 human RefSeq (NCBI) protein sequences. All, except two, have an E-value of less than 4e--05 with respect to the structure of the single subunit bovine ADP/ATP carrier/carboxyatractyloside complex (bAAC/CAT) (mGenThreader program). The two 30-kDa exceptions have E-values of 0.003 and 0.005. 21 have been functionally identified and belong to 14 subfamilies. A subset of subfamilies with sequence similarities for each of 12 different protein regions was identified. Many of the 12 protein regions for each tested protein yielded different size subsets. The sum of subfamilies in the 12 subsets was lowest for the phosphate transport protein (PTP) and highest for aralar 1. Transmembrane sequences are most unique. Sequence similarities are highest near the membrane center and matrix. They are highest for the region of transmembrane helices H1, H2 and connecting matrix loop 12 and smallest for transmembrane helices H3, H4 and loop 34. These sequence similarities and the predicted high similarities to the bAAC/CAT structure point to common structural/functional elements that could include subunit/subunit contact sites as they have been identified for PTP and AAC. The four residues protein segment (SerLysGlnIle) of loop 12 is the only segment projecting into the center of the funnel-like structure of the bAAC/CAT. It is present in its entirety only in the AACs and with some replacements in the large Ca2+-modulated aspartate/glutamate transporters. Other transporters have deletions and replacements in this region of loop 12. This protein segment with its central location and variation in size and composition likely contributes to the substrate specificity of the transporters.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/clasificación , Secuencia de Aminoácidos , Transporte Biológico , Biología Computacional , Bases de Datos de Proteínas , Genoma Humano , Humanos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Datos de Secuencia Molecular , Conformación Proteica
9.
Biophys J ; 84(5): 2981-9, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12719229

RESUMEN

Water-filled channels are central to the process of translocating proteins since they provide aqueous pathways through the hydrophobic environment of membranes. The Tom and Tim complexes translocate precursors across the mitochondrial outer and inner membranes, respectively, and contain channels referred to as TOM and TIM (previously called PSC and MCC). In this study, little differences were revealed from a direct comparison of the single channel properties of the TOM and TIM channels of yeast mitochondria. As they perform similar functions in translocating proteins across membranes, it is not surprising that both channels are high conductance, voltage-dependent channels that are slightly cation selective. Reconstituted TIM and TOM channel activities are not modified by deletion of the outer membrane channel VDAC, but are similarly affected by signal sequence peptides.


Asunto(s)
Membranas Intracelulares/fisiología , Canales Iónicos/clasificación , Canales Iónicos/fisiología , Mitocondrias/fisiología , Proteínas de Transporte de Membrana Mitocondrial/clasificación , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Señales de Clasificación de Proteína/fisiología , Potenciales de la Membrana/fisiología , Transporte de Proteínas/fisiología , Levaduras/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA