Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38928424

RESUMEN

The SLC35 (Solute Carrier 35) family members acting as nucleotide sugar transporters are typically localized in the endoplasmic reticulum or Golgi apparatus. It is, therefore, intriguing that some reports document the presence of orphan transporters SLC35F1 and SLC35F6 within the endosomal and lysosomal system. Here, we compared the subcellular distribution of these proteins and found that they are concentrated in separate compartments; i.e., recycling endosomes for SLC35F1 and lysosomes for SLC35F6. Swapping the C-terminal tail of these proteins resulted in a switch of localization, with SLC35F1 being trafficked to lysosomes while SLC35F6 remained in endosomes. This suggested the presence of specific sorting signals in these C-terminal regions. Using site-directed mutagenesis, fluorescence microscopy, and cell surface biotinylation assays, we found that the EQERLL360 signal located in the cytoplasmic tail of human SLC35F6 is involved in its lysosomal sorting (as previously shown for this conserved sequence in mouse SLC35F6), and that SLC35F1 localization in the recycling pathway depends on two YXXΦ-type signals: a Y367KQF sequence facilitates its internalization from the plasma membrane, while a Y392TSL motif prevents its transport to lysosomes, likely by promoting SLC35F1 recycling to the cell surface. Taken together, these results support that some SLC35 members may function at different levels of the endosomal and lysosomal system.


Asunto(s)
Endosomas , Lisosomas , Humanos , Secuencia de Aminoácidos , Membrana Celular/metabolismo , Endosomas/metabolismo , Aparato de Golgi/metabolismo , Células HEK293 , Células HeLa , Lisosomas/metabolismo , Proteínas de Transporte de Nucleótidos/metabolismo , Proteínas de Transporte de Nucleótidos/genética , Señales de Clasificación de Proteína , Transporte de Proteínas
2.
Int J Biochem Cell Biol ; 173: 106602, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38843991

RESUMEN

Congenital disorders of glycosylation (CDG) are a large family of genetic diseases resulting from defects in the synthesis of glycans and the attachment of glycans to macromolecules. The CDG known as leukocyte adhesion deficiency II (LAD II) is an autosomal, recessive disorder caused by mutations in the SLC35C1 gene, encoding a transmembrane protein of the Golgi apparatus, involved in GDP-fucose transport from the cytosol to the Golgi lumen. In this study, a cell-based model was used as a tool to characterize the molecular background of a therapy based on a fucose-supplemented diet. Such therapies have been successfully introduced in some (but not all) known cases of LAD II. In this study, the effect of external fucose was analyzed in SLC35C1 KO cell lines, expressing 11 mutated SLC35C1 proteins, previously discovered in patients with an LAD II diagnosis. For many of them, the cis-Golgi subcellular localization was affected; however, some proteins were localized properly. Additionally, although mutated SLC35C1 caused different α-1-6 core fucosylation of N-glycans, which explains previously described, more or less severe disorder symptoms, the differences practically disappeared after external fucose supplementation, with fucosylation restored to the level observed in healthy cells. This indicates that additional fucose in the diet should improve the condition of all patients. Thus, for patients diagnosed with LAD II we advocate careful analysis of particular mutations using the SLC35C1-KO cell line-based model, to predict changes in localization and fucosylation rate. We also recommend searching for additional mutations in the human genome of LAD II patients, when fucose supplementation does not influence patients' state.


Asunto(s)
Fucosa , Mutación , Humanos , Fucosa/metabolismo , Síndrome de Deficiencia de Adhesión del Leucocito/genética , Síndrome de Deficiencia de Adhesión del Leucocito/metabolismo , Síndrome de Deficiencia de Adhesión del Leucocito/patología , Fenotipo , Glicosilación , Aparato de Golgi/metabolismo , Proteínas de Transporte de Nucleótidos/genética , Proteínas de Transporte de Nucleótidos/metabolismo , Polisacáridos/metabolismo , Animales , Proteínas de Transporte de Monosacáridos
3.
J Mol Biol ; 436(10): 168559, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38580077

RESUMEN

Upstream open reading frames (uORFs) are cis-acting elements that can dynamically regulate the translation of downstream ORFs by suppressing downstream translation under basal conditions and, in some cases, increasing downstream translation under stress conditions. Computational and empirical methods have identified uORFs in the 5'-UTRs of approximately half of all mouse and human transcripts, making uORFs one of the largest regulatory elements known. Because the prevailing dogma was that eukaryotic mRNAs produce a single functional protein, the peptides and small proteins, or microproteins, encoded by uORFs were rarely studied. We hypothesized that a uORF in the SLC35A4 mRNA is producing a functional microprotein (SLC35A4-MP) because of its conserved amino acid sequence. Through a series of biochemical and cellular experiments, we find that the 103-amino acid SLC35A4-MP is a single-pass transmembrane inner mitochondrial membrane (IMM) microprotein. The IMM contains the protein machinery crucial for cellular respiration and ATP generation, and loss of function studies with SLC35A4-MP significantly diminish maximal cellular respiration, indicating a vital role for this microprotein in cellular metabolism. The findings add SLC35A4-MP to the growing list of functional microproteins and, more generally, indicate that uORFs that encode conserved microproteins are an untapped reservoir of functional microproteins.


Asunto(s)
Membranas Mitocondriales , Proteínas Mitocondriales , Proteínas de Transporte de Nucleótidos , Sistemas de Lectura Abierta , Humanos , Regiones no Traducidas 5'/genética , Secuencia de Aminoácidos , Mitocondrias/metabolismo , Mitocondrias/genética , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Sistemas de Lectura Abierta/genética , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Transporte de Nucleótidos/genética , Proteínas de Transporte de Nucleótidos/metabolismo , Células HEK293
4.
Cell Mol Gastroenterol Hepatol ; 17(6): 1039-1061, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38467191

RESUMEN

BACKGROUND & AIMS: The functional maturation of the liver largely occurs after birth. In the early stages of life, the liver of a newborn encounters enormous high-fat metabolic stress caused by the consumption of breast milk. It is unclear how the maturing liver adapts to high lipid metabolism. Liver sinusoidal endothelial cells (LSECs) play a fundamental role in establishing liver vasculature and are decorated with many glycoproteins on their surface. The Slc35a1 gene encodes a cytidine-5'-monophosphate (CMP)-sialic acid transporter responsible for transporting CMP-sialic acids between the cytoplasm and the Golgi apparatus for protein sialylation. This study aimed to determine whether endothelial sialylation plays a role in hepatic vasculogenesis and functional maturation. METHODS: Endothelial-specific Slc35a1 knockout mice were generated. Liver tissues were collected for histologic analysis, lipidomic profiling, RNA sequencing, confocal immunofluorescence, and immunoblot analyses. RESULTS: Endothelial Slc35a1-deficient mice exhibited excessive neonatal hepatic lipid deposition, severe liver damage, and high mortality. Endothelial deletion of Slc35a1 led to sinusoidal capillarization and disrupted hepatic zonation. Mechanistically, vascular endothelial growth factor receptor 2 (VEGFR2) in LSECs was desialylated and VEGFR2 signaling was enhanced in Slc35a1-deficient mice. Inhibition of VEGFR2 signaling by SU5416 alleviated lipid deposition and restored hepatic vasculature in Slc35a1-deficient mice. CONCLUSIONS: Our findings suggest that sialylation of LSECs is critical for maintaining hepatic vascular development and lipid homeostasis. Targeting VEGFR2 signaling may be a new strategy to prevent liver disorders associated with abnormal vasculature and lipid deposition.


Asunto(s)
Células Endoteliales , Metabolismo de los Lípidos , Hígado , Ratones Noqueados , Animales , Ratones , Animales Recién Nacidos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Hígado/metabolismo , Hígado/patología , Proteínas de Transporte de Nucleótidos/metabolismo , Proteínas de Transporte de Nucleótidos/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
5.
Cell ; 187(4): 846-860.e17, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38262409

RESUMEN

RNAs localizing to the outer cell surface have been recently identified in mammalian cells, including RNAs with glycan modifications known as glycoRNAs. However, the functional significance of cell surface RNAs and their production are poorly known. We report that cell surface RNAs are critical for neutrophil recruitment and that the mammalian homologs of the sid-1 RNA transporter are required for glycoRNA expression. Cell surface RNAs can be readily detected in murine neutrophils, the elimination of which substantially impairs neutrophil recruitment to inflammatory sites in vivo and reduces neutrophils' adhesion to and migration through endothelial cells. Neutrophil glycoRNAs are predominantly on cell surface, important for neutrophil-endothelial interactions, and can be recognized by P-selectin (Selp). Knockdown of the murine Sidt genes abolishes neutrophil glycoRNAs and functionally mimics the loss of cell surface RNAs. Our data demonstrate the biological importance of cell surface glycoRNAs and highlight a noncanonical dimension of RNA-mediated cellular functions.


Asunto(s)
Células Endoteliales , Infiltración Neutrófila , Neutrófilos , ARN , Animales , Ratones , Células Endoteliales/metabolismo , Neutrófilos/metabolismo , ARN/química , ARN/metabolismo , Proteínas de Transporte de Nucleótidos/genética , Proteínas de Transporte de Nucleótidos/metabolismo
6.
Biotechnol J ; 19(1): e2300017, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37953689

RESUMEN

Plasmid-based transfection can be used in many applications such as transient gene expression (TGE)-based therapeutic protein production. These applications preferentially require maximization of intracellular plasmid availability. Here, we applied a lysosome engineering approach to alleviate lysosome-mediated nucleic acid degradation and enhance the TGE in mammalian cells. By knocking out the lysosomal membrane protein LAMP2C, which is known to be the main player in RNautophagy/DNautophagy (RDA), we significantly improved transient fluorescent protein expression in HEK293 cells by improving the retention rate of transfected plasmids; however, this effect was not observed in CHO cells. Additional knockout of a lysosomal membrane transporter and another RDA player, SIDT2, was ineffective, regardless of the presence of LAMP2C. LAMP2C knockout enhanced TGE-based mAb production in HEK293 cells by up to 2.82-fold increase in specific mAb productivity. Taken together, these results demonstrate that HEK293 cells can be engineered to improve the usage of the transfected plasmid via knockout of the lysosomal membrane protein LAMP2C and provide efficient host cells in TGE systems for therapeutic protein production.


Asunto(s)
Proteínas de Transporte de Nucleótidos , Cricetinae , Animales , Humanos , Cricetulus , Proteínas de Membrana de los Lisosomas , Células HEK293 , Plásmidos/genética , Expresión Génica , Transfección , Proteínas de Transporte de Nucleótidos/genética
7.
J Neurochem ; 166(4): 705-719, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37522158

RESUMEN

The molecular mechanisms underlying posttraumatic stress disorder (PTSD) are yet to be fully elucidated, especially in underrepresented population groups. Expression quantitative trait loci (eQTLs) are DNA sequence variants that influence gene expression, in a local (cis-) or distal (trans-) manner, and subsequently impact cellular, tissue, and system physiology. This study aims to identify genetic loci associated with gene expression changes in a South African PTSD cohort. Genome-wide genotype and RNA-sequencing data were obtained from 32 trauma-exposed controls and 35 PTSD cases of mixed-ancestry, as part of the SHARED ROOTS project. The first approach utilised 108 937 single-nucleotide polymorphisms (SNPs) (MAF > 10%) and 11 312 genes with Matrix eQTL to map potential eQTLs, while controlling for covariates as appropriate. The second analysis was focused on 5638 SNPs related to a previously calculated PTSD polygenic risk score for this cohort. SNP-gene pairs were considered eQTLs if they surpassed Bonferroni correction and had a false discovery rate <0.05. We did not identify eQTLs that significantly influenced gene expression in a PTSD-dependent manner. However, several known cis-eQTLs, independent of PTSD diagnosis, were observed. rs8521 (C > T) was associated with TAGLN and SIDT2 expression, and rs11085906 (C > T) was associated with ZNF333 expression. This exploratory study provides insight into the molecular mechanisms associated with PTSD in a non-European, admixed sample population. This study was limited by the cross-sectional design and insufficient statistical power. Overall, this study should encourage further multi-omics approaches towards investigating PTSD in diverse populations.


Asunto(s)
Proteínas de Transporte de Nucleótidos , Trastornos por Estrés Postraumático , Humanos , Trastornos por Estrés Postraumático/genética , Estudios Transversales , Sudáfrica , Sitios de Carácter Cuantitativo/genética , Expresión Génica , Polimorfismo de Nucleótido Simple/genética , Estudio de Asociación del Genoma Completo , Regulación de la Expresión Génica , Proteínas de Transporte de Nucleótidos/genética
8.
BMJ Open Gastroenterol ; 10(1)2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36746519

RESUMEN

OBJECTIVE: To infer potential mechanisms driving disease subtypes among patients with inflammatory bowel disease (IBD), we profiled the transcriptome of purified circulating monocytes and CD4 T-cells. DESIGN: RNA extracted from purified monocytes and CD4 T-cells derived from the peripheral blood of 125 endoscopically active patients with IBD was sequenced using Illumina HiSeq 4000NGS. We used complementary supervised and unsupervised analytical methods to infer gene expression signatures associated with demographic/clinical features. Expression differences and specificity were validated by comparison with publicly available single cell datasets, tissue-specific expression and meta-analyses. Drug target information, druggability and adverse reaction records were used to prioritise disease subtype-specific therapeutic targets. RESULTS: Unsupervised/supervised methods identified significant differences in the expression profiles of CD4 T-cells between patients with ileal Crohn's disease (CD) and ulcerative colitis (UC). Following a pathway-based classification (Area Under Receiver Operating Characteristic - AUROC=86%) between ileal-CD and UC patients, we identified MAPK and FOXO pathways to be downregulated in UC. Coexpression module/regulatory network analysis using systems-biology approaches revealed mediatory core transcription factors. We independently confirmed that a subset of the disease location-associated signature is characterised by T-cell-specific and location-specific expression. Integration of drug-target information resulted in the discovery of several new (BCL6, GPR183, TNFAIP3) and repurposable drug targets (TUBB2A, PRKCQ) for ileal CD as well as novel targets (NAPEPLD, SLC35A1) for UC. CONCLUSIONS: Transcriptomic profiling of circulating CD4 T-cells in patients with IBD demonstrated marked molecular differences between the IBD-spectrum extremities (UC and predominantly ileal CD, sandwiching colonic CD), which could help in prioritising particular drug targets for IBD subtypes.


Asunto(s)
Colitis Ulcerosa , Enfermedad de Crohn , Enfermedades Inflamatorias del Intestino , Proteínas de Transporte de Nucleótidos , Humanos , Enfermedades Inflamatorias del Intestino/genética , Colitis Ulcerosa/genética , Colitis Ulcerosa/tratamiento farmacológico , Enfermedad de Crohn/genética , Enfermedad de Crohn/tratamiento farmacológico , Perfilación de la Expresión Génica , Íleon , Proteínas de Transporte de Nucleótidos/genética
9.
J Virol ; 97(3): e0146322, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36779754

RESUMEN

Entry of influenza A viruses (IAVs) into host cells is initiated by binding to sialic acids (Sias), their primary host cell receptor, followed by endocytosis and membrane fusion to release the viral genome into the cytoplasm of the host cell. Host tropism is affected by these entry processes, with a primary factor being receptor specificity. Sias exist in several different chemical forms, including the hydroxylated N-glycolylneuraminic acid (Neu5Gc), which is found in many hosts; however, it has not been clear how modified Sias affect viral binding and entry. Neu5Gc is commonly found in many natural influenza hosts, including pigs and horses, but not in humans or ferrets. Here, we engineered HEK293 cells to express the hydoxylase gene (CMAH) that converts Neu5Ac to Neu5Gc, or knocked out the Sia-CMP transport gene (SLC35A1), resulting in cells that express 95% Neu5Gc or minimal level of Sias, respectively. H3N2 (X-31) showed significantly reduced infectivity in Neu5Gc-rich cells compared to wild-type HEK293 (>95% Neu5Ac). To determine the effects on binding and fusion, we generated supported lipid bilayers (SLBs) derived from the plasma membranes of these cells and carried out single particle microscopy. H3N2 (X-31) exhibited decreased binding to Neu5Gc-containing SLBs, but no significant difference in H3N2 (X-31)'s fusion kinetics to either SLB type, suggesting that reduced receptor binding does not affect subsequent membrane fusion. This finding suggests that for this virus to adapt to host cells rich in Neu5Gc, only receptor affinity changes are required without further adaptation of virus fusion machinery. IMPORTANCE Influenza A virus (IAV) infections continue to threaten human health, causing over 300,000 deaths yearly. IAV infection is initiated by the binding of influenza glycoprotein hemagglutinin (HA) to host cell sialic acids (Sias) and the subsequent viral-host membrane fusion. Generally, human IAVs preferentially bind to the Sia N-acetylneuraminic acid (Neu5Ac). Yet, other mammalian hosts, including pigs, express diverse nonhuman Sias, including N-glycolylneuraminic acid (Neu5Gc). The role of Neu5Gc in human IAV infections in those hosts is not well-understood, and the variant form may play a role in incidents of cross-species transmission and emergence of new epidemic variants. Therefore, it is important to investigate how human IAVs interact with Neu5Ac and Neu5Gc. Here, we use membrane platforms that mimic the host cell surface to examine receptor binding and membrane fusion events of human IAV H3N2. Our findings improve the understanding of viral entry mechanisms that can affect host tropism and virus evolution.


Asunto(s)
Interacciones Microbiota-Huesped , Subtipo H3N2 del Virus de la Influenza A , Ácidos Siálicos , Internalización del Virus , Animales , Humanos , Células HEK293 , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/metabolismo , Fusión de Membrana , Proteínas de Transporte de Nucleótidos/genética , Proteínas de Transporte de Nucleótidos/metabolismo , Ácidos Siálicos/química , Ácidos Siálicos/farmacología , Imagen Individual de Molécula , Acoplamiento Viral/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Interacciones Microbiota-Huesped/genética , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/virología
10.
Nutrients ; 15(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36678241

RESUMEN

Previous studies have reported that the SIDT2 and ABCA1 genes are involved in lipid metabolism. We aimed to analyze the association-the gene x gene interaction between rs17120425 and rs1784042 on SIDT2 and rs9282541 on ABCA1 and their diet interaction on the HDL-c serum levels-in a cohort of 1982 Mexican adults from the Health Workers Cohort Study. Demographic and clinical data were collected through a structured questionnaire and standardized procedures. Genotyping was performed using a predesigned TaqMan assay. The associations and interactions of interest were estimated using linear and logistic regression. Carriers of the rs17120425-A and rs1784042-A alleles had slightly higher blood HDL-c levels compared to the non-carriers. In contrast, rs9282541-A was associated with low blood HDL-c levels (OR = 1.34, p = 0.013). The rs1784042 x rs9282541 interaction was associated with high blood HDL-c levels (p = 3.4 × 10-4). Premenopausal women who carried at least one rs17120425-A allele and consumed high dietary fat, protein, monounsaturated, or polyunsaturated fatty acids levels had higher HDL-c levels than the non-carriers. These results support the association between the genetic variants on SIDT2 and ABCA1 with HDL-c levels and suggest gene-gene and gene-diet interactions over HDL-c concentrations in Mexican adults. Our findings could be a platform for developing clinical and dietary strategies for improving the health of the Mexican population.


Asunto(s)
Dieta , Proteínas de Transporte de Nucleótidos , Humanos , Adulto , Femenino , Estudios de Cohortes , HDL-Colesterol , Alelos , Nutrientes , Transportador 1 de Casete de Unión a ATP/genética , Proteínas de Transporte de Nucleótidos/genética
11.
J Biol Chem ; 299(12): 105406, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38270391

RESUMEN

Slc35c1 encodes an antiporter that transports GDP-fucose into the Golgi and returns GMP to the cytoplasm. The closely related gene Slc35c2 encodes a putative GDP-fucose transporter and promotes Notch fucosylation and Notch signaling in cultured cells. Here, we show that HEK293T cells lacking SLC35C1 transferred reduced amounts of O-fucose to secreted epidermal growth factor-like repeats from NOTCH1 or secreted thrombospondin type I repeats from thrombospondin 1. However, cells lacking SLC35C2 did not exhibit reduced fucosylation of these epidermal growth factor-like repeats or thrombospondin type I repeats. To investigate SLC35C2 functions in vivo, WW6 embryonic stem cells were targeted for Slc35c2. Slc35c2[-/-] mice were viable and fertile and exhibited no evidence of defective Notch signaling during skeletal or T cell development. By contrast, mice with inactivated Slc35c1 exhibited perinatal lethality and marked skeletal defects in late embryogenesis, typical of defective Notch signaling. Compound Slc35c1[-/-]Slc35c2[-/-] mutants were indistinguishable in skeletal phenotype from Slc35c1[-/-] embryos and neonates. Double mutants did not exhibit the exacerbated skeletal defects predicted if SLC35C2 was functionally important for Notch signaling in vivo. In addition, NOTCH1 immunoprecipitated from Slc35c1[-/-]Slc35c2[-/-] neonatal lung carried fucose detected by binding of Aleuria aurantia lectin. Given that the absence of both SLC35C1, a known GDP-fucose transporter, and SLC35C2, a putative GDP-fucose transporter, did not lead to afucosylated NOTCH1 nor to the severe Notch signaling defects and embryonic lethality expected if all GDP-fucose transport were abrogated, at least one more mechanism of GDP-fucose transport into the secretory pathway must exist in mammals.


Asunto(s)
Fucosa , Proteínas de Transporte de Monosacáridos , Proteínas de Transporte de Nucleótidos , Animales , Femenino , Humanos , Ratones , Embarazo , Factor de Crecimiento Epidérmico , Fucosa/metabolismo , Células HEK293 , Proteínas de Transporte de Monosacáridos/genética , Proteínas de Neoplasias , Proteínas de Transporte de Nucleótidos/genética , Trombospondinas/metabolismo , Ratones Noqueados , Receptor Notch1/metabolismo , Transducción de Señal
12.
J Virol ; 96(24): e0162622, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36453883

RESUMEN

Porcine deltacoronavirus (PDCoV), an emerging enteropathogenic coronavirus, not only causes diarrhea in piglets but also possesses the potential to infect humans. To better understand host-virus genetic dependencies and find potential therapeutic targets for PDCoV, we used a porcine single-guide RNA (sgRNA) lentivirus library to screen host factors related to PDCoV infection in LLC-PK1 cells. The solute carrier family 35 member A1 (SLC35A1), a key molecule in the sialic acid (SA) synthesis pathway, was identified as a host factor required for PDCoV infection. A knockout of SLC35A1 caused decreases in the amounts of cell surface sialic acid (SA) and viral adsorption; meanwhile, trypsin promoted the use of SA in PDCoV infection. By constructing and assessing a series of recombinant PDCoV strains with the deletion or mutation of possible critical domain or amino acid residues for SA binding in the S1 N-terminal domain, we found that S T182 might be a PDCoV SA-binding site. However, the double knockout of SLC35A1 and amino peptidase N (APN) could not block PDCoV infection completely. Additionally, we found that different swine enteric coronaviruses, including transmissible gastroenteritis coronavirus, porcine epidemic diarrhea virus, and swine acute diarrhea syndrome coronavirus, are differentially dependent on SA. Overall, our study uncovered a collection of host factors that can be exploited as drug targets against PDCoV infection and deepened our understanding of the relationship between PDCoV and SA. IMPORTANCE Identifying the host factors required for replication will be helpful to uncover the pathogenesis mechanisms and develop antivirals against the emerging coronavirus porcine deltacoronavirus (PDCoV). Herein, we performed a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 knockout screen, the results of which revealed that the solute carrier family 35 member A1 (SLC35A1) is a host factor required for PDCoV infection that acts by regulating cell surface sialic acid (SA). We also identified the T182 site in the N-terminal domain of PDCoV S1 subunit as being associated with the SA-binding site and found that trypsin promotes the use of cell surface SA by PDCoV. Furthermore, different swine enteric coronaviruses use SLC35A1 differently for infection. This is the first study to screen host factors required for PDCoV replication using a genome-wide CRISPR-Cas9 functional knockout, thereby providing clues for developing antiviral drugs against PDCoV infection.


Asunto(s)
Infecciones por Coronavirus , Interacciones Microbiota-Huesped , Proteínas de Transporte de Nucleótidos , Enfermedades de los Porcinos , Animales , Humanos , Adsorción , Coronavirus , Infecciones por Coronavirus/fisiopatología , Sistemas CRISPR-Cas , Ácido N-Acetilneuramínico/metabolismo , Proteínas de Transporte de Nucleótidos/genética , Proteínas de Transporte de Nucleótidos/metabolismo , Porcinos , Enfermedades de los Porcinos/fisiopatología , Tripsina , Interacciones Microbiota-Huesped/genética , Dominios Proteicos , Sitios de Unión
13.
Proc Natl Acad Sci U S A ; 119(30): e2122158119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35858418

RESUMEN

Eicosapentaenoic acid (EPA), an omega-3 (ω-3) polyunsaturated fatty acid, is an essential nutrient that exhibits antiinflammatory, neuroprotective, and cardiovascular-protective activities. Although EPA is used as a nutrient-based pharmaceutical agent or dietary supplement, its molecular target(s) is debatable. Here, we showed that EPA and its metabolites strongly and reversibly inhibit vesicular nucleotide transporter (VNUT), a key molecule for vesicular storage and release of adenosine triphosphate (ATP) in purinergic chemical transmission. In vitro analysis showed that EPA inhibits human VNUT-mediated ATP uptake at a half-maximal inhibitory concentration (IC50) of 67 nM, acting as an allosteric modulator through competition with Cl-. EPA impaired vesicular ATP release from neurons without affecting the vesicular release of other neurotransmitters. In vivo, VNUT-/- mice showed a delay in the onset of neuropathic pain and resistance to both neuropathic and inflammatory pain. EPA potently attenuated neuropathic and inflammatory pain in wild-type mice but not in VNUT-/- mice without affecting the basal nociception. The analgesic effect of EPA was canceled by the intrathecal injection of purinoceptor agonists and was stronger than that of existing drugs used for neuropathic pain treatment, with few side effects. Neuropathic pain impaired insulin sensitivity in previous studies, which was improved by EPA in the wild-type mice but not in the VNUT-/- mice. Our results showed that VNUT is a molecular target of EPA that attenuates neuropathic and inflammatory pain and insulin resistance. EPA may represent a unique nutrient-based treatment and prevention strategy for neurological, immunological, and metabolic diseases by targeting purinergic chemical transmission.


Asunto(s)
Ácido Eicosapentaenoico , Neuralgia , Proteínas de Transporte de Nucleótidos , Adenosina Trifosfato/metabolismo , Animales , Ácido Eicosapentaenoico/farmacología , Ácido Eicosapentaenoico/uso terapéutico , Humanos , Resistencia a la Insulina , Ratones , Neuralgia/tratamiento farmacológico , Neuralgia/genética , Nocicepción , Proteínas de Transporte de Nucleótidos/antagonistas & inhibidores , Proteínas de Transporte de Nucleótidos/genética , Proteínas de Transporte de Nucleótidos/metabolismo
14.
J Gastrointestin Liver Dis ; 31(2): 176-183, 2022 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-35574622

RESUMEN

BACKGROUND AND AIMS: Considering the lack of knowledge regarding the influence of the variable number of repeats of 27 pb in intron 4 (4b/4a VNTR - rs61722009) of the endothelial nitric oxide synthase (eNOS) on the drug response, we assessed the influence of this polymorphism for the risk of upper gastrointestinal bleeding (UGIB). METHODS: A case-control study, including 200 cases and 706 controls, was conducted in a Brazilian hospital complex. Cases were participants with UGIB diagnosis. Controls were participants admitted to surgical procedures not related to gastrointestinal problems. The 4b/4a VNTR was determined through polymerase chain reaction followed by fragment analysis. Conditional logistic regression models were designed. The additive interaction between the presence of the 4b/4a VNTR variant and the use of low-dose aspirin (LDA) and nonsteroidal anti-inflammatory drugs (NSAIDs) was calculated by fitting the Cox regression model through the parameters of Synergism index (S) and Relative Excess Risk Due To Interaction (RERI). RESULTS: The presence of the 4b/4a VNTR variant did not increase the risk of UGIB: carriers of the 4a/4a genotype (OR=0.37, 95%CI: 0.09-1.45) and of the variant allele "4a" (OR=0.91, 95%CI: 0.55-1.51). The risk of UGIB in LDA users carriers of the wild genotype (OR=4.96, 95%CI: 2.04- 2.06) and the variant allele "4a" (OR=3.49, 95%CI: 1.18-10.38) is similar, as well as for NSAID users carriers of the wild genotype (OR=5.73, 95%CI: 2.61-12.60) and variant allele "4a" (OR=5.51, 95%CI: 1.42-15.82). No additive interaction was identified between the presence of the genetic variant and the use of LDA [RERI: -1.44 (95%CI: -6.02-3.14; S: 0.63 (95%CI: -1.97-1.15)] and NSAIDs [RERI: -0.13 (95%CI: -6.79-6.53; S: 0.97 (95%CI: -0.23-4.19)] on the UGIB risk. CONCLUSION: Our data suggests that there is no increase in the magnitude of UGIB risk in LDA and NSAIDs users' carrying the variant allele "4a".


Asunto(s)
Hemorragia Gastrointestinal , Intrones , Óxido Nítrico Sintasa de Tipo III , Proteínas de Transporte de Nucleótidos , Antiinflamatorios no Esteroideos/administración & dosificación , Aspirina/administración & dosificación , Estudios de Casos y Controles , Hemorragia Gastrointestinal/inducido químicamente , Hemorragia Gastrointestinal/diagnóstico , Hemorragia Gastrointestinal/genética , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Repeticiones de Minisatélite , Óxido Nítrico Sintasa de Tipo III/genética , Proteínas de Transporte de Nucleótidos/genética , Polimorfismo Genético
15.
Mol Pain ; 18: 17448069221089592, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35266813

RESUMEN

Phantom tooth pain (PTP) is a rare and specific neuropathic pain that occurs after pulpectomy and tooth extraction, but its cause is not understood. We hypothesized that there is a genetic contribution to PTP. We focused on solute carrier family 17 member 9 (SLC17A9)/vesicular nucleotide transporter (VNUT) and purinergic receptor P2Y12 (P2RY12), both of which have been associated with neuropathic pain and pain transduction signaling in the trigeminal ganglion in rodents. We sought to corroborate these associations in humans. We investigated gene polymorphisms that contribute to PTP. We statistically examined the association between genetic polymorphisms and PTP vulnerability in 150 patients with orofacial pain, including PTP, and 500 healthy subjects. We found that the rs735055 polymorphism of the SLC17A9 gene and rs3732759 polymorphism of the P2RY12 gene were associated with the development of PTP. Carriers of the minor allele of rs735055 and individuals who were homozygous for the major allele of rs3732759 had a higher rate of PTP. Carriers of the minor allele of rs735055 reportedly had high SLC17A9 mRNA expression in the spinal cord, which may increase the storage and release of adenosine triphosphate. Individuals who were homozygous for the major allele of rs3732759 may have higher P2RY12 expression that is more active in microglia. Therefore, these carriers may be more susceptible to PTP. These results suggest that specific genetic polymorphisms of the SLC17A9 and P2RY12 genes are involved in PTP. This is the first report on genes that are associated with PTP in humans.


Asunto(s)
Neuralgia , Proteínas de Transporte de Nucleótidos , Humanos , Adenosina Trifosfato/metabolismo , Proteínas de Transporte de Nucleótidos/genética , Proteínas de Transporte de Nucleótidos/metabolismo , Polimorfismo de Nucleótido Simple/genética , Receptores Purinérgicos P2Y12/genética , Receptores Purinérgicos P2Y12/metabolismo
16.
Cells ; 11(5)2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35269509

RESUMEN

SLC17A9 (solute carrier family 17 member 9) functions as an ATP transporter in lysosomes as well as other secretory vesicles. SLC17A9 inhibition or silence leads to cell death. However, the molecular mechanisms causing cell death are unclear. In this study, we report that cell death induced by SLC17A9 deficiency is rescued by the transcription factor EB (TFEB), a master gene for lysosomal protein expression, suggesting that SLC17A9 deficiency may be the main cause of lysosome dysfunction, subsequently leading to cell death. Interestingly, Cathepsin D, a lysosomal aspartic protease, is inhibited by SLC17A9 deficiency. Heterologous expression of Cathepsin D successfully rescues lysosomal dysfunction and cell death induced by SLC17A9 deficiency. On the other hand, the activity of Cathepsin B, a lysosomal cysteine protease, is not altered by SLC17A9 deficiency, and Cathepsin B overexpression does not rescue lysosomal dysfunction and cell death induced by SLC17A9 deficiency. Our data suggest that lysosomal ATP and SLC17A9 play critical roles in lysosomal function and cell viability by regulating Cathepsin D activity.


Asunto(s)
Proteínas de Transporte de Nucleótidos , Adenosina Trifosfato/metabolismo , Catepsina B/genética , Catepsina B/metabolismo , Catepsina D/genética , Catepsina D/metabolismo , Supervivencia Celular , Lisosomas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Nucleótidos/genética
17.
Nat Commun ; 13(1): 652, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35115512

RESUMEN

Stomatal opening requires the provision of energy in the form of ATP for proton pumping across the guard cell (GC) plasma membrane and for associated metabolic rearrangements. The source of ATP for GCs is a matter of ongoing debate that is mainly fuelled by controversies around the ability of GC chloroplasts (GCCs) to perform photosynthesis. By imaging compartment-specific fluorescent ATP and NADPH sensor proteins in Arabidopsis, we show that GC photosynthesis is limited and mitochondria are the main source of ATP. Unlike mature mesophyll cell (MC) chloroplasts, which are impermeable to cytosolic ATP, GCCs import cytosolic ATP through NUCLEOTIDE TRANSPORTER (NTT) proteins. GCs from ntt mutants exhibit impaired abilities for starch biosynthesis and stomatal opening. Our work shows that GCs obtain ATP and carbohydrates via different routes from MCs, likely to compensate for the lower chlorophyll contents and limited photosynthesis of GCCs.


Asunto(s)
Adenosina Trifosfato/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Estomas de Plantas/metabolismo , Almidón/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Cloroplastos/efectos de los fármacos , Cloroplastos/efectos de la radiación , Citosol/metabolismo , Peróxido de Hidrógeno/farmacología , Luz , Células del Mesófilo/citología , Células del Mesófilo/metabolismo , Células del Mesófilo/efectos de la radiación , Microscopía Confocal , NADP/metabolismo , Proteínas de Transporte de Nucleótidos/genética , Proteínas de Transporte de Nucleótidos/metabolismo , Oxidantes/farmacología , Epidermis de la Planta/citología , Epidermis de la Planta/metabolismo , Hojas de la Planta/citología , Hojas de la Planta/metabolismo , Estomas de Plantas/citología , Estomas de Plantas/fisiología , Plantas Modificadas Genéticamente
18.
Biochem Pharmacol ; 195: 114865, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34863979

RESUMEN

Previous studies have confirmed that docetaxel (DTX) treatment increases TNF-α production in cancer cells, but its mechanism of action remains unclear. Therefore, this study aimed to determine the signaling axis by which DTX induced the expression of TNF-α in U937 leukemia and MCF-7 breast carcinoma cells. DTX treatment promoted Ca2+-controlled autophagy and SIDT2 expression, resulting in lysosomal degradation of miR-25 in U937 cells. Downregulation of miR-25 increased NOX4 mRNA stability and protein expression. NOX4-stimulated ROS generation led to JNK-mediated phosphorylation of cytosolic HuR at Ser221, thereby increasing TNF-α protein expression by stabilizing TNF-α mRNA. Consequently, DTX induced TNF-α-dependent death in U937 cells. Depletion of HuR using siRNA or abolishment of JNK activation reduced TNF-α expression and eliminated DTX-mediated cytotoxicity. Knockdown of SIDT2 or pretreatment with chloroquine (a lysosome inhibitor) reduced DTX-induced NOX4 and TNF-α expression and mitigated JNK-mediated HuR phosphorylation. Altogether, our data indicate that DTX triggers HuR-mediated TNF-α mRNA stabilization through the Ca2+/SIDT2/NOX4/ROS/JNK axis, thereby inducing TNF-α-dependent apoptosis in U937 cells. In addition, DTX induces apoptosis in MCF-7 cells through SIDT2/NOX4/JNK/HuR axis-mediated TNF-α expression.


Asunto(s)
Apoptosis/efectos de los fármacos , Docetaxel/farmacología , Neoplasias/metabolismo , Proteínas/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Antineoplásicos/farmacología , Apoptosis/genética , Proteína 1 Similar a ELAV/genética , Proteína 1 Similar a ELAV/metabolismo , Regulación de la Expresión Génica , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Células MCF-7 , MicroARNs/genética , NADPH Oxidasa 4/genética , NADPH Oxidasa 4/metabolismo , Neoplasias/genética , Neoplasias/patología , Proteínas de Transporte de Nucleótidos/genética , Proteínas de Transporte de Nucleótidos/metabolismo , Proteínas/genética , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/genética , Factor de Necrosis Tumoral alfa/genética , Células U937
19.
Neurochem Int ; 152: 105243, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34800582

RESUMEN

Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are major neurodegenerative disorders that share commonalities in their pathology involving the formation of Lewy bodies, the main component of which is α-synuclein protein. Aberrancy and dysfunction in lysosomes have been suggested to play critical roles in the pathogenesis of Lewy body diseases. We recently identified a novel lysosomal degradation pathway in which various macromolecules, including α-synuclein protein, are directly imported into lysosomes and degraded. In this study, we analyzed the levels and localization of the lysosomal membrane protein SIDT2, a key factor in this pathway, in the postmortem brains of patients with PD and DLB. The levels of SIDT2 protein were significantly higher in the anterior cingulate cortex (ACC) of both PD and DLB cases than in age-matched control subjects, but this difference was not observed in the inferior frontal gyrus. The levels of SIDT2 also showed a strong correlation with α-synuclein levels in the ACC of all subjects, including controls. SIDT2 was colocalized with aggregates positive for phosphorylated α-synuclein protein, which is a hallmark of Lewy bodies, in all examined cases of both PD and DLB. These observations suggest that changes in the levels and localization of SIDT2 occur at the lesion site of Lewy body diseases in accordance with the progression of Lewy body pathology. Our findings provide mechanistic insights into the pathogenesis of Lewy body diseases, as well as other neurodegenerative disorders, and may provide clues for improved diagnosis, prevention, and therapeutic intervention for such diseases.


Asunto(s)
Encéfalo/metabolismo , Enfermedad por Cuerpos de Lewy/patología , Proteínas de Transporte de Nucleótidos/metabolismo , Enfermedad de Parkinson/patología , alfa-Sinucleína/metabolismo , Animales , Autopsia/métodos , Encéfalo/patología , Humanos , Enfermedad por Cuerpos de Lewy/metabolismo , Ratones , Proteínas de Transporte de Nucleótidos/genética , Enfermedad de Parkinson/metabolismo , alfa-Sinucleína/genética
20.
Cell Cycle ; 20(24): 2619-2637, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34781815

RESUMEN

Long non-coding RNA LIFR-AS1 is low-expressed in many cancers, but its functions in papillary thyroid carcinoma (PTC) were not defined and require further study. The relationship between LIFR-AS1 expression and clinicopathological characteristics of patients with PTC was statistically analyzed. The downregulation of LIFR-AS1 in PTC tissues and cell lines was predicted by bioinformatics analysis and verified by qRT-PCR. After overexpressing or silencing LIFR-AS1, the regulatory role of LIFR-AS1 in PTC was examined by performing MTT, colony formation, wound healing, Transwell, ELISA, tube formation and xenograft tumor experiment. MiR-31-5p and SID1 transmembrane family member 2 (SIDT2) expressions in PTC tissues or cell lines were detected by qRT-PCR, Western blot, or in situ hybridization. The relationship between miR-31-5p and LIFR-AS1/SIDT2 was predicted by LncBase, TargetScan or Pearson correlation test and then verified by Dual-Luciferase Reporter assay, RNA pull-down assay and qRT-PCR. The regulatory effect of LIFR-AS1/miR-31-5p/SIDT2 axis on the biological behaviors of PTC cells was confirmed by functional experiments and rescue experiments mentioned above. The tumor size and lymphatic metastasis were correlated with LIFR-AS1 overexpression. Overexpressed LIFR-AS1 suppressed tumorigenesis in vivo. LIFR-AS1 and SIDT2 expressions were suppressed in PTC tissues, while that of miR-31-5p was elevated in PTC tissues. LIFR-AS1 was negatively correlated with miR-31-5p. LIFR-AS1 sponged miR-31-5p to upregulate SIDT2, thereby inhibiting the viability, proliferation, migration, invasion, and the secretion of vascular endothelial growth factor (VEGF) of PTC cells and angiogenesis of human umbilical vein endothelial cells (HUVECs). This paper demonstrates that LIFR-AS1/miR-31-5p/SIDT2 axis modulated the development of PTC.


Asunto(s)
MicroARNs , Proteínas de Transporte de Nucleótidos , ARN Largo no Codificante , Neoplasias de la Tiroides , Línea Celular Tumoral , Proliferación Celular/genética , Células Endoteliales/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/genética , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proteínas de Transporte de Nucleótidos/genética , Proteínas de Transporte de Nucleótidos/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Cáncer Papilar Tiroideo/metabolismo , Neoplasias de la Tiroides/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA