Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
1.
Genet Test Mol Biomarkers ; 28(3): 123-130, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38546281

RESUMEN

Objective: This study aims to identify causal variants associated with vitiligo in an expanded region of 10q22.1. Materials and Methods: We conducted a fine-scale deep analysis of the expanded 10q22.1 region using in a large genome-wide association studies dataset consisting of 1117 cases and 1701 controls through imputation. We selected five nominal coding single nucleotide polymorphisms (SNPs) located in SLC29A3 and CDH23 and genotyped them in an independent cohort of 2479 cases and 2451 controls in a Chinese Han population cohort using the Sequenom MassArray iPLEX1 system. Results: A missense SNP in SLC29A3, rs2252996, showed strong evidence of association with vitiligo (p = 1.34 × 10-8, odds ratio [OR] = 0.82). Three synonymous SNPs (rs1084004 in SLC29A3; rs12218559 and rs10999978 in CDH23) provided suggestive evidence of association for vitiligo (p = 1.69 × 10-6, OR = 0.84; p = 9.47 × 10-5, OR = 1.18; p = 6.90 × 10-4, OR = 1.16, respectively). Stepwise conditional analyses identified two significant independent disease-associated signals from the four SNPs (both p < 0.05; both D' = 0.03; and r2 = 0.00). Conclusion: The study identifies four genetic coding variants in SLC29A3 and CDH23 on 10q22.1 that may contribute to vitiligo susceptibility with one missense variant affecting disease subphenotypes. The presence of multiple genetic variants underscores their significant role in the genetic pathogenesis of the disease.


Asunto(s)
Proteínas Relacionadas con las Cadherinas , Proteínas de Transporte de Nucleósidos , Vitíligo , Humanos , China , Estudio de Asociación del Genoma Completo , Genotipo , Proteínas de Transporte de Nucleósidos/genética , Vitíligo/genética , Pueblos del Este de Asia , Proteínas Relacionadas con las Cadherinas/genética
2.
Eur J Prev Cardiol ; 31(2): 191-202, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-37793095

RESUMEN

AIMS: Diet quality might influence cardiometabolic health through epigenetic changes, but this has been little investigated in adults. Our aims were to identify cytosine-phosphate-guanine (CpG) dinucleotides associated with diet quality by conducting an epigenome-wide association study (EWAS) based on blood DNA methylation (DNAm) and to assess how diet-related CpGs associate with inherited susceptibility to cardiometabolic traits: body mass index (BMI), systolic blood pressure (SBP), triglycerides, type 2 diabetes (T2D), and coronary heart disease (CHD). METHODS AND RESULTS: Meta-EWAS including 5274 participants in four cohorts from Spain, the USA, and the UK. We derived three dietary scores (exposures) to measure adherence to a Mediterranean diet, to a healthy plant-based diet, and to the Dietary Approaches to Stop Hypertension. Blood DNAm (outcome) was assessed with the Infinium arrays Human Methylation 450K BeadChip and MethylationEPIC BeadChip. For each diet score, we performed linear EWAS adjusted for age, sex, blood cells, smoking and technical variables, and BMI in a second set of models. We also conducted Mendelian randomization analyses to assess the potential causal relationship between diet-related CpGs and cardiometabolic traits. We found 18 differentially methylated CpGs associated with dietary scores (P < 1.08 × 10-7; Bonferroni correction), of which 12 were previously associated with cardiometabolic traits. Enrichment analysis revealed overrepresentation of diet-associated genes in pathways involved in inflammation and cardiovascular disease. Mendelian randomization analyses suggested that genetically determined methylation levels corresponding to lower diet quality at cg02079413 (SNORA54), cg02107842 (MAST4), and cg23761815 (SLC29A3) were causally associated with higher BMI and at cg05399785 (WDR8) with greater SBP, and methylation levels associated with higher diet quality at cg00711496 (PRMT1) with lower BMI, T2D risk, and CHD risk and at cg0557921 (AHRR) with lower CHD risk. CONCLUSION: Diet quality in adults was related to differential methylation in blood at 18 CpGs, some of which related to cardiometabolic health.


We conducted a study to investigate the connection between diet quality, epigenetic changes, and cardiovascular health in adults. The study included 5274 participants from Spain, the USA, and the UK, combining data from four different cohorts. We assessed adherence to different healthy diets: Mediterranean style diet, plant-based diet, and Dietary Approaches to Stop Hypertension diet. We used advanced technology to analyse blood DNA methylation, which refers to chemical modifications in the DNA that can affect gene activity.We discovered 18 CpGs that showed differential methylation patterns related to the dietary scores. Importantly, 12 of these CpGs had previously been associated with cardiovascular disease or risk factors, suggesting a potential link between diet, epigenetic changes, and heart health. Some of the diet-related CpGs mapped to genes involved in pathways associated with cardiovascular disease. Moreover, using a method called Mendelian randomization, we found that several CpGs may have a causal association with body mass index, systolic blood pressure, and risk of type 2 diabetes and coronary heart disease.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Adulto , Humanos , Metilación de ADN , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Estudio de Asociación del Genoma Completo , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética , Dieta , Proteína-Arginina N-Metiltransferasas/genética , Proteínas Represoras/genética , Proteínas de Transporte de Nucleósidos/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Serina-Treonina Quinasas/genética
3.
Diabetologia ; 67(1): 113-123, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37897565

RESUMEN

AIMS/HYPOTHESIS: Monogenic diabetes is estimated to account for 1-6% of paediatric diabetes cases in primarily non-consanguineous populations, while the incidence and genetic spectrum in consanguineous regions are insufficiently defined. In this single-centre study we aimed to evaluate diabetes subtypes, obtain the consanguinity rate and study the genetic background of individuals with syndromic and neonatal diabetes in a population with a high rate of consanguinity. METHODS: Data collection was carried out cross-sectionally in November 2021 at the paediatric diabetic clinic, Dr Jamal Ahmad Rashed Hospital, in Sulaimani, Kurdistan, Iraq. At the time of data collection, 754 individuals with diabetes (381 boys) aged up to 16 years were registered. Relevant participant data was obtained from patient files. Consanguinity status was known in 735 (97.5%) participants. Furthermore, 12 families of children with neonatal diabetes and seven families of children with syndromic diabetes consented to genetic testing by next-generation sequencing. Prioritised variants were evaluated using the American College of Medical Genetics and Genomics guidelines and confirmed by Sanger sequencing. RESULTS: A total of 269 of 735 participants (36.5%) with known consanguinity status were offspring of consanguineous families. An overwhelming majority of participants (714/754, 94.7%) had clinically defined type 1 diabetes (35% of them were born to consanguineous parents), whereas only eight (1.1%) had type 2 diabetes (38% consanguineous). Fourteen (1.9%) had neonatal diabetes (50% consanguineous), seven (0.9%) had syndromic diabetes (100% consanguineous) and 11 (1.5%) had clinically defined MODY (18% consanguineous). We found that consanguinity was significantly associated with syndromic diabetes (p=0.0023) but not with any other diabetes subtype. The genetic cause was elucidated in ten of 12 participants with neonatal diabetes who consented to genetic testing (homozygous variants in GLIS3 [sibling pair], PTF1A and ZNF808 and heterozygous variants in ABCC8 and INS) and four of seven participants with syndromic diabetes (homozygous variants in INSR, SLC29A3 and WFS1 [sibling pair]). In addition, a participant referred as syndromic diabetes was diagnosed with mucolipidosis gamma and probably has type 2 diabetes. CONCLUSIONS/INTERPRETATION: This unique single-centre study confirms that, even in a highly consanguineous population, clinically defined type 1 diabetes is the prevailing paediatric diabetes subtype. Furthermore, a pathogenic cause of monogenic diabetes was identified in 83% of tested participants with neonatal diabetes and 57% of participants with syndromic diabetes, with most variants being homozygous. Causative genes in our consanguineous participants were markedly different from genes reported from non-consanguineous populations and also from those reported in other consanguineous populations. To correctly diagnose syndromic diabetes in consanguineous populations, it may be necessary to re-evaluate diagnostic criteria and include additional phenotypic features such as short stature and hepatosplenomegaly.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Enfermedades del Recién Nacido , Masculino , Recién Nacido , Humanos , Niño , Anciano , Diabetes Mellitus Tipo 1/epidemiología , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/diagnóstico , Consanguinidad , Estudios de Cohortes , Irak/epidemiología , Enfermedades del Recién Nacido/genética , Mutación/genética , Proteínas de Transporte de Nucleósidos/genética
4.
Exp Cell Res ; 434(2): 113892, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38104646

RESUMEN

As a crucial gene associated with diseases, the SLC29A3 gene encodes the equilibrative nucleoside transporter 3 (ENT3). ENT3 plays an essential regulatory role in transporting intracellular hydrophilic nucleosides, nucleotides, hydrophilic anticancer and antiviral nucleoside drugs, energy metabolism, subcellular localization, protein stability, and signal transduction. The mutation and inactivation of SLC29A3 are intimately linked to the occurrence, development, and prognosis of various human tumors. Moreover, many hereditary human diseases, such as H syndrome, pigmentary hypertrichosis and non-autoimmune insulin-dependent diabetes mellitus (PHID) syndrome, Faisalabad histiocytosis (FHC), are related to SLC29A3 mutations. This review explores the mechanisms of SLC29A3 mutations and expression alterations in inherited disorders and cancers. Additionally, we compile studies on the inhibition of ENT3, which may serve as an effective strategy to potentiate the anticancer activity of chemotherapy. Thus, the synopsis of genetics, permeant function and drug therapy of ENT3 provides a new theoretical and empirical foundation for the diagnosis, prognosis of evaluation and treatment of various related diseases.


Asunto(s)
Diabetes Mellitus Tipo 2 , Histiocitosis , Neoplasias , Humanos , Nucleótidos/metabolismo , Mutación , Histiocitosis/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Nucleósidos/genética , Proteínas de Transporte de Nucleósidos/metabolismo
5.
BMC Endocr Disord ; 23(1): 274, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38093297

RESUMEN

BACKGROUND: The nucleoside transport capabilities of the human equilibrative nucleoside transporter-3 (hENT3) are disrupted by mutations in SLC29A3 (10q22.2), which are genes for the nucleoside transporter and are the cause of the unusual autosomal recessive disease known as H syndrome. As a result, histiocytic cells invade a number of organs. CASE PRESENTATION: A 17-year-old Syrian male was admitted to the internal medicine department with a one-month history of polyuria, polydipsia, general weakness, and pallor. He had a history of progressive bilateral sensorineural hearing loss and failure to gain weight for three years. Physical examination revealed various abnormalities, including scrotal mass, small penis and testicles, absence of pubic and axillary hair, joint abnormalities, short stature, hallux valgus, fibrous protrusion near the navel, and hyperpigmented non-itchy painful skin plaques. Clinical signs along with laboratory test results confirmed hyperglycemia, primary hypogonadism, osteopenia, and growth hormone deficiency. After a review of the relevant medical literature, this patient's presentation of hyperglycemia with hypogonadism, hyperpigmentation, hallux valgus, hearing loss, hematological abnormalities, and short stature suggested the diagnosis of H syndrome. The patient received treatment with insulin and testosterone, leading to a significant improvement in his presenting symptoms. CONCLUSIONS: H syndrome is a very rare condition, and the fact that the first case has only recently been reported in Syria serves to emphasize how rare it is. H Syndrome should be suspected if a patient has short stature with signs of hyperglycemia and other endocrine and cutaneous abnormalities. We are reporting this case to increase physicians' awareness of this exceedingly rare and unique syndrome.


Asunto(s)
Enanismo , Hallux Valgus , Pérdida Auditiva Sensorineural , Hiperglucemia , Hiperpigmentación , Hipogonadismo , Humanos , Masculino , Adolescente , Siria , Hiperpigmentación/diagnóstico , Hiperpigmentación/genética , Pérdida Auditiva Sensorineural/diagnóstico , Pérdida Auditiva Sensorineural/genética , Hipogonadismo/complicaciones , Hipogonadismo/diagnóstico , Hipogonadismo/genética , Proteínas de Transporte de Nucleósidos/genética , Hormona del Crecimiento
6.
Blood ; 142(20): 1740-1751, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37738562

RESUMEN

Histiocytoses are inflammatory myeloid neoplasms often driven by somatic activating mutations in mitogen-activated protein kinase (MAPK) cascade genes. H syndrome is an inflammatory genetic disorder caused by germ line loss-of-function mutations in SLC29A3, encoding the lysosomal equilibrative nucleoside transporter 3 (ENT3). Patients with H syndrome are predisposed to develop histiocytosis, yet the mechanism is unclear. Here, through phenotypic, molecular, and functional analysis of primary cells from a cohort of patients with H syndrome, we reveal the molecular pathway leading to histiocytosis and inflammation in this genetic disorder. We show that loss of function of ENT3 activates nucleoside-sensing toll-like receptors (TLR) and downstream MAPK signaling, inducing cytokine secretion and inflammation. Importantly, MEK inhibitor therapy led to resolution of histiocytosis and inflammation in a patient with H syndrome. These results demonstrate a yet-unrecognized link between a defect in a lysosomal transporter and pathological activation of MAPK signaling, establishing a novel pathway leading to histiocytosis and inflammation.


Asunto(s)
Histiocitosis , Proteínas Quinasas Activadas por Mitógenos , Humanos , Histiocitosis/genética , Histiocitosis/patología , Mutación , Receptores Toll-Like , Inflamación/genética , Proteínas de Transporte de Nucleósidos/genética , Proteínas de Transporte de Nucleósidos/metabolismo
7.
J Virol ; 97(10): e0059123, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37768084

RESUMEN

IMPORTANCE: Alphaviruses threaten public health continuously, and Getah virus (GETV) is a re-emerging alphavirus that can potentially infect humans. Approved antiviral drugs and vaccines against alphaviruses are few available, but several host antiviral factors have been reported. Here, we used GETV as a model of alphaviruses to screen for additional host factors. Tetrachlorodibenzo-p-dioxin-inducible poly(ADP ribose) polymerase was identified to inhibit GETV replication by inducing ubiquitination of the glycoprotein E2, causing its degradation by recruiting the E3 ubiquitin ligase membrane-associated RING-CH8 (MARCH8). Using GETV as a model virus, focusing on the relationship between viral structural proteins and host factors to screen antiviral host factors provides new insights for antiviral studies on alphaviruses.


Asunto(s)
Alphavirus , Interacciones Microbiota-Huesped , Proteínas de Transporte de Nucleósidos , Poli(ADP-Ribosa) Polimerasas , Transcriptoma , Humanos , Alphavirus/crecimiento & desarrollo , Alphavirus/inmunología , Glicoproteínas/metabolismo , Proteínas de Transporte de Nucleósidos/genética , Proteínas de Transporte de Nucleósidos/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Ubiquitinación , Proteínas Estructurales Virales/metabolismo , Replicación Viral
8.
Front Immunol ; 14: 1061182, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37638031

RESUMEN

H syndrome is a rare autosomal recessive genetic disorder characterized by the following clinical features: cutaneous hyperpigmentation, hypertrichosis, hepatosplenomegaly, heart anomalies, hearing loss, hypogonadism, short stature, hallux valgus, hyperglycemia, fixed flexion contractures of the toe joints, and the proximal interphalangeal joints. In rare cases, autoinflammatory and lymphoproliferative manifestations have also been reported. This disorder is due to loss-of-function mutations in SLC29A3 gene, which encode the equilibrative nucleoside transporter ENT3. This deficiency leads to abnormal function and proliferation of histiocytes. H syndrome is part of the R-group of histiocytosis. We report two different cases, one was diagnosed in adulthood and the other in childhood. The first case reported is a 37-year-old woman suffering from H syndrome with an autoinflammatory systemic disease that begins in adulthood (fever and diffuse organ's infiltration) and with cutaneous, articular, auditory, and endocrinological manifestations since childhood. The second case reported is a 2-year-old girl with autoinflammatory, endocrine, and cutaneous symptoms (fever, lymphadenopathy, organomegaly, growth delay, and cutaneous hyperpigmentation). Homozygous mutations in SLC29A3 confirmed the diagnosis of H syndrome in both cases. Each patient was treated with Tocilizumab with a significant improvement for lymphoproliferative, autoinflammatory, and cutaneous manifestations. Both cases were reported to show the multiple characteristics of this rare syndrome, which can be diagnosed either in childhood or in adulthood. In addition, an overview of the literature suggested Tocilizumab efficiency.


Asunto(s)
Contractura , Pérdida Auditiva Sensorineural , Histiocitosis , Femenino , Humanos , Adulto , Preescolar , Histiocitosis/diagnóstico , Histiocitosis/tratamiento farmacológico , Histiocitosis/genética , Fiebre , Proteínas de Transporte de Nucleósidos/genética
9.
Proc Natl Acad Sci U S A ; 120(14): e2212387120, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36996110

RESUMEN

The purinergic signaling molecule adenosine (Ado) modulates many physiological and pathological functions in the brain. However, the exact source of extracellular Ado remains controversial. Here, utilizing a newly optimized genetically encoded GPCR-Activation-Based Ado fluorescent sensor (GRABAdo), we discovered that the neuronal activity-induced extracellular Ado elevation is due to direct Ado release from somatodendritic compartments of neurons, rather than from the axonal terminals, in the hippocampus. Pharmacological and genetic manipulations reveal that the Ado release depends on equilibrative nucleoside transporters but not the conventional vesicular release mechanisms. Compared with the fast-vesicular glutamate release, the Ado release is slow (~40 s) and requires calcium influx through L-type calcium channels. Thus, this study reveals an activity-dependent second-to-minute local Ado release from the somatodendritic compartments of neurons, potentially serving modulatory functions as a retrograde signal.


Asunto(s)
Adenosina , Neuronas , Adenosina/farmacología , Proteínas de Transporte de Nucleósidos/genética , Transducción de Señal/fisiología , Factores de Intercambio de Guanina Nucleótido/metabolismo
10.
Nat Commun ; 14(1): 1727, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36977719

RESUMEN

By lacking de novo purine biosynthesis enzymes, Plasmodium falciparum requires purine nucleoside uptake from host cells. The indispensable nucleoside transporter ENT1 of P. falciparum facilitates nucleoside uptake in the asexual blood stage. Specific inhibitors of PfENT1 prevent the proliferation of P. falciparum at submicromolar concentrations. However, the substrate recognition and inhibitory mechanism of PfENT1 are still elusive. Here, we report cryo-EM structures of PfENT1 in apo, inosine-bound, and inhibitor-bound states. Together with in vitro binding and uptake assays, we identify that inosine is the primary substrate of PfENT1 and that the inosine-binding site is located in the central cavity of PfENT1. The endofacial inhibitor GSK4 occupies the orthosteric site of PfENT1 and explores the allosteric site to block the conformational change of PfENT1. Furthermore, we propose a general "rocker switch" alternating access cycle for ENT transporters. Understanding the substrate recognition and inhibitory mechanisms of PfENT1 will greatly facilitate future efforts in the rational design of antimalarial drugs.


Asunto(s)
Malaria Falciparum , Proteínas Portadoras de Nucleobases, Nucleósidos, Nucleótidos y Ácidos Nucleicos , Humanos , Plasmodium falciparum/metabolismo , Proteínas de Transporte de Nucleósidos/genética , Proteínas de Transporte de Nucleósidos/metabolismo , Proteínas Portadoras de Nucleobases, Nucleósidos, Nucleótidos y Ácidos Nucleicos/metabolismo , Malaria Falciparum/tratamiento farmacológico , Nucleósidos de Purina/metabolismo , Inosina/metabolismo
11.
EMBO Rep ; 24(3): e55286, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36652307

RESUMEN

An increasing amount of evidence emphasizes the role of metabolic reprogramming in immune cells to fight infections. However, little is known about the regulation of metabolite transporters that facilitate and support metabolic demands. In this study, we found that the expression of equilibrative nucleoside transporter 3 (ENT3, encoded by solute carrier family 29 member 3, Slc29a3) is part of the innate immune response, which is rapidly upregulated upon pathogen invasion. The transcription of Slc29a3 is directly regulated by type I interferon-induced signaling, demonstrating that this metabolite transporter is an interferon-stimulated gene (ISG). Suprisingly, we unveil that several viruses, including SARS-CoV-2, require ENT3 to facilitate their entry into the cytoplasm. The removal or suppression of Slc29a3 expression is sufficient to significantly decrease viral replication in vitro and in vivo. Our study reveals that ENT3 is a pro-viral ISG co-opted by some viruses to gain a survival advantage.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Interferones/metabolismo , Proteínas de Transporte de Membrana/genética , Inmunidad Innata , Genoma Viral , Proteínas de Transporte de Nucleósidos/genética , Proteínas de Transporte de Nucleósidos/metabolismo
12.
Bone ; 167: 116615, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36402365

RESUMEN

Dysosteosclerosis (DSS) refers to skeletal dysplasias that radiographically feature focal appendicular osteosclerosis with variable platyspondyly. Genetic heterogeneity is increasingly reported for the DSS phenotype and now involves mutations of SLC29A3, TNFRSF11A, TCIRG1, LRRK1, and CSF1R. Typical radiological findings are widened radiolucent long bones with thin cortices yet dense irregular metaphyses, flattened vertebral bodies, dense ribs, and multiple fractures. However, the radiographic features of DSS evolve, and the metaphyseal and/or appendicular osteosclerosis variably fades with increasing patient age, likely due to some residual osteoclast function. Fractures are the principal presentation of DSS, and may even occur in infancy with SLC29A3-associated DSS. Cranial base sclerosis can lead to cranial nerve palsies such as optic atrophy, and may be the initial presentation, though not observed with SLC29A3-associated DSS. Gene-specific extra-skeletal features can be the main complication in some forms of DSS such as CSF1R- associated DSS. Further genetic heterogeneity is likely, especially for X-linked recessive DSS and cases currently with an unknown genetic defect. Distinguishing DSS can be challenging due to variable clinical and radiological features and an evolving phenotype. However, defining the DSS phenotype is important for predicting complications, prognosis, and instituting appropriate health surveillance and treatment.


Asunto(s)
Osteocondrodisplasias , Osteopetrosis , Osteosclerosis , ATPasas de Translocación de Protón Vacuolares , Humanos , Osteopetrosis/diagnóstico por imagen , Osteopetrosis/genética , Osteosclerosis/diagnóstico por imagen , Osteosclerosis/genética , Osteocondrodisplasias/genética , Mutación/genética , ATPasas de Translocación de Protón Vacuolares/genética , Proteínas de Transporte de Nucleósidos/genética
13.
Artículo en Inglés | MEDLINE | ID: mdl-36372920

RESUMEN

BACKGROUND: H syndrome is a rare genodermatosis deriving from a mutation in the SLC29A3 gene and affecting numerous systems, particularly the skin. The syndrome exhibits different clinical characteristics involving several systems, most beginning with the letter "H." The most common clinical findings are cutaneous hyperpigmentation, flexion contracture in the fingers, hearing loss, short stature, insulin-dependent diabetes mellitus, heart anomalies, hepatosplenomegaly, and hypogonadism. Fewer than 150 cases have been reported so far and vast majority of them consisted with patients with Arab ethnicity. CASE PRESENTATION: We describe a patient presenting with short stature, developing diabetes mellitus at follow-ups, with homozygous deletion determined in exon 3 of the SLC29A3 gene, and diagnosed with H syndrome, reported due to the presence and rarity of renal involvement (hematuria and proteinuria). CONCLUSION: In conclusion, despite its rarity, endocrinologists, rheumatologists/nephrologists, and dermatologists need to be aware of H syndrome as a pleiotropic syndrome. H syndrome should be considered in the differential diagnosis of patients with cutaneous hyperpigmentation (particularly in the bilateral thigh and calf region) together with proteinuria/hematuria. In addition, periodic urine analysis should be performed in patients with H syndrome.


Asunto(s)
Contractura , Diabetes Mellitus Tipo 1 , Hiperpigmentación , Humanos , Homocigoto , Hematuria/genética , Eliminación de Secuencia , Mutación , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/genética , Hiperpigmentación/etiología , Hiperpigmentación/genética , Contractura/diagnóstico , Contractura/genética , Proteínas de Transporte de Nucleósidos/genética
15.
Commun Biol ; 5(1): 1386, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36536086

RESUMEN

Elevated intraocular pressure (IOP) is the major risk factor for glaucoma. The molecular mechanism of elevated IOP is unclear, which impedes glaucoma therapy. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible Poly-ADP-ribose Polymerase (TIPARP), a member of the PARP family, catalyses mono-ADP-ribosylation. Here we showed that TIPARP was widely expressed in the cornea, trabecular meshwork, iris, retina, optic nerve, sclera, and choroid of human eyes. The expression of TIPARP was significantly upregulated in the blood and trabecular meshwork of patients with primary open angle glaucoma compared with that of healthy controls. Transcriptome analysis revealed that the expression of genes related to extracellular matrix deposition and cell adhesion was decreased in TIPARP-upregulated human trabecular meshwork (HTM) cells. Moreover, western blot analysis showed that collagen types I and IV, fibronectin, and α-SMA were increased in TIPARP-downregulated or TIPARP-inhibited HTM cells. In addition, cross-linked actin networks were produced, and vinculin was upregulated in these cells. Subconjunctival injection of the TIPARP inhibitor RBN-2397 increased the IOP in Sprague-Dawley rats. Therefore, we identified TIPARP as a regulator of IOP through modulation of extracellular matrix and cell cytoskeleton proteins in HTM cells. These results indicate that TIPARP is a potential therapeutic target for ocular hypertension and glaucoma.


Asunto(s)
Glaucoma de Ángulo Abierto , Presión Intraocular , Proteínas de Transporte de Nucleósidos , Animales , Humanos , Ratas , Ratas Sprague-Dawley , Receptores de Hidrocarburo de Aril/metabolismo , Proteínas de Transporte de Nucleósidos/genética
16.
Hum Genomics ; 16(1): 50, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289533

RESUMEN

BACKGROUND: Mature cystic teratomas of the ovary are the most common type of germ cell tumor, comprising 33% of ovarian tumors. Studying these tumors may result in a better understanding of their stepwise developmental processes and molecular bases and provide useful information for the development of tissue-engineering technologies. METHODS: In the present study, 9 mature cystic teratomas of the ovary were analyzed by whole-exome sequencing and the results were compared with the Catalogue of Somatic Mutations in Cancer and dbSNP databases. RESULTS: Mutations were validated in 15 genes with alterations in all 9 (100%) samples and changes in protein coding. The top 10 mutated genes were FLG, MUC17, MUC5B, RP1L1, NBPF1, GOLGA6L2, SLC29A3, SGK223, PTGFRN, and FAM186A. Moreover, 7 variants in exons with changes in protein coding are likely of importance in the development of mature cystic teratomas of the ovary, namely PTGFRN, DUSP5, MPP2, PHLDA1, PRR21, GOLGA6L2, and KRTAP4-2. CONCLUSIONS: These genetic alterations may play an important etiological role in teratoma formation. Moreover, novel mutations in DUSP5 and PHLDA1 genes found on whole-exome sequencing may help to explain the characteristics of teratomas.


Asunto(s)
Neoplasias Ováricas , Teratoma , Femenino , Humanos , Secuenciación del Exoma , Teratoma/genética , Teratoma/metabolismo , Teratoma/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Mutación , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Fosfatasas de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/metabolismo , Factores de Transcripción/genética , Proteínas de Transporte de Nucleósidos/genética
17.
PLoS Pathog ; 18(9): e1010312, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36121873

RESUMEN

Leprosy is a chronic infection of the skin and peripheral nerves caused by Mycobacterium leprae. Despite recent improvements in disease control, leprosy remains an important cause of infectious disability globally. Large-scale genetic association studies in Chinese, Vietnamese and Indian populations have identified over 30 susceptibility loci for leprosy. There is a significant burden of leprosy in Africa, however it is uncertain whether the findings of published genetic association studies are generalizable to African populations. To address this, we conducted a genome-wide association study (GWAS) of leprosy in Malawian (327 cases, 436 controls) and Malian (247 cases, 368 controls) individuals. In that analysis, we replicated four risk loci previously reported in China, Vietnam and India; MHC Class I and II, LACC1 and SLC29A3. We further identified a novel leprosy susceptibility locus at 10q24 (rs2015583; combined p = 8.81 × 10-9; OR = 0.51 [95% CI 0.40 - 0.64]). Using publicly-available data we characterise regulatory activity at this locus, identifying ACTR1A as a candidate mediator of leprosy risk. This locus shows evidence of recent positive selection and demonstrates pleiotropy with established risk loci for inflammatory bowel disease and childhood-onset asthma. A shared genetic architecture for leprosy and inflammatory bowel disease has been previously described. We expand on this, strengthening the hypothesis that selection pressure driven by leprosy has shaped the evolution of autoimmune and atopic disease in modern populations. More broadly, our data highlights the importance of defining the genetic architecture of disease across genetically diverse populations, and that disease insights derived from GWAS in one population may not translate to all affected populations.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Lepra , Humanos , Niño , Estudio de Asociación del Genoma Completo , Predisposición Genética a la Enfermedad , Polimorfismo de Nucleótido Simple , Malaui , Malí , Lepra/genética , Proteínas de Transporte de Nucleósidos/genética
18.
Int J Mol Sci ; 23(15)2022 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-35955904

RESUMEN

The proper regulation of nucleotide pools is essential for all types of cellular functions and depends on de novo nucleotide biosynthesis, salvage, and degradation pathways. Despite the apparent essentiality of these processes, a significant number of rare diseases associated with mutations in genes encoding various enzymes of these pathways have been already identified, and others are likely yet to come. However, knowledge on genetic alterations impacting on nucleoside and nucleobase transporters is still limited. At this moment three gene-encoding nucleoside and nucleobase transporter proteins have been reported to be mutated in humans, SLC29A1, SLC29A3, and SLC28A1, impacting on the expression and function of ENT1, ENT3, and CNT1, respectively. ENT1 alterations determine Augustine-null blood type and cause ectopic calcification during aging. ENT3 deficiency translates into various clinical manifestations and syndromes, altogether listed in the OMIM catalog as histiocytosis-lymphoadenopathy plus syndrome (OMIM#602782). CNT1 deficiency causes uridine-cytidineuria (URCTU) (OMIM#618477), a unique type of pyrimidineuria with an as yet not well-known clinical impact. Increasing knowledge on the physiological, molecular and structural features of these transporter proteins is helping us to better understand the biological basis behind the biochemical and clinical manifestations caused by these deficiencies. Moreover, they also support the view that some metabolic compensation might occur in these disturbances, because they do not seem to significantly impact nucleotide homeostasis, but rather other biological events associated with particular subtypes of transporter proteins.


Asunto(s)
Antígenos de Grupos Sanguíneos , Proteínas de Transporte de Nucleósidos , Humanos , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Nucleósidos/genética , Proteínas de Transporte de Nucleósidos/metabolismo , Nucleósidos/metabolismo , Nucleótidos/metabolismo
19.
Microbiol Spectr ; 10(4): e0113822, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35913167

RESUMEN

Toyocamycin (TM) is an adenosine-analog antibiotic isolated from Streptomyces toyocaensis. It inhibits Candida albicans, several plant fungal pathogens, and human cells, but many fungi, including Saccharomyces cerevisiae, are much less susceptible to TM. Aiming to clarify why TM and its analogs tubercidin and 5-iodotubercidin are active against C. albicans but not S. cerevisiae, this study focused on the absence of purine nucleoside transport activity from S. cerevisiae. When the concentrative nucleoside transporter (CNT) of C. albicans was expressed in S. cerevisiae, the recombinant strain became sensitive to TM and its analogs. The expression of C. albicans purine nucleoside permease in S. cerevisiae did not result in sensitivity to TM. Clustered regularly interspaced short palindromic repeat-mediated disruption of CNT was performed in C. albicans. The CNTΔ strain of C. albicans became insensitive to TM and its analogs. These data suggest that the toxicity of TM and its analogs toward C. albicans results from their transport via CNT. Interestingly, S. cerevisiae also became sensitive to TM and its analogs if human CNT3 was introduced into cells. These findings enhance our understanding of the mechanisms of action of adenosine analogs toward Candida pathogens and human cells. IMPORTANCE We investigated the mechanism of toxicity of TM and its analogs to C. albicans. Inspired by the effect of the copresence of TM and purine nucleosides on cell growth of C. albicans, we investigated the involvement of CNT in the toxicity mechanism by expressing CNT of C. albicans (CaCNT) in S. cerevisiae and deleting CaCNT in C. albicans. Our examinations clearly demonstrated that CaCNT is responsible for the toxicity of TM to C. albicans. S. cerevisiae expressing the human ortholog of CaCNT also became sensitive to TM and its analogs, and the order of effects of the TM analogs was a little different between CaCNT- and hCNT3-expressing S. cerevisiae. These findings are beneficial for an understanding of the mechanisms of action of adenosine analogs toward Candida pathogens and human cells and also the development of new antifungal drugs.


Asunto(s)
Candida albicans , Proteínas de Transporte de Nucleósidos , Adenosina/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Humanos , Proteínas de Transporte de Nucleósidos/genética , Proteínas de Transporte de Nucleósidos/metabolismo , Nucleósidos de Purina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Toyocamicina/metabolismo
20.
Microbiol Spectr ; 10(4): e0154322, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35862946

RESUMEN

Nucleoside transport is essential for maintaining intracellular nucleoside and nucleobase homeostasis for living cells. Here, we identified an uncharacterized GntR/HutC family transcriptional regulator, NagR2, renamed NupR (nucleoside permease regulator), that mainly controls nucleoside transport in the Bacillus thuringiensis BMB171 strain. The deletion or overexpression of nupR affected the bacteria's utilization of guanosine, adenosine, uridine, and cytidine rather than thymidine. We further demonstrated that zinc ion is an effector for the NupR, dissociating NupR from its target DNA. Moreover, the expression of nupR is inhibited by NupR, ComK, and PurR, while it is promoted by CcpA. Also, a purine riboswitch located in its 5' noncoding region influences the expression of nupR. Guanine is the ligand of the riboswitch, reducing the expression of nupR by terminating the transcription of nupR in advance. Hence, our results reveal an exquisite regulation mechanism enabling NupR to respond to multiple signals, control genes involved in nucleoside transport, and contribute to nucleoside substance utilization. Overall, this study provides essential clues for future studies exploring the function of the NupR homolog in other bacteria, such as Bacillus cereus, Bacillus anthracis, Klebsiella pneumoniae, and Streptococcus pneumoniae. IMPORTANCE The transport of nucleosides and their homeostasis within the cell are essential for growth and proliferation. Here, we have identified a novel transcription factor, NupR, which, to our knowledge, is the first GntR family transcription factor primarily involved in the regulation of nucleoside transport. Moreover, responding to diverse intracellular signals, NupR regulates nucleoside transport. It is vital for utilizing extracellular nucleosides and maintaining intracellular nucleoside homeostasis. NupR may also be involved in other pathways such as pH homeostasis, molybdenum cofactor biosynthesis, nitrate metabolism, and transport. In addition, nucleosides have various applications, such as antiviral drugs. Thus, the elucidation of the transport mechanism of nucleosides could be helpful for the construction of engineered strains for nucleoside production.


Asunto(s)
Bacillus thuringiensis , Riboswitch , Bacillus thuringiensis/genética , Transporte Biológico , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Nucleósidos/genética , Proteínas de Transporte de Nucleósidos/metabolismo , Nucleósidos/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA