Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.260
Filtrar
1.
BMC Vet Res ; 20(1): 236, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824607

RESUMEN

BACKGROUND: The chicken's inflammatory response is an essential part of the bird's response to infection. A single dose of Escherichia coli (E. coli) lipopolysaccharide (LPS) endotoxin can activate the acute phase response (APR) and lead to the production of acute phase proteins (APPs). In this study, the responses of established chicken APPs, Serum amyloid A (SAA) and Alpha-1-acid-glycoprotein (AGP), were compared to two novel APPs, Hemopexin (Hpx) and Extracellular fatty acid binding protein (Ex-FABP), in 15-day old broilers over a time course of 48 h post E.coli LPS challenge. We aimed to investigate and validate their role as biomarkers of an APR. Novel plant extracts, Citrus (CTS) and cucumber (CMB), were used as dietary supplements to investigate their ability to reduce the inflammatory response initiated by the endotoxin. RESULTS: A significant increase of established (SAA, AGP) and novel (Ex-FABP, Hpx) APPs was detected post E.coli LPS challenge. Extracellular fatty acid binding protein (Ex-FABP) showed a similar early response to SAA post LPS challenge by increasing ~ 20-fold at 12 h post challenge (P < 0.001). Hemopexin (Hpx) showed a later response by increasing ∼5-fold at 24 h post challenge (P < 0.001) with a similar trend to AGP. No differences in APP responses were identified between diets (CTS and CMB) using any of the established or novel biomarkers. CONCLUSIONS: Hpx and Ex-FABP were confirmed as potential biomarkers of APR in broilers when using an E. coli LPS model along with SAA and AGP. However, no clear advantage for using either of dietary supplements to modulate the APR was identified at the dosage used.


Asunto(s)
Proteínas de Fase Aguda , Reacción de Fase Aguda , Biomarcadores , Pollos , Escherichia coli , Lipopolisacáridos , Animales , Biomarcadores/sangre , Lipopolisacáridos/farmacología , Proteínas de Fase Aguda/metabolismo , Proteínas de Fase Aguda/análisis , Endotoxinas , Proteína Amiloide A Sérica/análisis , Proteína Amiloide A Sérica/metabolismo , Orosomucoide/metabolismo , Suplementos Dietéticos , Extractos Vegetales/farmacología , Proteínas de Unión a Ácidos Grasos/metabolismo , Enfermedades de las Aves de Corral/microbiología , Hemopexina/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-38780272

RESUMEN

Sepsis-induced kidney injury (SAKI) has been frequently established as a prevailing complication of sepsis which is linked to unfavorable outcomes. Fatty acid-binding protein-4 (FABP4) has been proposed as a possible target for the treatment of SAKI. In the current work, we aimed to explore the role and underlying mechanism of FABP4 in lipopolysaccharide (LPS)-induced human renal tubular epithelial cell damage. In LPS-induced human kidney 2 (HK2) cells, FABP4 expression was tested by the reverse transcription-quantitative polymerase chain reaction and Western blot. Cell counting kit-8 method assayed cell viability. Inflammatory levels were detected using the enzyme-linked immunosorbent assay. Immunofluorescence staining measured the nuclear translocation of nuclear factor kappa B p65. Thiobarbituric acid-reactive substances assay and C11 BODIPY 581/591 probe were used to estimate the level of cellular lipid peroxidation. Fe2+ content was examined by the kit. In addition, the expression of proteins related to inflammation-, ferroptosis- and Janus kinase 2 (JAK2)/signal transducer, and activator of transcription 3 (STAT3) signaling was detected by the Western blot analysis. The results revealed that FABP4 was significantly upregulated in LPS-treated HK2 cells, the knockdown of which elevated the viability, whereas alleviated the inflammation and ferroptosis in HK2 cells challenged with LPS. In addition, down-regulation of FABP4 inactivated JAK2/STAT3 signaling. JAK2/STAT3 stimulator (colivelin) and ferroptosis activator (Erastin) partially restored the effects of FABP4 interference on LPS-triggered inflammation and ferroptosis in HK2 cells. Together, FABP4 knockdown inhibited ferroptosis to alleviate LPS-induced injury of renal tubular epithelial cells through suppressing JAK2/STAT3 signaling.


Asunto(s)
Células Epiteliales , Proteínas de Unión a Ácidos Grasos , Ferroptosis , Janus Quinasa 2 , Túbulos Renales , Lipopolisacáridos , Factor de Transcripción STAT3 , Transducción de Señal , Humanos , Lipopolisacáridos/toxicidad , Ferroptosis/efectos de los fármacos , Janus Quinasa 2/metabolismo , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Transducción de Señal/efectos de los fármacos , Línea Celular , Túbulos Renales/patología , Túbulos Renales/metabolismo , Túbulos Renales/efectos de los fármacos , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/genética , Lesión Renal Aguda/patología , Lesión Renal Aguda/inducido químicamente
3.
Molecules ; 29(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731411

RESUMEN

Fullerenes, particularly C60, exhibit unique properties that make them promising candidates for various applications, including drug delivery and nanomedicine. However, their interactions with biomolecules, especially proteins, remain not fully understood. This study implements both explicit and implicit C60 models into the UNRES coarse-grained force field, enabling the investigation of fullerene-protein interactions without the need for restraints to stabilize protein structures. The UNRES force field offers computational efficiency, allowing for longer timescale simulations while maintaining accuracy. Five model proteins were studied: FK506 binding protein, HIV-1 protease, intestinal fatty acid binding protein, PCB-binding protein, and hen egg-white lysozyme. Molecular dynamics simulations were performed with and without C60 to assess protein stability and investigate the impact of fullerene interactions. Analysis of contact probabilities reveals distinct interaction patterns for each protein. FK506 binding protein (1FKF) shows specific binding sites, while intestinal fatty acid binding protein (1ICN) and uteroglobin (1UTR) exhibit more generalized interactions. The explicit C60 model shows good agreement with all-atom simulations in predicting protein flexibility, the position of C60 in the binding pocket, and the estimation of effective binding energies. The integration of explicit and implicit C60 models into the UNRES force field, coupled with recent advances in coarse-grained modeling and multiscale approaches, provides a powerful framework for investigating protein-nanoparticle interactions at biologically relevant scales without the need to use restraints stabilizing the protein, thus allowing for large conformational changes to occur. These computational tools, in synergy with experimental techniques, can aid in understanding the mechanisms and consequences of nanoparticle-biomolecule interactions, guiding the design of nanomaterials for biomedical applications.


Asunto(s)
Fulerenos , Simulación de Dinámica Molecular , Muramidasa , Unión Proteica , Fulerenos/química , Muramidasa/química , Muramidasa/metabolismo , Sitios de Unión , Proteínas de Unión a Tacrolimus/química , Proteínas de Unión a Tacrolimus/metabolismo , Proteínas de Unión a Ácidos Grasos/química , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas/química , Proteínas/metabolismo , Proteasa del VIH
4.
Anim Sci J ; 95(1): e13951, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38703069

RESUMEN

Intramuscular fat (IMF) is a crucial determinant of meat quality and is influenced by various regulatory factors. Despite the growing recognition of the important role of long noncoding RNAs (lncRNAs) in IMF deposition, the mechanisms underlying buffalo IMF deposition remain poorly understood. In this study, we identified and characterized a lncRNA, lncFABP4, which is transcribed from the antisense strand of fatty acid-binding protein 4 (FABP4). lncFABP4 inhibited cell proliferation in buffalo intramuscular preadipocytes. Moreover, lncFABP4 significantly increased intramuscular preadipocyte differentiation, as indicated by an increase in the expression of the adipogenic markers peroxisome proliferator-activated receptor gamma (PPARG), CCAAT enhancer binding protein alpha (C/EBPα), and FABP4. Mechanistically, lncFABP4 was found to have the potential to regulate downstream gene expression by participating in protein-protein interaction pathways. These findings contribute to further understanding of the intricate mechanisms through which lncRNAs modulate intramuscular adipogenesis in buffaloes.


Asunto(s)
Adipocitos , Adipogénesis , Búfalos , Diferenciación Celular , Proliferación Celular , Proteínas de Unión a Ácidos Grasos , PPAR gamma , ARN Largo no Codificante , Animales , Búfalos/genética , Búfalos/metabolismo , Adipogénesis/genética , Adipocitos/metabolismo , Adipocitos/citología , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Diferenciación Celular/genética , PPAR gamma/metabolismo , PPAR gamma/genética , Expresión Génica , Células Cultivadas , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Proteína alfa Potenciadora de Unión a CCAAT/genética , Calidad de los Alimentos
5.
Int J Mol Sci ; 25(10)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38791126

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common metabolic disease of the liver, characterized by hepatic steatosis in more than 5% of hepatocytes. However, despite the recent approval of the first drug, resmetirom, for the management of metabolic dysfunction-associated steatohepatitis, decades of target exploration and hundreds of clinical trials have failed, highlighting the urgent need to find new druggable targets for the discovery of innovative drug candidates against MASLD. Here, we found that glutathione S-transferase alpha 1 (GSTA1) expression was negatively associated with lipid droplet accumulation in vitro and in vivo. Overexpression of GSTA1 significantly attenuated oleic acid-induced steatosis in hepatocytes or high-fat diet-induced steatosis in the mouse liver. The hepatoprotective and anti-inflammatory drug bicyclol also attenuated steatosis by upregulating GSTA1 expression. A detailed mechanism showed that GSTA1 directly interacts with fatty acid binding protein 1 (FABP1) and facilitates the degradation of FABP1, thereby inhibiting intracellular triglyceride synthesis by impeding the uptake and transportation of free fatty acids. Conclusion: GSTA1 may be a good target for the discovery of innovative drug candidates as GSTA1 stabilizers or enhancers against MASLD.


Asunto(s)
Proteínas de Unión a Ácidos Grasos , Hígado Graso , Glutatión Transferasa , Regulación hacia Arriba , Glutatión Transferasa/metabolismo , Glutatión Transferasa/genética , Animales , Humanos , Ratones , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Hígado Graso/metabolismo , Hígado Graso/tratamiento farmacológico , Regulación hacia Arriba/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Hígado/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Masculino , Ratones Endogámicos C57BL , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Ácido Oléico/metabolismo , Células Hep G2 , Triglicéridos/metabolismo , Isoenzimas
6.
Clin Res Hepatol Gastroenterol ; 48(6): 102364, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38788255

RESUMEN

BACKGROUND: Non-alcoholic fatty pancreas disease (NAFPD) can be detected using various imaging techniques, but accurately measuring the amount of fat in the pancreas remains difficult. Fatty acid binding protein-1 (FABP-1) is a marker specific to certain tissues and can aid in diagnosing NAFPD. However, this study aimed to investigate the prevalence of NAFPD among obese and non-obese people with and without diabetes mellitus (DM). Additionally, it aimed to evaluate the associated risk factors for NAFPD and the utility of the FABP-1 level as a simple, non-invasive biomarker for diagnosing NAFPD. METHODS: This study is a prospective cross-sectional study. RESULTS: Ninety-five patients were enrolled in the study, comprising 35 males and 60 females, with a mean age of 44 years and a standard deviation (SD) of 11 years. However, 26.3 % were morbidly obese, 22.1 % were severely obese, 31.6 % were obese, 12.6 % were overweight, and 7.4 % were normal. Additionally, 35.8 % had diabetes mellitus, while 26.3 % of patients had hypertension. Regarding the ultrasonographic findings, 94.7 % of the patients had fatty liver, with the majority (41.1 %) classified as grade II, followed by 38.9 % classified as grade I, and 14.7 % classified as grade III fatty liver. Among these patients, 78.9 % had fatty pancreas, with 38.9 % classified as grade II, 31.6 % classified as grade I, and 8.4 % classified as grade III fatty pancreas. The median FABP-1 level among patients with fatty pancreas was 3.3 ng/ml, which exhibited a significant fair negative correlation with total bilirubin and a fair, positive correlation with alkaline phosphatase and portal vein diameter. A statistically substantial distinction was observed between the levels of AFABP-1 and the presence or grading of the fatty pancreas (p-value = 0.048 and < 0.001, respectively). Using multivariate analysis, FABP-1 was the only significant predictor of a fatty pancreas. The receiver operating characteristic (ROC) curve analysis indicated that at a cut-off point of FABP-1 of ≤ 3.7, it had a sensitivity of 58 %, specificity of 80 %, positive predictive value (PPV) of 96.6 %, negative predictive value (NPV) of 17 %, and an area under the curve (AUC) of 0.77. CONCLUSION: NAFPD is becoming an increasingly significant challenge. FABP-1 can potentially be a straightforward and non-invasive predictor of the fatty pancreas.


Asunto(s)
Biomarcadores , Proteínas de Unión a Ácidos Grasos , Humanos , Masculino , Femenino , Adulto , Estudios Transversales , Egipto/epidemiología , Proteínas de Unión a Ácidos Grasos/sangre , Biomarcadores/sangre , Estudios Prospectivos , Persona de Mediana Edad , Obesidad/sangre , Obesidad/complicaciones , Enfermedades Pancreáticas/sangre , Prevalencia , Ultrasonografía
7.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732152

RESUMEN

Acute kidney injury (AKI) following surgery with cardiopulmonary bypass (CPB-AKI) is common in pediatrics. Urinary liver-type fatty acid binding protein (uL-FABP) increases in some kidney diseases and may indicate CPB-AKI earlier than current methods. The aim of this systematic review with meta-analysis was to evaluate the potential role of uL-FABP in the early diagnosis and prediction of CPB-AKI. Databases Pubmed/MEDLINE, Scopus, and Web of Science were searched on 12 November 2023, using the MeSH terms "Children", "CPB", "L-FABP", and "Acute Kidney Injury". Included papers were revised. AUC values from similar studies were pooled by meta-analysis, performed using random- and fixed-effect models, with p < 0.05. Of 508 studies assessed, nine were included, comprising 1658 children, of whom 561 (33.8%) developed CPB-AKI. Significantly higher uL-FABP levels in AKI versus non-AKI patients first manifested at baseline to 6 h post-CPB. At 6 h, uL-FABP correlated with CPB duration (r = 0.498, p = 0.036), postoperative serum creatinine (r = 0.567, p < 0.010), and length of hospital stay (r = 0.722, p < 0.0001). Importantly, uL-FABP at baseline (AUC = 0.77, 95% CI: 0.64-0.89, n = 365), 2 h (AUC = 0.71, 95% CI: 0.52-0.90, n = 509), and 6 h (AUC = 0.76, 95% CI: 0.72-0.80, n = 509) diagnosed CPB-AKI earlier. Hence, higher uL-FABP levels associate with worse clinical parameters and may diagnose and predict CPB-AKI earlier.


Asunto(s)
Lesión Renal Aguda , Biomarcadores , Puente Cardiopulmonar , Proteínas de Unión a Ácidos Grasos , Humanos , Lesión Renal Aguda/etiología , Lesión Renal Aguda/orina , Lesión Renal Aguda/diagnóstico , Lesión Renal Aguda/sangre , Puente Cardiopulmonar/efectos adversos , Proteínas de Unión a Ácidos Grasos/orina , Proteínas de Unión a Ácidos Grasos/sangre , Biomarcadores/orina , Niño , Procedimientos Quirúrgicos Cardíacos/efectos adversos , Complicaciones Posoperatorias/orina , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/diagnóstico , Preescolar
8.
Nutrients ; 16(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38732509

RESUMEN

Isoeugenol (IEG), a natural component of clove oil, possesses antioxidant, anti-inflammatory, and antibacterial properties. However, the effects of IEG on adipogenesis have not yet been elucidated. Here, we showed that IEG blocks adipogenesis in 3T3-L1 cells at an early stage. IEG inhibits lipid accumulation in adipocytes in a concentration-dependent manner and reduces the expression of mature adipocyte-related factors including PPARγ, C/EBPα, and FABP4. IEG treatment at different stages of adipogenesis showed that IEG inhibited adipocyte differentiation by suppressing the early stage, as confirmed by lipid accumulation and adipocyte-related biomarkers. The early stage stimulates growth-arrested preadipocytes to enter mitotic clonal expansion (MCE) and initiates their differentiation into adipocytes by regulating cell cycle-related factors. IEG arrested 3T3-L1 preadipocytes in the G0/G1 phase of the cell cycle and attenuated cell cycle-related factors including cyclinD1, CDK6, CDK2, and cyclinB1 during the MCE stage. Furthermore, IEG suppresses reactive oxygen species (ROS) production during MCE and inhibits ROS-related antioxidant enzymes, including superoxide dismutase1 (SOD1) and catalase. The expression of cell proliferation-related biomarkers, including pAKT and pERK1/2, was attenuated by the IEG treatment of 3T3-L1 preadipocytes. These findings suggest that it is a potential therapeutic agent for the treatment of obesity.


Asunto(s)
Células 3T3-L1 , Adipocitos , Adipogénesis , Eugenol , Mitosis , Especies Reactivas de Oxígeno , Animales , Adipogénesis/efectos de los fármacos , Ratones , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Mitosis/efectos de los fármacos , Eugenol/farmacología , Eugenol/análogos & derivados , Especies Reactivas de Oxígeno/metabolismo , Diferenciación Celular/efectos de los fármacos , PPAR gamma/metabolismo , Proliferación Celular/efectos de los fármacos , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Metabolismo de los Lípidos/efectos de los fármacos , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Proteína alfa Potenciadora de Unión a CCAAT/genética , Antioxidantes/farmacología
9.
Nutrients ; 16(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732600

RESUMEN

BACKGROUND: Exercise and the consumption of sugars result in a dysfunction of the intestinal barrier (IB). Here, we determined the effect of sugar in a natural matrix on the intestinal barrier after moderate (A) and intensive endurance exercise (B). METHOD: The IB function was determined before (pre) and after running (post), and 120 and 180 min after consuming the drink by measuring serum endotoxin concentrations (lipopolysaccharides-LPS), IL-6, CD14, and i-FABP. In study A, nonspecifically trained participants (n = 24, males and females, age 26 ± 4) ran for one hour at 80% of their individual anaerobic threshold (IAT). After finishing, the runners consumed, in a crossover setup, either 500 mL of water, diluted cloudy apple juice (test drink), or an identical drink (placebo) without the fruit juice matrix (FJM). In study B, the participants (n = 30, males and females, age 50 ± 9) completed an ultra-marathon run, were divided into groups, and consumed one of the above-mentioned drinks. RESULTS: Study A: Exercise resulted in a significant increase in serum LPS, i-FABP, and IL-6, which decreased fast after finishing. No impact of the different drinks on LPS i-FABP, or IL-6 could be observed, but there was an impact on CD14. Study B: The ultra-marathon resulted in a strong increase in serum LPS, which decreased fast after finishing in the water and test drink groups, but not in the placebo group. CONCLUSIONS: The consumed drinks did not affect the kinetics of IB regeneration after moderate exercise, but impacted CD14 serum concentrations, indicating possible beneficial effects of the FJM on the immune system. After an ultra-marathon, IB function regenerates very fast. The intake of sugar (placebo) seems to have had a negative impact on IB regeneration, which was diminished by the presence of the FJM.


Asunto(s)
Estudios Cruzados , Jugos de Frutas y Vegetales , Interleucina-6 , Receptores de Lipopolisacáridos , Malus , Carrera de Maratón , Resistencia Física , Polifenoles , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Polifenoles/farmacología , Polifenoles/administración & dosificación , Resistencia Física/efectos de los fármacos , Resistencia Física/fisiología , Interleucina-6/sangre , Receptores de Lipopolisacáridos/sangre , Carrera de Maratón/fisiología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Lipopolisacáridos/sangre , Proteínas de Unión a Ácidos Grasos/sangre , Carrera/fisiología , Adulto Joven
10.
Nutrients ; 16(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732573

RESUMEN

The role of selenium in the developmental process of esophageal cancer (EC) requires further investigation. To explore the relationship between selenium-related factors and EC through bioinformatic analysis, a case-control study was conducted to verify the results. Utilizing the GEPIA and TCGA databases, we delineated the differential expression of glutathione peroxidase 3 (GPx3) in EC and normal tissues, identified differentially expressed genes (DEGs), and a performed visualization analysis. Additionally, 100 pairs of dietary and plasma samples from esophageal precancerous lesions (EPLs) of esophageal squamous cancer (ESCC) cases and healthy controls from Huai'an district, Jiangsu, were screened. The levels of dietary selenium, plasma selenium, and related enzymes were analyzed using inductively coupled plasma mass spectrometry (ICP-MS) or ELISA kits. The results showed lower GPx3 expression in tumor tissues compared to normal tissues. Further analysis revealed that DEGs were mainly involved in the fat digestion and absorption pathway, and the core protein fatty acid binding protein 1 (FABP1) was significantly upregulated and negatively correlated with GPx3 expression. Our case-control study found that selenium itself was not associated with EPLs risk. However, both the decreased concentration of GPx3 and the increase in FABP1 were positively correlated with the EPLs risk (p for trend = 0.035 and 0.046, respectively). The different expressions of GPx3 and FABP1 reflect the potential of selenium for preventing ESCC at the EPLs stage. GPx3 may affect myocardial infarction through FABP1, which remains to be further studied.


Asunto(s)
Biología Computacional , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Proteínas de Unión a Ácidos Grasos , Glutatión Peroxidasa , Selenio , Humanos , Selenio/sangre , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Glutatión Peroxidasa/sangre , Estudios de Casos y Controles , Neoplasias Esofágicas/prevención & control , Neoplasias Esofágicas/genética , Biología Computacional/métodos , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Carcinoma de Células Escamosas de Esófago/prevención & control , Carcinoma de Células Escamosas de Esófago/genética , Femenino , Masculino , Persona de Mediana Edad , Regulación Neoplásica de la Expresión Génica , Anciano
11.
Curr Atheroscler Rep ; 26(5): 163-175, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38698167

RESUMEN

PURPOSE OF REVIEW: Fatty acid-binding protein 4 (FABP4) plays a role in lipid metabolism and cardiovascular health. In this paper, we cover FABP4 biology, its implications in atherosclerosis from observational studies, genetic factors affecting FABP4 serum levels, and ongoing drug development to target FABP4 and offer insights into future FABP4 research. RECENT FINDINGS: FABP4 impacts cells through JAK2/STAT2 and c-kit pathways, increasing inflammatory and adhesion-related proteins. In addition, FABP4 induces angiogenesis and vascular smooth muscle cell proliferation and migration. FABP4 is established as a reliable predictive biomarker for cardiovascular disease in specific at-risk groups. Genetic studies robustly link PPARG and FABP4 variants to FABP4 serum levels. Considering the potential effects on atherosclerotic lesion development, drug discovery programs have been initiated in search for potent inhibitors of FABP4. Elevated FABP4 levels indicate an increased cardiovascular risk and is causally related to acceleration of atherosclerotic disease, However, clinical trials for FABP4 inhibition are lacking, possibly due to concerns about available compounds' side effects. Further research on FABP4 genetics and its putative causal role in cardiovascular disease is needed, particularly in aging subgroups.


Asunto(s)
Envejecimiento , Enfermedades Cardiovasculares , Proteínas de Unión a Ácidos Grasos , Humanos , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/epidemiología , Envejecimiento/genética , Envejecimiento/fisiología , Aterosclerosis/genética , Aterosclerosis/metabolismo , Animales , Biomarcadores/sangre , Biomarcadores/metabolismo
12.
Acta Trop ; 255: 107247, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38729330

RESUMEN

Fatty acid binding proteins (FABPs) have emerged as attractive vaccination candidates for several platyhelminth species. To explore the physiological functions of Echinococcus multilocularis (E. multilocularis) FABP, the molecular characteristics of EmFABP1 were analyzed by online software, and the regulatory roles of rEmFABP1 protein in murine macrophages were further investigated. The emfabp1 gene encodes 133 amino acids with the characteristic ß-barrel shape of the cytoplasmic FABP family. Natural EmFABP1 protein is predominantly expressed in protoscoleces tegument and germinal layer cells and is also detected in cyst fluid and exosomes of E. multilocularis. rEmFABP1 protein demonstrated a notable suppression of phagocytic activity and nitric oxide production in murine macrophages. Additionally, the protein was observed to promote apoptosis and regulate cytokine expression in macrophages. These findings suggested that E. multilocularis FABP1 is critical in modifying macrophage physiological processes and that this protein may have immunomodulatory roles during infection.


Asunto(s)
Echinococcus multilocularis , Proteínas de Unión a Ácidos Grasos , Proteínas del Helminto , Macrófagos , Fagocitosis , Animales , Echinococcus multilocularis/genética , Echinococcus multilocularis/inmunología , Macrófagos/inmunología , Macrófagos/parasitología , Ratones , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Proteínas del Helminto/inmunología , Óxido Nítrico/metabolismo , Apoptosis , Citocinas/metabolismo , Células RAW 264.7
13.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731797

RESUMEN

Adipocyte P2 (aP2), also known as FABP4, is an adipokine that adipose tissue produces and expresses in macrophages. Its primary role is to facilitate the transportation of fatty acids across cell membranes. Numerous studies have reported associations between FABP4 and the development of metabolic disorders. However, there is limited knowledge regarding FABP4 expression in diabetes and obesity, especially about different age groups, genders, and ethnicities. This study aims to investigate the association between FABP4 levels, diabetes mellitus, and obesity within various ethnic groups. We measured plasma FABP4 concentrations in a cohort of 2083 patients from the KDEP study and gathered anthropometric data. Additionally, we collected and analyzed clinical, biochemical, and glycemic markers using multivariate regression analysis. The average FABP4 concentration was significantly higher in female participants than in males (18.8 ng/mL vs. 14.4 ng/mL, p < 0.001, respectively), and in those over 50 years old compared to those under 50 years of age (19.3 ng/mL vs. 16.2 ng/mL, p < 0.001, respectively). In this study, significant positive associations were found between the plasma level of FABP4 and obesity markers: BMI (r = 0.496, p < 0.001), hip circumference (r = 0.463, p < 0.001), and waist circumference (WC) (r = 0.436, p < 0.001). Similar observations were also seen with glycemic markers, which included HbA1c (r = 0.126, p < 0.001), fasting blood glucose (FBG) (r = 0.184, p < 0.001), fasting insulin (r = 0.326, p < 0.001), and HOMA-IR (r = 0.333, p < 0.001). Importantly, these associations remained significant even after adjusting for age, gender, and ethnicity. Furthermore, FABP4 levels were negatively associated with male gender (ß: -3.85, 95% CI: -4.92, -2.77, p < 0.001), and positively associated with age (ß: 0.14, 95% CI: 0.096, 0.183, p < 0.001), BMI (ß: 0.74, 95% CI: 0.644, 0.836, p < 0.001), and fasting insulin (ß: 0.115, 95% CI: 0.091, 0.138, p < 0.001). In this study, plasma FABP4 levels were significantly higher in diabetic and obese participants, and they were strongly influenced by age, gender, and ethnicity. These findings suggest that FABP4 may serve as a valuable prognostic and diagnostic marker for obesity and diabetes, particularly among female patients, individuals over 50 years old, and specific ethnic groups.


Asunto(s)
Proteínas de Unión a Ácidos Grasos , Obesidad , Humanos , Proteínas de Unión a Ácidos Grasos/sangre , Proteínas de Unión a Ácidos Grasos/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Obesidad/sangre , Obesidad/metabolismo , Adulto , Estudios de Cohortes , Factores de Edad , Anciano , Etnicidad , Índice de Masa Corporal , Biomarcadores/sangre , Diabetes Mellitus/sangre , Diabetes Mellitus/metabolismo , Glucemia/metabolismo
14.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731803

RESUMEN

This study explores the effects of normobaric hypoxia and intermittent hypoxic training (IHT) on the physiological condition of the cardiac muscle in swimmers. Hypoxia has been reported to elicit both beneficial and adverse changes in the cardiovascular system, but its impact on the myocardium during acute exercise and altitude/hypoxic training remains less understood. We aimed to determine how a single bout of intense interval exercise and a four-week period of high-intensity endurance training under normobaric hypoxia affect cardiac marker activity in swimmers. Sixteen young male swimmers were divided into two groups: one undergoing training in hypoxia and the other in normoxia. Cardiac markers, including troponin I and T (cTnI and cTnT), heart-type fatty acid-binding protein (H-FABP), creatine kinase-MB isoenzyme (CK-MB), and myoglobin (Mb), were analyzed to assess the myocardium's response. We found no significant differences in the physiological response of the cardiac muscle to intense physical exertion between hypoxia and normoxia. Four weeks of IHT did not alter the resting levels of cTnT, cTnI, and H-FABP, but it resulted in a noteworthy decrease in the resting concentration of CK-MB, suggesting enhanced cardiac muscle adaptation to exercise. In contrast, a reduction in resting Mb levels was observed in the control group training in normoxia. These findings suggest that IHT at moderate altitudes does not adversely affect cardiac muscle condition and may support cardiac muscle adaptation, affirming the safety and efficacy of IHT as a training method for athletes.


Asunto(s)
Atletas , Biomarcadores , Hipoxia , Humanos , Masculino , Hipoxia/metabolismo , Proyectos Piloto , Natación/fisiología , Adulto Joven , Miocardio/metabolismo , Mioglobina/metabolismo , Troponina I/metabolismo , Proteína 3 de Unión a Ácidos Grasos/metabolismo , Adolescente , Proteínas de Unión a Ácidos Grasos/metabolismo , Resistencia Física/fisiología , Forma MB de la Creatina-Quinasa/sangre , Forma MB de la Creatina-Quinasa/metabolismo , Adaptación Fisiológica , Altitud
15.
Drug Discov Today ; 29(5): 103980, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38614160

RESUMEN

Fatty acid binding protein 7 (FABP7) is an intracellular protein involved in the uptake, transportation, metabolism, and storage of fatty acids (FAs). FABP7 is upregulated up to 20-fold in multiple cancers, usually correlated with poor prognosis. FABP7 silencing or pharmacological inhibition suggest FABP7 promotes cell growth, migration, invasion, colony and spheroid formation/increased size, lipid uptake, and lipid droplet formation. Xenograft studies show that suppression of FABP7 inhibits tumour formation and tumour growth, and improves host survival. The molecular mechanisms involve promotion of FA uptake, lipid droplets, signalling [focal adhesion kinase (FAK), proto-oncogene tyrosine-protein kinase Src (Src), mitogen-activated protein kinase kinase/p-extracellular signal-regulated kinase (MEK/ERK), and Wnt/ß-catenin], hypoxia-inducible factor 1-alpha (Hif1α), vascular endothelial growth factor A/prolyl 4-hydroxylase subunit alpha-1 (VEGFA/P4HA1), snail family zinc finger 1 (Snail1), and twist-related protein 1 (Twist1). The oncogenic capacity of FABP7 makes it a promising pharmacological target for future cancer treatments.


Asunto(s)
Proteína de Unión a los Ácidos Grasos 7 , Proteínas de Unión a Ácidos Grasos , Neoplasias , Proto-Oncogenes Mas , Proteínas Supresoras de Tumor , Humanos , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Animales , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas de Unión a Ácidos Grasos/genética
16.
Skin Res Technol ; 30(4): e13710, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38616506

RESUMEN

BACKGROUND: Melanoma central nervous system (CNS) metastasis remains a leading cause of patient mortality, and the underlying pathological mechanism has not been fully elucidated, leading to a lack of effective therapeutic strategies. MATERIALS AND METHODS: In this study, we conducted an integrated analysis of single-cell transcriptomic data related to melanoma brain metastasis (MBM) and leptomeningeal metastasis (LMM). We focused on differences of subset composition and molecular expression of monocytes in blood, primary tumor, brain metastases, and leptomeningeal metastases. RESULTS: Significant differences were observed among monocytes in blood, primary tumor, and different CNS metastatic tissues, particularly in terms of subset differentiation and gene expression patterns. Subsequent analysis revealed the upregulation of cell proportions of six monocyte subsets in brain metastasis and leptomeningeal metastasis. Based on differential gene analysis, four of these subsets exhibited increased expression of factors promoting tumor migration and survival, including AREG+ monocytes (AREG, EREG, THBS1), FABP5+ monocytes (SPP1, CCL2, CTSL), and CXCL3+ monocytes (CXCL3, IL8, IL1B). The proportions of TPSB2+ monocytes (IL32, CCL5) were notably elevated in melanoma leptomeningeal metastasis tissues. Pathway analysis indicated the activation of signaling pathways such as NOD-like receptors, NFκB, and Toll-like receptors in these metastasis-related subsets. CONCLUSION: Our findings elucidate that AREG+, FABP5+ and CXCL3+ monocytes are associated with brain metastasis and TPSB2+ monocytes are associated with leptomeningeal metastasis in melanoma, which may be contribute to the development of therapeutic strategies focusing on monocytes or cytokines for melanoma CNS metastasis.


Asunto(s)
Neoplasias Encefálicas , Melanoma , Humanos , Monocitos , Transcriptoma , Encéfalo , Proteínas de Unión a Ácidos Grasos
17.
Sci Rep ; 14(1): 8013, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580754

RESUMEN

Hepatocellular carcinoma (HCC) seriously threatens human health, mostly developed from liver fibrosis or cirrhosis. Since diethylnitrosamine (DEN) and carbon tetrachloride (CCl4)-induced HCC mouse model almost recapitulates the characteristic of HCC with fibrosis and inflammation, it is taken as an essential tool to investigate the pathogenesis of HCC. However, a comprehensive understanding of the protein expression profile of this model is little. In this study, we performed proteomic analysis of this model to elucidate its proteomic characteristics. Compared with normal liver tissues, 432 differentially expressed proteins (DEPs) were identified in tumor tissues, among which 365 were up-regulated and 67 were down-regulated. Through Gene Ontology (GO) analysis, Ingenuity Pathway Analysis (IPA), protein-protein interaction networks (PPI) analysis and Gene-set enrichment analysis (GSEA) analysis of DEPs, we identified two distinguishing features of DEN and CCl4-induced HCC mouse model in protein expression, the upregulation of actin cytoskeleton and branched-chain amino acids metabolic reprogramming. In addition, matching DEPs from the mouse model to homologous proteins in the human HCC cohort revealed that the DEN and CCl4-induced HCC mouse model was relatively similar to the subtype of HCC with poor prognosis. Finally, combining clinical information from the HCC cohort, we screened seven proteins with prognostic significance, SMAD2, PTPN1, PCNA, MTHFD1L, MBOAT7, FABP5, and AGRN. Overall, we provided proteomic data of the DEN and CCl4-induced HCC mouse model and highlighted the important proteins and pathways in it, contributing to the rational application of this model in HCC research.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas Experimentales , Neoplasias Hepáticas , Ratones , Animales , Humanos , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteómica , Neoplasias Hepáticas Experimentales/inducido químicamente , Neoplasias Hepáticas Experimentales/genética , Neoplasias Hepáticas Experimentales/metabolismo , Dietilnitrosamina/efectos adversos , Cirrosis Hepática/patología , Modelos Animales de Enfermedad , Proteínas de Unión a Ácidos Grasos
18.
Int J Med Sci ; 21(5): 862-873, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38617005

RESUMEN

Background: Direct liver invasion (DI) is a predominant pathway of gallbladder cancer (GBC) metastasis, but the molecular alterations associated with DI remain addressed. This study identified specific genes correlated with DI, which may offer a potential biomarker for the diagnosis and prognosis of advanced GBC. Methods: RNA samples from 3 patients with DI of GBC were used for RNA-seq analysis. Differentially expressed genes and metabolic pathways between primary tumor (T) and DI tissue was used to analyze aberrant gene expressions. Immunohistochemistry (IHC) of fatty acid binding protein 1 (FABP1) in 62 patients with DI was engaged to evaluate its association with clinicopathological characteristics and prognosis. IHC of CD3+ and CD8+ T cells was analyzed for their correlation with FABP1 expression, clinicopathological features and prognosis. Univariate and multivariate Cox hazards regression analyses were performed to identify independent prognostic factors for disease-free survival (DFS) and overall survival (OS). Results: FABP1 mRNA levels were significantly upregulated in DI region compared to T tissue. IHC results showed identical results with elevated FABP1 (p < 0.0001). Expression of FABP1 in DI region was significantly associated with lymph node metastasis (P = 0.028), reduced DFS (P = 0.013) and OS (P = 0.022); in contrast, its expression in T region was not associated with clinicopathological characteristics and prognosis (P > 0.05). The density of CD8+ T cells in DI region with higher FABP1 expression was significantly lower than that with lower FABP1 expression (p = 0.0084). Multivariate analysis unveiled those hepatic metastatic nodules (HR = 3.35, 95%CI: 1.37-8.15, P = 0.008) and FABP1 expression in DI region (HR = 2.01, 95%CI: 1.05-3.88, P = 0.036) were high risk factors for OS, and FABP1(HR = 2.05, 95%CI: 1.04-4.06, P = 0.039) was also a high risk factor for DFS. Conclusions: Elevated expression of FABP1 in DI region serves as a potential prognostic biomarker for advanced GBC with DI.


Asunto(s)
Carcinoma in Situ , Carcinoma , Neoplasias de la Vesícula Biliar , Humanos , Linfocitos T CD8-positivos , Proteínas de Unión a Ácidos Grasos/genética , Neoplasias de la Vesícula Biliar/genética , Hígado , Pronóstico
19.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1295-1309, 2024 Mar.
Artículo en Chino | MEDLINE | ID: mdl-38621977

RESUMEN

The aim of this study was to explore the mechanism of icaritin-induced ferroptosis in hepatoma HepG2 cells. By bioinformatics screening, the target of icariin's intervention in liver cancer ferroptosis was selected, the protein-protein interaction(PPI) network was constructed, the related pathways were focused, the binding ability of icariin and target protein was evaluated by molecular docking, and the impact on patients' survival prognosis was predicted and the clinical prediction model was built. CCK-8, EdU, and clonal formation assays were used to detect cell viability and cell proliferation; colorimetric method and BODIPY 581/591 C1 fluorescent probe were used to detect the levels of Fe~(2+), MDA and GSH in cells, and the ability of icariin to induce HCC cell ferroptosis was evaluated; RT-qPCR and Western blot detection were used to verify the mRNA and protein levels of GPX4, xCT, PPARG, and FABP4 to determine the expression changes of these ferroptosis-related genes in response to icariin. Six intervention targets(AR, AURKA, PPARG, AKR1C3, ALB, NQO1) identified through bioinformatic analysis were used to establish a risk scoring system that aids in estimating the survival prognosis of HCC patients. In conjunction with patient age and TNM staging, a comprehensive Nomogram clinical prediction model was developed to forecast the 1-, 3-, and 5-year survival of HCC patients. Experimental results revealed that icariin effectively inhibited the activity and proliferation of HCC cells HepG2, significantly modulating levels of Fe~(2+), MDA, and lipid peroxidation ROS while reducing GSH levels, hence revealing its potential to induce ferroptosis in HCC cells. Icariin was found to diminish the expression of GPX4 and xCT(P<0.01), inducing ferroptosis in HCC cells, potentially in relation to inhibition of PPARG and FABP4(P<0.01). In summary, icariin induces ferroptosis in HCC cells via the PPARG/FABP4/GPX4 pathway, providing an experimental foundation for utilizing the traditional Chinese medicine icariin in the prevention or treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Flavonoides , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , PPAR gamma , Células Hep G2 , Modelos Estadísticos , Simulación del Acoplamiento Molecular , Pronóstico , Proteínas de Unión a Ácidos Grasos
20.
Eur J Med Chem ; 270: 116358, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38574638

RESUMEN

The fatty acid-binding protein 1 (FABP1) is a fatty acid transporter protein that is considered as an emerging target for metabolic diseases. Despite forceful evidence that the inhibition of FABP1 is essential for ameliorating NASH, pharmacological control and validation of FABP1 are hindered by a lack of relevant inhibitors as pharmacological tool. Therefore, the development of effective FABP1 inhibitors is a current focus of research. Herein, we firstly reported the comprehensive structure-activity relationship (SAR) study of novel FABP1 inhibitors derived from high throughput screening of our in-house library, which resulting in the identification of the optimal compound 44 (IC50 = 4.46 ± 0.54 µM). Molecular docking studies revealed that 44 forms stable hydrogen bonds with amino acids around the active pocket of FABP1. Moreover, 44 alleviated the typical histological features of fatty liver in NASH mice, including steatosis, lobular inflammation, ballooning and fibrosis. Additionally, 44 has been demonstrated to have lipid metabolism regulating, anti-oxidative stress and hepatoprotective properties. This study might be provided a promising insight into the field of NASH and inspiration for the development of FABP1 inhibitors.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Metabolismo de los Lípidos , Fibrosis , Proteínas de Unión a Ácidos Grasos/metabolismo , Hígado/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA