Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 366
Filtrar
1.
J Nat Prod ; 87(4): 1187-1196, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38632902

RESUMEN

Psammaplins are sulfur containing bromotyrosine alkaloids that have shown antitumor activity through the inhibition of class I histone deacetylases (HDACs). The cytotoxic properties of psammaplin A (1), the parent compound, are related to peroxisome proliferator-activated receptor γ (PPARγ) activation, but the mechanism of action of its analogs psammaplin K (2) and bisaprasin (3) has not been elucidated. In this study, the protective effects against oxidative stress of compounds 1-3, isolated from the sponge Aplysinella rhax, were evaluated in SH-SY5Y cells. The compounds improved cell survival, recovered glutathione (GSH) content, and reduced reactive oxygen species (ROS) release at nanomolar concentrations. Psammaplins restored mitochondrial membrane potential by blocking mitochondrial permeability transition pore opening and reducing cyclophilin D expression. This effect was mediated by the capacity of 1-3 to activate PPARγ, enhancing gene expression of the antioxidant enzymes catalase, nuclear factor E2-related factor 2 (Nrf2), and glutathione peroxidase. Finally, HDAC3 activity was reduced by 1-3 under oxidative stress conditions. This work is the first description of the neuroprotective activity of 1 at low concentrations and the mechanism of action of 2 and 3. Moreover, it links for the first time the previously described effects of 1 in HDAC3 and PPARγ signaling, opening a new research field for the therapeutic potential of this compound family.


Asunto(s)
Disulfuros , Estrés Oxidativo , PPAR gamma , Tirosina/análogos & derivados , PPAR gamma/metabolismo , Estrés Oxidativo/efectos de los fármacos , Humanos , Animales , Estructura Molecular , Especies Reactivas de Oxígeno/metabolismo , Neuronas/efectos de los fármacos , Histona Desacetilasas/metabolismo , Histona Desacetilasas/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Poríferos/química , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/química , Glutatión/metabolismo , Alcaloides/farmacología , Alcaloides/química , Catalasa/metabolismo , Glutatión Peroxidasa/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo
2.
Nanotoxicology ; 18(2): 122-133, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38436290

RESUMEN

Food-grade titanium dioxide (E171) and zinc oxide nanoparticles (ZnO NPs) are found in diverse products for human use. E171 is used as whitening agent in food and cosmetics, and ZnO NPs in food packaging. Their potential multi-organ toxicity has raised concerns on their safety. Since mitochondrial dysfunction is a key aspect of cardio-pathologies, here, we evaluate the effect of chronic exposure to E171 and ZnO NPs in rats on cardiac mitochondria. Changes in cardiac electrophysiology and body weight were measured. E171 reduced body weight more than 10% after 5 weeks. Both E171 and ZnO NPs increased systolic blood pressure (SBP) from 110-120 to 120-140 mmHg after 45 days of treatment. Both NPs altered the mitochondrial permeability transition pore (mPTP), reducing calcium requirement for permeability by 60% and 93% in E171- and ZnO NPs-exposed rats, respectively. Treatments also affected conformational state of adenine nucleotide translocase (ANT). E171 reduced the binding of EMA to Cys 159 in 30% and ZnO NPs in 57%. Mitochondrial aconitase activity was reduced by roughly 50% with both NPs, indicating oxidative stress. Transmission electron microscopy (TEM) revealed changes in mitochondrial morphology including sarcomere discontinuity, edema, and hypertrophy in rats exposed to both NPs. In conclusion, chronic oral exposure to NPs induces functional and morphological damage in cardiac mitochondria, with ZnO NPs being more toxic than E171, possibly due to their dissociation in free Zn2+ ion form. Therefore, chronic intake of these food additives could increase risk of cardiovascular disease.


Asunto(s)
Mitocondrias Cardíacas , Titanio , Óxido de Zinc , Animales , Titanio/toxicidad , Óxido de Zinc/toxicidad , Óxido de Zinc/química , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Masculino , Ratas , Administración Oral , Permeabilidad/efectos de los fármacos , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Nanopartículas del Metal/toxicidad , Nanopartículas/toxicidad , Nanopartículas/química , Ratas Sprague-Dawley , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos
3.
Chem Biodivers ; 21(5): e202301916, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38511277

RESUMEN

BACKGROUND: Emodin has been shown to exert anti-inflammatory and cytoprotective effects. Our study aimed to identify a novel anti-inflammatory mechanism of emodin. METHODS: An LPS-induced model of microvascular endothelial cell (HMEC-1) injury was constructed. Cell proliferation was examined using a CCK-8 assay. The effects of emodin on reactive oxygen species (ROS), cell migration, the mitochondrial membrane potential (MMP), and the opening of the mitochondrial permeability transition pore (mPTP) were evaluated. Actin-Tracker Green was used to examine the relationship between cell microfilament reconstruction and ATP5A1 expression. The effects of emodin on the expression of ATP5A1, NALP3, and TNF-α were determined. After treatment with emodin, ATP5A1 and inflammatory factors (TNF-α, IL-1, IL-6, IL-13 and IL-18) were examined by Western blotting. RESULTS: Emodin significantly increased HMEC-1 cell proliferation and migration, inhibited the production of ROS, increased the mitochondrial membrane potential, and blocked the opening of the mPTP. Moreover, emodin could increase ATP5A1 expression, ameliorate cell microfilament remodeling, and decrease the expression of inflammatory factors. In addition, when ATP5A1 was overexpressed, the regulatory effect of emodin on inflammatory factors was not significant. CONCLUSION: Our findings suggest that emodin can protect HMEC-1 cells against inflammatory injury. This process is modulated by the expression of ATP5A1.


Asunto(s)
Proliferación Celular , Emodina , Lipopolisacáridos , Regulación hacia Arriba , Emodina/farmacología , Emodina/química , Lipopolisacáridos/farmacología , Humanos , Proliferación Celular/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Línea Celular , Antiinflamatorios/farmacología , Antiinflamatorios/química
4.
J Stud Alcohol Drugs ; 85(3): 361-370, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38147083

RESUMEN

OBJECTIVE: Prenatal alcohol exposure causes fetal developmental abnormalities via mitochondrial dysfunction, reactive oxygen species (ROS) formation, and oxidative stress. Therefore, we aimed to investigate the potential of hesperidin as a mitochondrial protective and antioxidative agent in newborn male rats as a model for fetal alcohol syndrome (FAS). METHOD: Newborn male rats were divided randomly into five groups: a sham group (receiving 27.8 ml/ kg milk solution, orally), an ethanol group (5.25 g/kg in milk solution, orally, 2-10 days after birth), an ethanol + hesperidin group (25 mg/kg/ day orally), an ethanol + hesperidin group (50 mg/kg/day orally), and an ethanol + hesperidin group (100 mg/kg/day orally). Thirty-six days after birth, newborn male rats were sacrificed and brain mitochondria were isolated using differential centrifugation. Mitochondrial toxicity biomarkers of succinate dehydrogenase (SDH) activity, mitochondrial swelling, mitochondrial membrane potential (MMP), and ROS were measured. RESULTS: Offspring neonatally exposed to ethanol showed a significant reduction in SDH activity, mitochondrial swelling, MMP collapse, induction of ROS formation, and lipid peroxidation in isolated mitochondria. Oral administration of hesperidin restored SDH activity, improved MMP collapse and mitochondrial swelling, and reduced ROS formation. CONCLUSIONS: This study demonstrates that hesperidin exerts a potent protective effect against alcohol-induced mitochondrial toxicity in the FAS model. Moreover, these findings indicate that hesperidin might be a useful compound for prevention of alcohol-induced fetal developmental abnormalities during pregnancy.


Asunto(s)
Animales Recién Nacidos , Modelos Animales de Enfermedad , Etanol , Trastornos del Espectro Alcohólico Fetal , Hesperidina , Mitocondrias , Estrés Oxidativo , Especies Reactivas de Oxígeno , Animales , Estrés Oxidativo/efectos de los fármacos , Masculino , Trastornos del Espectro Alcohólico Fetal/prevención & control , Trastornos del Espectro Alcohólico Fetal/metabolismo , Ratas , Etanol/administración & dosificación , Etanol/efectos adversos , Especies Reactivas de Oxígeno/metabolismo , Femenino , Hesperidina/farmacología , Hesperidina/administración & dosificación , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Embarazo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/administración & dosificación , Succinato Deshidrogenasa/metabolismo , Ratas Wistar
5.
J Bioenerg Biomembr ; 53(5): 525-539, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34347214

RESUMEN

S-adenosylmethionine (AdoMet) predominantly accumulates in tissues and biological fluids of patients affected by liver dysmethylating diseases, particularly glycine N-methyltransferase, S-adenosylhomocysteine hydrolase and adenosine kinase deficiencies, as well as in some hepatic mtDNA depletion syndromes, whose pathogenesis of liver dysfunction is still poorly established. Therefore, in the present work, we investigated the effects of S-adenosylmethionine (AdoMet) on mitochondrial functions and redox homeostasis in rat liver. AdoMet decreased mitochondrial membrane potential and Ca2+ retention capacity, and these effects were fully prevented by cyclosporin A and ADP, indicating mitochondrial permeability transition (mPT) induction. It was also verified that the thiol-alkylating agent NEM prevented AdoMet-induced ΔΨm dissipation, implying a role for thiol oxidation in the mPT pore opening. AdoMet also increased ROS production and provoked protein and lipid oxidation. Furthermore, AdoMet reduced GSH levels and the activities of aconitase and α-ketoglutarate dehydrogenase. Free radical scavengers attenuated AdoMet effects on lipid peroxidation and GSH levels, supporting a role of ROS in these effects. It is therefore presumed that disturbance of mitochondrial functions associated with mPT and redox unbalance may represent relevant pathomechanisms of liver damage provoked by AdoMet in disorders in which this metabolite accumulates.


Asunto(s)
Hígado/patología , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , S-Adenosilmetionina/efectos adversos , Animales , Masculino , Permeabilidad , Ratas , Ratas Wistar
6.
Molecules ; 26(5)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800264

RESUMEN

Cardiotoxicity is one of the main side effects of doxorubicin (Dox) treatment. Dox could induce oxidative stress, leading to an opening of the mitochondrial permeability transition pore (mPTP) and apoptosis in cardiomyocytes. Previous studies have shown that Cryptotanshinone (Cts) has potential cardioprotective effects, but its role in Dox-induced cardiotoxicity (DIC) remains unknown. A Dox-stimulated H9C2 cell model was established. The effects of Cts on cell viability, reactive oxygen species (ROS), superoxide ion accumulation, apoptosis and mitochondrial membrane potential (MMP) were evaluated. Expressions of proteins in Akt-GSK-3ß pathway were detected by Western blot. An Akt inhibitor was applied to investigate the effects of Cts on the Akt-GSK-3ß pathway. The effects of Cts on the binding of p-GSK-3ß to ANT and the formation of the ANT-CypD complex were explored by immunoprecipitation assay. The results showed that Cts could increase cell viability, reduce ROS levels, inhibit apoptosis and protect mitochondrial membrane integrity. Cts increased phosphorylated levels of Akt and GSK-3ß. After cells were co-treated with an Akt inhibitor, the effects of Cts were abolished. An immunoprecipitation assay showed that Cts significantly increased GSK-3ß-ANT interaction and attenuated Dox-induced formation of the ANT-CypD complex, thereby inhibiting opening of the mPTP. In conclusion, Cts could ameliorate oxidative stress and apoptosis via the Akt-GSK-3ß-mPTP pathway.


Asunto(s)
Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/prevención & control , Fenantrenos/farmacología , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Doxorrubicina/efectos adversos , Doxorrubicina/farmacología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Membranas Mitocondriales/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Miocitos Cardíacos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fenantrenos/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos
7.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33926009

RESUMEN

Prognosis of patients with myocardial infarction is detrimentally affected by comorbidities like diabetes mellitus. In the experimental setting, not only diabetes mellitus but also acute hyperglycemia is shown to hamper cardioprotective properties by multiple pharmacological agents. For Levosimendan-induced postconditioning, a strong infarct size reducing effect is demonstrated in healthy myocardium. However, acute hyperglycemia is suggested to block this protective effect. In the present study, we investigated whether (1) Levosimendan-induced postconditioning exerts a concentration-dependent effect under hyperglycemic conditions and (2) whether a combination with the mitochondrial permeability transition pore (mPTP) blocker cyclosporine A (CsA) restores the cardioprotective properties of Levosimendan under hyperglycemia. For this experimental investigation, hearts of male Wistar rats were randomized and mounted onto a Langendorff system, perfused with Krebs-Henseleit buffer with a constant pressure of 80 mmHg. All isolated hearts were subjected to 33 min of global ischemia and 60 min of reperfusion under hyperglycemic conditions. (1) Hearts were perfused with various concentrations of Levosimendan (Lev) (0.3-10 µM) for 10 min at the onset of reperfusion, in order to investigate a concentration-response relationship. In the second set of experiments (2), 0.3 µM Levosimendan was administered in combination with the mPTP blocker CsA, to elucidate the underlying mechanism of blocked cardioprotection under hyperglycemia. Infarct size was determined by tetrazolium chloride (TTC) staining. (1) Control (Con) hearts showed an infarct size of 52 ± 12%. None of the administered Levosimendan concentrations reduced the infarct size (Lev0.3: 49 ± 9%; Lev1: 57 ± 9%; Lev3: 47 ± 11%; Lev10: 50 ± 7%; all ns vs. Con). (2) Infarct size of Con and Lev0.3 hearts were 53 ± 4% and 56 ± 2%, respectively. CsA alone had no effect on infarct size (CsA: 50 ± 10%; ns vs. Con). The combination of Lev0.3 and CsA (Lev0.3 ± CsA) induced a significant infarct size reduction compared to Lev0.3 (Lev0.3+CsA: 35 ± 4%; p < 0.05 vs. Lev0.3). We demonstrated that (1) hyperglycemia blocks the infarct size reducing effects of Levosimendan-induced postconditioning and cannot be overcome by an increased concentration. (2) Furthermore, cardioprotection under hyperglycemia can be restored by combining Levosimendan and the mPTP blocker CsA.


Asunto(s)
Ciclosporina/farmacología , Hiperglucemia/tratamiento farmacológico , Simendán/farmacología , Animales , Cardiotónicos/metabolismo , Cardiotónicos/farmacología , Modelos Animales de Enfermedad , Corazón/efectos de los fármacos , Corazón/fisiología , Hiperglucemia/complicaciones , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Membranas Mitocondriales/efectos de los fármacos , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Miocardio/metabolismo , Ratas , Ratas Wistar
8.
Aging (Albany NY) ; 13(1): 493-515, 2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-33259334

RESUMEN

Mitochondrial calcium uptake 1 (MICU1) is a pivotal molecule in maintaining mitochondrial homeostasis under stress conditions. However, it is unclear whether MICU1 attenuates mitochondrial stress in angiotensin II (Ang-II)-induced cardiac hypertrophy or if it has a role in the function of melatonin. Here, small-interfering RNAs against MICU1 or adenovirus-based plasmids encoding MICU1 were delivered into left ventricles of mice or incubated with neonatal murine ventricular myocytes (NMVMs) for 48 h. MICU1 expression was depressed in hypertrophic myocardia and MICU1 knockdown aggravated Ang-II-induced cardiac hypertrophy in vivo and in vitro. In contrast, MICU1 upregulation decreased cardiomyocyte susceptibility to hypertrophic stress. Ang-II administration, particularly in NMVMs with MICU1 knockdown, led to significantly increased reactive oxygen species (ROS) overload, altered mitochondrial morphology, and suppressed mitochondrial function, all of which were reversed by MICU1 supplementation. Moreover, peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC-1α)/MICU1 expression in hypertrophic myocardia increased with melatonin. Melatonin ameliorated excessive ROS generation, promoted mitochondrial function, and attenuated cardiac hypertrophy in control but not MICU1 knockdown NMVMs or mice. Collectively, our results demonstrate that MICU1 attenuates Ang-II-induced cardiac hypertrophy by inhibiting mitochondria-derived oxidative stress. MICU1 activation may be the mechanism underlying melatonin-induced protection against myocardial hypertrophy.


Asunto(s)
Antioxidantes/farmacología , Proteínas de Unión al Calcio/genética , Cardiomegalia/genética , Melatonina/farmacología , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Estrés Oxidativo/genética , Angiotensina II/toxicidad , Animales , Proteínas de Unión al Calcio/efectos de los fármacos , Proteínas de Unión al Calcio/metabolismo , Cardiomegalia/inducido químicamente , Cardiomegalia/metabolismo , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Corazón/efectos de los fármacos , Técnicas In Vitro , Ratones , Mitocondrias/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Miocardio/patología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Estrés Oxidativo/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Vasoconstrictores/toxicidad
9.
Int J Mol Med ; 45(5): 1514-1524, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32323742

RESUMEN

The aim of the present study was to determine whether curculigoside protects against myocardial ischemia­reperfusion injury (MIRI) and to investigate the underlying mechanisms. An in vitro model of hypoxia/reoxygenation (H/R) was established by culturing H9c2 cells under hypoxic conditions for 12 h, followed by reoxygenation for 1 h. Cell Counting kit­8 and lactate dehydrogenase (LDH) assays were subsequently used to examine cell viability and the degree of cell injury. In addition, isolated rat hearts were subjected to 30 min of ischemia followed by 1 h of reperfusion to establish a MIRI model. Triphenyltetrazolium chloride (TTC) staining was performed to measure the infarct size. Furthermore, TUNEL staining and flow cytometry were employed to evaluate cell apoptosis. The opening of the mitochondrial permeability transition pore (MPTP) and changes in the mitochondrial membrane potential (ΔΨm) were assessed. Reverse transcription­quantitative PCR and western blot analysis were performed to investigate the expression levels of mitochondrial apoptosis­related proteins. Curculigoside pre­treatment significantly improved cell viability, decreased cell apoptosis and LDH activity, and reduced the infarct size and myocardial apoptosis in vitro and ex vivo, respectively. Moreover, curculigoside markedly inhibited MPTP opening and preserved the ΔΨm. In addition, curculigoside significantly decreased the expression of cytochrome c, apoptotic protease activating factor­1, cleaved caspase­9 and cleaved caspase­3. Notably, atractyloside, a known MPTP opener, abrogated the protective effects of curculigoside. On the whole, the present study demonstrated that curculigoside protected against MIRI, potentially by decreasing the levels of mitochondria­mediated apoptosis via the inhibition of MPTP opening. Therefore, the results obtained in the present study may provide the theoretical basis for the future clinical application of curculigoside.


Asunto(s)
Benzoatos/farmacología , Glucósidos/farmacología , Mitocondrias/efectos de los fármacos , Poro de Transición de la Permeabilidad Mitocondrial/antagonistas & inhibidores , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Citocromos c/metabolismo , Hipoxia/tratamiento farmacológico , Hipoxia/metabolismo , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Ratas , Ratas Wistar
10.
Cell Physiol Biochem ; 54(2): 211-229, 2020 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-32100973

RESUMEN

BACKGROUND/AIMS: Mitochondrial ATP synthase, in addition to being involved in ATP synthesis, is involved in permeability transition pore (PTP) formation, which precedes apoptosis in mammalian cells and programmed cell death in yeast. Mutations in genes encoding ATP synthase subunits cause neuromuscular disorders and have been identified in cancer samples. PTP is also involved in pathology. We previously found that in Saccharomyces cerevisiae, two mutations in ATP synthase subunit a (atp6-P163S and atp6-K90E, equivalent to those detected in prostate and thyroid cancer samples, respectively) in the OM45-GFP background affected ROS and calcium homeostasis and delayed yeast PTP (yPTP) induction upon calcium treatment by modulating the dynamics of ATP synthase dimer/oligomer formation. The Om45 protein is a component of the porin complex, which is equivalent to mammalian VDAC. We aimed to investigate yPTP function in atp6-P163S and atp6-K90E mutants lacking the e and g dimerization subunits of ATP synthase. METHODS: Triple mutants with the atp6-P163S or atp6-K90E mutation, the OM45-GFP gene and deletion of the TIM11 gene encoding subunit e were constructed by crossing and tetrad dissection. In spores capable of growing, the original atp6 mutations reverted to wild type, and two compensatory mutations, namely, atp6-C33S-T215C, were selected. The effects of these mutations on cellular physiology, mitochondrial morphology, bioenergetics and permeability transition (PT) were analyzed by fluorescence and electron microscopy, mitochondrial respiration, ATP synthase activity, calcium retention capacity and swelling assays. RESULTS: The atp6-C33S-T215C mutations in the OM45-GFP background led to delayed growth at elevated temperature on both fermentative and respiratory media and increased sensitivity to high calcium ions concentration or hydrogen peroxide in the medium. The ATP synthase activity was reduced by approximately 50% and mitochondrial network was hyperfused in these cells grown at elevated temperature. The atp6-C33S-T215C stabilized ATP synthase dimers and restored the yPTP properties in Tim11∆ cells. In OM45-GFP cells, in which Tim11 is present, these mutations increased the fraction of swollen mitochondria by up to 85% vs 60% in the wild type, although the time required for calcium release doubled. CONCLUSION: ATP synthase subunit e is essential in the S. cerevisiae atp6-P163S and atp6-K90E mutants. In addition to subunits e and g, subunit a is critical for yPTP induction and conduction. The increased yPTP conduction decrease the S. cerevisiae cell fitness.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Calcio/metabolismo , Cobre/farmacología , ADN Mitocondrial/metabolismo , Dimerización , Peróxido de Hidrógeno/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Poro de Transición de la Permeabilidad Mitocondrial , ATPasas de Translocación de Protón Mitocondriales/química , ATPasas de Translocación de Protón Mitocondriales/genética , Mutagénesis , Estructura Cuaternaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Temperatura
11.
Toxicol Lett ; 323: 25-34, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-31874198

RESUMEN

Mitochondrial permeability transition (MPT), which is mainly regulated by cyclophilin D (CypD) encoded by ppif gene, is an early event that occurs during mitochondrial stimuli exposure. Lead (Pb) induces MPT and subsequently causes mitochondrial abnormality, followed by events, including oxidative stress and cell death. Here, we generated a ppif-/- SH-SY5Y cell line to determine the role of CypD in Pb-induced mitochondrial abnormality. CypD deficiency significantly blocked mitochondrial permeability transition pore (MPTP) opening and inhibited mitochondrial membrane potential (MMP) collapse, as well as mitochondrial structure damage and fragmentation caused by Pb. Mitochondria fragmentation and MMP collapse, accompanying with Pb-induced downregulation of Glut1 and Glut3 and inactivation of AMPK signaling pathway, could impair the energy supply in wildtype cells. Meanwhile, ppif knockout can alleviate these impairments and maintain the energy supply. In addition, reactive oxygen species accumulation and cell death caused by Pb can also be attenuated by ppif knockout, thereby promoting cell survival. Our study tends to identify CypD as an important contributor to Pb-induced mitochondrial abnormality and provides a potential strategy to inhibit Pb neurotoxicity.


Asunto(s)
Plomo/toxicidad , Mitocondrias/efectos de los fármacos , Neuroprotección , Peptidil-Prolil Isomerasa F/fisiología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Peptidil-Prolil Isomerasa F/deficiencia , Metabolismo Energético/efectos de los fármacos , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Poro de Transición de la Permeabilidad Mitocondrial , Estrés Oxidativo/efectos de los fármacos
12.
Oxid Med Cell Longev ; 2019: 1253289, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31885769

RESUMEN

The study was aimed at investigating the effects of L-cystathionine on vascular endothelial cell apoptosis and its mechanisms. Cultured human umbilical vein endothelial cells (HUVECs) were used in the study. Apoptosis of vascular endothelial cells was induced by homocysteine. Apoptosis, mitochondrial superoxide anion, mitochondrial membrane potential, mitochondrial permeability transition pore (MPTP) opening, and caspase-9 and caspase-3 activities were examined. Expression of Bax, Bcl-2, and cleaved caspase-3 was tested and BTSA1, a Bax agonist, and HUVEC Bax overexpression was used in the study. Results showed that homocysteine obviously induced the apoptosis of HUVECs, and this effect was significantly attenuated by the pretreatment with L-cystathionine. Furthermore, L-cystathionine decreased the production of mitochondrial superoxide anion and the expression of Bax and restrained its translocation to mitochondria, increased mitochondrial membrane potential, inhibited mitochondrial permeability transition pore (MPTP) opening, suppressed the leakage of cytochrome c from mitochondria into the cytoplasm, and downregulated activities of caspase-9 and caspase-3. However, BTSA1, a Bax agonist, or Bax overexpression successfully abolished the inhibitory effect of L-cystathionine on Hcy-induced MPTP opening, caspase-9 and caspase-3 activation, and HUVEC apoptosis. Taken together, our results indicated that L-cystathionine could protect against homocysteine-induced mitochondria-dependent apoptosis of HUVECs.


Asunto(s)
Apoptosis/efectos de los fármacos , Cistationina/farmacología , Homocisteína/toxicidad , Mitocondrias/metabolismo , Sustancias Protectoras/farmacología , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo
13.
J Integr Med ; 17(6): 446-454, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31706863

RESUMEN

OBJECTIVE: Several pathologies arise from the inappropriate opening of the mitochondrial permeability transition (mPT) pore. In this regard, inhibition of mPT pore represents a cytoprotective approach to preserve mitochondrial function for treatment of diseases characterized by excessive tissue wastage such as diabetes mellitus. The aim of this study, therefore, was to study the effects of fractions of Ficus mucoso, a medicinal plant used in the traditional treatment of diabetes, on mPT pore in normal and streptozotocin (STZ)-induced diabetic rat liver. METHODS: Different solvent fractions of the crude methanol extract of F. mucoso were obtained by vacuum liquid chromatography and were tested on the mPT pore. Of all the fractions tested, methanol fraction of F. mucoso (MFFM) was the most potent and was used for in vivo studies. Diabetes mellitus was induced by a single intraperitoneal injection of 60 mg/kg STZ, while treatment lasted for 14 d. In vivo, 30 male Wistar rats were divided into five groups: A, normo-glycemic control (distilled water); B, STZ (65 mg/kg; diabetic control); C, STZ + MFFM (25 mg/kg); D, STZ + MFFM (50 mg/kg); E, STZ + glibenclamide (5 mg/kg). The mPT, mitochondrial ATPase activity, lipid peroxidation and cytochrome c release were assessed spectrophotometrically while blood glucose levels were monitored using glucometer. RESULTS: In vitro, the solvent fractions of F. mucoso, at all concentrations tested, had no effect on the mPT pore, in the absence of calcium, with no significant release of cytochrome c. Interestingly, calcium-dependent pore opening was inhibited by all solvent fractions of F. mucoso, with the MFFM having the highest inhibitory effect of 83% at 3 mg/mL. Induction of opening of the mPT pore, significant (P < 0.001) enhancement of mitochondrial ATPase activity and elevated malondialdehyde (MDA) levels in STZ-induced diabetes were significantly (P < 0.001) reversed by MFFM and were comparable with the effects of glibenclamide, a standard antidiabetic drug. Also, treatment with MFFM at different doses significantly (P < 0.001) reduced high serum blood glucose compared to the diabetic control. CONCLUSION: F. mucoso could be useful in therapeutic management of diabetes mellitus given its ability to prevent excessive tissue wastage via inhibition of pore opening, and reduction in levels of MDA and serum blood glucose.


Asunto(s)
Diabetes Mellitus Experimental/tratamiento farmacológico , Ficus/química , Mitocondrias Hepáticas/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Relación Dosis-Respuesta a Droga , Poro de Transición de la Permeabilidad Mitocondrial , Nigeria , Corteza de la Planta/química , Raíces de Plantas/química , Ratas , Ratas Wistar
14.
Biochem Biophys Res Commun ; 520(3): 606-611, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31623831

RESUMEN

Ferroptosis is a distinct iron-dependent mechanism of regulated cell death recognized in cancer and ischemia/reperfusion (I/R) injury of different organs. It has been reported that molecules such as liproxstatin-1 (Lip-1) inhibit ferroptosis and promote cell survival however, the mechanisms underlying this action are not clearly understood. We investigated the role and mechanism of Lip-1 in reducing cell death in the ischemic myocardium. Using an I/R model of isolated perfused mice hearts in which Lip-1 was given at the onset of reperfusion, we found that Lip-1 protects the heart by reducing myocardial infarct sizes and maintaining mitochondrial structural integrity and function. Further investigation revealed that Lip-1-induced cardioprotection is mediated by a reduction of VDAC1 levels and oligomerization, but not VDAC2/3. Lip-1 treatment also decreased mitochondrial reactive oxygen species production and rescued the reduction of the antioxidant GPX4 caused by I/R stress. Meanwhile, mitochondrial Ca2+ retention capacity needed to induce mitochondrial permeability transition pore opening did not change with Lip-1 treatment. Thus, we report that Lip-1 induces cardioprotective effects against I/R injury by reducing VDAC1 levels and restoring GPX4 levels.


Asunto(s)
Cardiotónicos/farmacología , Corazón/efectos de los fármacos , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/prevención & control , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Quinoxalinas/farmacología , Compuestos de Espiro/farmacología , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Animales , Antioxidantes/metabolismo , Calcio/metabolismo , Ferroptosis/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Daño por Reperfusión Miocárdica/metabolismo , Miocardio/metabolismo , Miocardio/patología , Especies Reactivas de Oxígeno/metabolismo , Canal Aniónico 2 Dependiente del Voltaje/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo
15.
Medicina (Kaunas) ; 55(10)2019 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-31554309

RESUMEN

Background and objective: Nitric oxide (NO) is known to exert cardioprotective effects against heart ischemic damage and may be involved in ischemic pre- and postconditioning. NO-triggered cardioprotective mechanisms are not well understood but may involve regulation of mitochondrial permeability transition pore (mPTP). In this study, we aimed to identify differentially phosphorylated mitochondrial proteins possibly involved in the NO/protein kinase G (PKG)/mPTP signaling pathway that can increase the resistance of cardiomyocytes to ischemic damage. Materials and methods: Isolated hearts from Wistar rats were perfused with NO donor NOC-18 prior to induction of stop-flow ischemia. To quantify and characterize the phosphoproteins, mitochondrial proteins were resolved and analyzed by two-dimensional gel electrophoresis followed by Pro-Q Diamond phosphoprotein gel staining, excision, trypsin digestions, and mass spectrometry. Quantitative proteomic analysis coupled with liquid chromatography-tandem mass spectrometry was also performed. Results: Mitochondrial protein phosphorylation patterns in NOC-18-pretreated ischemic hearts versus ischemic hearts were compared. Pretreatment of hearts with NOC-18 caused changes in mitochondrial phosphoproteome after ischemia which involved modifications of 10 mitochondrial membrane-bound and 10 matrix proteins. Among them, α-subunit of ATP synthase and adenine nucleotide (ADP/ATP) translocase 1, both of which are considered as potential structural components of mPTP, were identified. We also found that treatment of isolated non-ischemic mitochondria with recombinant PKG did not cause the same protein phosphorylation as pretreatment of hearts with NOC-18. Conclusions: Our study suggests that pretreatment of hearts with NOC-18 causes changes in mitochondrial phosphoproteome after ischemia which involves modifications of certain proteins thought to be involved in the regulation of mPTP opening and intracellular redox state. These proteins may be potential targets for pharmacological preconditioning of the heart.


Asunto(s)
Mitocondrias/efectos de los fármacos , Proteínas Mitocondriales/metabolismo , Isquemia Miocárdica/metabolismo , Donantes de Óxido Nítrico/farmacología , Compuestos Nitrosos/farmacología , Fosfoproteínas/metabolismo , Proteoma/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Corazón/efectos de los fármacos , Masculino , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Poro de Transición de la Permeabilidad Mitocondrial , Miocardio/metabolismo , Fosforilación , Proteoma/metabolismo , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos
16.
Drug Des Devel Ther ; 13: 2759-2768, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31496652

RESUMEN

BACKGROUND: Various and opposite roles of epigallocatechin gallate (EGCG) have been reported in different studies. We aimed to investigate how EGCG affects the cerebral injury in a cardiac arrest/cardiopulmonary resuscitation (CA/CPR) model of rat. METHODS: The rats which were subjected to CA/CPR randomly received low dose of EGCG (3 mg/kg, Low-EGCG group, n=16), high dose of EGCG (9 mg/kg, High-EGCG group, n=16) and equal volume of 0.9% saline solution (NS group, n=16) at the first minute after return of spontaneous circulation (ROSC). The rats underwent anesthesia and intubation were defined as Sham group (n=16). Twenty-four hours after ROSC, neural defect score (NDS), ROS fluorescence intensity, degree of mitochondrial permeability transition pore (mPTP) opening, ATP contents and mitochondrial ATP synthase expression were evaluated in the four groups. The expression of extracellular signal-regulated kinase (ERK) activity and cleaved-caspase 3 were also detected by Western blot. RESULTS: CA/CPR induced severe ischemia-reperfusion injury (IRI), resulted in mitochondrial dysfunction and upregulated phosphorylation of ERK. EGCG dose-dependently alleviated the IRI after CA/CPR, inhibited ERK activity and restored mitochondrial function and, as indicated by improved NDS, reduced ROS level, decreased mPTP opening, elevated ATP content, increased ATPase expression and downregulated cleaved-caspase 3 level. CONCLUSION: EGCG alleviated global cerebral IRI by restoring mitochondrial dysfunction and ERK modulation in a rat CA/CPR model, which might make it a potential candidate agent against IRI after CA/CPR in the future. Further study is needed to determine whether higher dosage of EGCG might aggravate cerebral IRI post-CA/CPR.


Asunto(s)
Reanimación Cardiopulmonar , Catequina/análogos & derivados , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Animales , Catequina/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Paro Cardíaco/tratamiento farmacológico , Masculino , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
17.
Cells ; 8(9)2019 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-31500337

RESUMEN

Regulation of mitochondrial free Ca2+ is critically important for cellular homeostasis. An increase in mitochondrial matrix free Ca2+ concentration ([Ca2+]m) predisposes mitochondria to opening of the permeability transition pore (mPTP). Opening of the pore can be delayed by cyclosporin A (CsA), possibly by inhibiting cyclophilin D (Cyp D), a key regulator of mPTP. Here, we report on a novel mechanism by which CsA delays mPTP opening by enhanced sequestration of matrix free Ca2+. Cardiac-isolated mitochondria were challenged with repetitive CaCl2 boluses under Na+-free buffer conditions with and without CsA. CsA significantly delayed mPTP opening primarily by promoting matrix Ca2+ sequestration, leading to sustained basal [Ca2+]m levels for an extended period. The preservation of basal [Ca2+]m during the CaCl2 pulse challenge was associated with normalized NADH, matrix pH (pHm), and mitochondrial membrane potential (ΔΨm). Notably, we found that in PO43- (Pi)-free buffer condition, the CsA-mediated buffering of [Ca2+]m was abrogated, and mitochondrial bioenergetics variables were concurrently compromised. In the presence of CsA, addition of Pi just before pore opening in the Pi-depleted condition reinstated the Ca2+ buffering system and rescued mitochondria from mPTP opening. This study shows that CsA promotes Pi-dependent mitochondrial Ca2+ sequestration to delay mPTP opening and, concomitantly, maintains mitochondrial function.


Asunto(s)
Ciclosporina/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Animales , Tampones (Química) , Calcio/metabolismo , Ciclosporina/metabolismo , Metabolismo Energético , Femenino , Cobayas , Corazón/efectos de los fármacos , Masculino , Mitocondrias/metabolismo , Mitocondrias Cardíacas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Miocardio/metabolismo , Especies Reactivas de Oxígeno
18.
Biomolecules ; 9(9)2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31480526

RESUMEN

Fusaricidins and related LI-F compounds are effective bactericides and fungicides. Recently, we have found that they are highly toxic to mammalian cells. Here, we studied the effect of fusaricidin-type compounds (FTCs) on the membranes of mammalian cells. Ethanol extracts from Paenibacillus polymyxa strains, RS10 and I/Sim, were fractionated and analyzed by HPLC and mass spectrometry. The effects of FTCs on mitochondrial functions and integrity were studied by standard methods: measurements of swelling, membrane potential (ΔΨm), respiration rate, cytochrome c release, and pore sizes. Superoxide flashes were registered by 3,7-dihydro-2-methyl-6-(4-methoxyphenyl)imidazol[1,2-a]pyrazine-3-one (MCLA). Plasma membrane permeability was assessed by propidium iodide (PI) staining and ATP release. FTCs caused the permeabilization of the inner mitochondria membrane (IMM) to ions and low-molecular-weight (~750 Da) solutes. The permeabilization did not depend on the permeability transition pore (mPTP) but was strongly dependent on ΔΨm. Fusaricidins A plus B, LI-F05a, and LI-F05b-LI-F07b permeabilized IMM with comparable efficiency. They created pores and affected mitochondrial functions and integrity similarly to mPTP opening. They permeabilized the sperm cell plasma membrane to ATP and PI. Thus, the formation of pores in polarized membranes underlays the toxicity of FTCs to mammals. Besides, FTCs appeared to be superior reference compounds for mPTP studies.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Depsipéptidos/química , Depsipéptidos/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo , Alameticina/farmacología , Animales , Cromatografía Líquida de Alta Presión , Citocromos c/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Espectrometría de Masas , Potenciales de la Membrana/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Consumo de Oxígeno/efectos de los fármacos , Paenibacillus polymyxa/química , Ratas , Superóxidos/metabolismo , Porcinos
19.
Drug Des Devel Ther ; 13: 2331-2342, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31371925

RESUMEN

BACKGROUND: Mitochondria permeability transition pore (MPTP) is an important therapeutic target for myocardial ischemia-reperfusion injury (MIRI). Lycopene (LP) is a potent antioxidant extracted from the mature fruits of plants and has been reported to protect against MIRI; however, its mechanism of action has yet to be completely elucidated. The present study aimed to investigate the role of MPTP in the cardioprotection of LP. METHODS: H9c2 cells were pretreated with LP for 12 hrs and were subjected to 12-hr hypoxia/1-hr re-oxygenation, and cell viability was measured by a Cell Counting Kit-8 (CCK-8) assay. Male rats were subsequently intraperitoneally injected with LP for 5 consecutive days. At 24 hrs following the final injection, the rat hearts were isolated and subjected to 30-min ischemia/120-min reperfusion using Langendorff apparatus. The myocardial infarct size was measured by a TTC stain. Opening of the MPTP was induced by CaCl2 and measured by colorimetry. The change in mitochondrial transmembrane potential (ΔΨm) was observed under a fluorescence microscope. Apoptosis was measured by flow cytometry and a TUNEL stain, and the expression of apoptosis-related proteins was detected by Western blotting. RESULTS: LP pretreatment significantly increased cell viability, reduced myocardial infarct size and decreased the apoptosis rate. In addition, opening and the decrease of ΔΨm were attenuated by LP and the expressions of cytochrome c, APAF-1, cleaved caspase-9 and cleaved caspase-3 were also decreased by LP. However, these beneficial effects on MIRI were abrogated by the MPTP opener (atractyloside). Furthermore, LP treatment markedly increased Bcl-2 expression, decreased Bax expression and the Bax/Bcl-2 ratio. CONCLUSION: The results of the present study demonstrated that LP protects against MIRI by inhibiting MPTP opening, partly through the modulation of Bax and Bcl-2.


Asunto(s)
Licopeno/farmacología , Mitocondrias Cardíacas/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Daño por Reperfusión Miocárdica/prevención & control , Animales , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Mitocondrias Cardíacas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/patología , Ratas
20.
J Cell Mol Med ; 23(9): 6393-6402, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31278860

RESUMEN

OBJECTIVE: Qishen Yiqi Drop Pill (QSYQ) has been recognized as a potential protective agent for various cardiovascular diseases. However, the effect of QSYQ in cardiac complications associated with diabetes is not clear currently. In this study, we investigate whether QSYQ could exert cardiac protective effects against high glucose-induced injuries in cardiac H9c2 cells. METHODS: H9c2 cells were exposed to 24 hours of high glucose in presence or absence of QSYQ and LY294002. Cell cytotoxicity, apoptosis, reactive oxygen species (ROS) generation, mitochondrial membrane potential and mitochondrial permeability transition pore (mPTP) opening were determined. Levels of bax, bcl-2, p53, cleaved caspase-3, PI3K and Akt were evaluated by Western blot. RESULTS: Our data indicated that QSYQ significantly increased the cell viability and decreased cytotoxicity. By analysing the apoptotic rate as well as the expression levels of cytoapoptosis-related factors including cleaved caspase-3, bax, bcl-2, and p53, we found that QSYQ could remarkably suppress apoptosis of cardiomyoblasts caused by high glucose. In addition, it also showed that QSYQ reduced the generation of ROS. We further found that QSYQ treatment could inhibit the loss of mitochondrial membrane potential and mPTP opening. Moreover, Western blot analysis showed enhanced phosphorylation of PI3K/Akt. The specific inhibitor of PI3K, LY294002 not only inhibited QSYQ induced PI3K/Akt signalling pathway activation, but alleviated its protective effects. CONCLUSIONS: In summary, these findings demonstrated that QSYQ effectively protected H9c2 cells against the series injuries due to high glucose at least partially by activating the PI3K/Akt signalling pathway.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Glucosa/efectos adversos , Miocitos Cardíacos/efectos de los fármacos , Sustancias Protectoras/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Medicina Tradicional China/métodos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/efectos de los fármacos , Poro de Transición de la Permeabilidad Mitocondrial , Miocitos Cardíacos/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA