Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
J Nutr Biochem ; 114: 109258, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36587874

RESUMEN

Emerging evidence supports the beneficial effect of quercetin on liver mitochondrial disorders. However, the molecular mechanism by which quercetin protects mitochondria is limited, especially in alcoholic liver disease. In this study, C57BL/6N mice were fed with Lieber De Carli liquid diet (28% ethanol-derived calories) for 12 weeks plus a single binge ethanol and intervened with quercetin (100 mg/kg.bw). Moreover, HepG2CYP2E1+/+ were stimulated with ethanol (100 mM) and quercetin (50 µM) to investigate the effects of mitochondrial protein frataxin. The results indicated that quercetin alleviated alcohol-induced histopathological changes and mitochondrial functional disorders in mice livers. Consistent with increased PINK1, Parkin, Bnip3 and LC3II as well as decreased p62, TOM20 and VDAC1 expression, the inhibition of mitophagy by ethanol was blocked by quercetin. Additionally, quercetin improved the imbalance of iron metabolism-related proteins expression in alcohol-fed mice livers. Compared with ethanol-treated Lv-empty HepG2CYP2E1+/+ cells, frataxin deficiency further exacerbated the inhibition of mitochondrial function. Conversely, restoration of frataxin expression ameliorated the effect of ethanol. Furthermore, frataxin deficiency reduced the protective effects of quercetin on mitochondria disordered by ethanol. Attentively, ferric ammonium citrate (FAC) and deferiprone decreased or increased frataxin expression in HepG2CYP2E1+/+, respectively. Notably, we further found FAC reversed the increasing effect of quercetin on frataxin expression. Ultimately, silencing NCOA4 attenuated the inhibition of quercetin on LDH release and mitochondrial membrane potential increase, and similar results were observed by adding FAC. Collectively, these findings demonstrated quercetin increased frataxin expression through regulating iron level, thereby mitigating ethanol-induced mitochondrial dysfunction.


Asunto(s)
Hierro , Hepatopatías Alcohólicas , Hígado , Mitocondrias Hepáticas , Quercetina , Animales , Ratones , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Etanol/toxicidad , Hierro/metabolismo , Hígado/metabolismo , Ratones Endogámicos C57BL , Quercetina/farmacología , Quercetina/metabolismo , Mitocondrias Hepáticas/efectos de los fármacos , Mitocondrias Hepáticas/metabolismo , Hepatopatías Alcohólicas/metabolismo , Proteínas de Unión a Hierro/biosíntesis , Proteínas de Unión a Hierro/metabolismo , Frataxina
2.
Int J Mol Sci ; 22(4)2021 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-33670433

RESUMEN

Friedreich's ataxia is an autosomal recessive neurogenetic disease that is mainly associated with atrophy of the spinal cord and progressive neurodegeneration in the cerebellum. The disease is caused by a GAA-expansion in the first intron of the frataxin gene leading to a decreased level of frataxin protein, which results in mitochondrial dysfunction. Currently, there is no effective treatment to delay neurodegeneration in Friedreich's ataxia. A plausible therapeutic approach is gene therapy. Indeed, Friedreich's ataxia mouse models have been treated with viral vectors en-coding for either FXN or neurotrophins, such as brain-derived neurotrophic factor showing promising results. Thus, gene therapy is increasingly consolidating as one of the most promising therapies. However, several hurdles have to be overcome, including immunotoxicity and pheno-toxicity. We review the state of the art of gene therapy in Friedreich's ataxia, addressing the main challenges and the most feasible solutions for them.


Asunto(s)
Ataxia de Friedreich , Terapia Genética , Proteínas de Unión a Hierro , Animales , Modelos Animales de Enfermedad , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Ataxia de Friedreich/terapia , Humanos , Proteínas de Unión a Hierro/biosíntesis , Proteínas de Unión a Hierro/genética , Ratones , Frataxina
3.
Mol Cell Biol ; 40(23)2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-32989015

RESUMEN

Fanconi anemia (FA) is a unique DNA damage repair pathway. To date, 22 genes have been identified that are associated with the FA pathway. A defect in any of those genes causes genomic instability, and the patients bearing the mutation become susceptible to cancer. In our earlier work, we identified that Fanconi anemia protein G (FANCG) protects the mitochondria from oxidative stress. In this report, we have identified eight patients having a mutation (C.65G>C), which converts arginine at position 22 to proline (p.Arg22Pro) in the N terminus of FANCG. The mutant protein, hFANCGR22P, is able to repair the DNA and able to retain the monoubiquitination of FANCD2 in the FANCGR22P/FGR22P cell. However, it lost mitochondrial localization and failed to protect mitochondria from oxidative stress. Mitochondrial instability in the FANCGR22P cell causes the transcriptional downregulation of mitochondrial iron-sulfur cluster biogenesis protein frataxin (FXN) and the resulting iron deficiency of FA protein FANCJ, an iron-sulfur-containing helicase involved in DNA repair.


Asunto(s)
Proteína del Grupo de Complementación G de la Anemia de Fanconi/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Inestabilidad Genómica/genética , Proteínas de Unión a Hierro/biosíntesis , Mitocondrias/patología , ARN Helicasas/genética , Secuencia de Aminoácidos/genética , Línea Celular Tumoral , Daño del ADN/genética , Reparación del ADN/genética , Regulación hacia Abajo/genética , Anemia de Fanconi/genética , Anemia de Fanconi/patología , Células HEK293 , Células HeLa , Humanos , Proteínas de Unión a Hierro/genética , Proteínas Hierro-Azufre/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/genética , Frataxina
4.
Sci Rep ; 8(1): 17217, 2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-30464193

RESUMEN

Friedreich ataxia (FRDA) is a multisystem genetic disorder caused by GAA repeat expansion mutations within the FXN gene, resulting in heterochromatin formation and deficiency of frataxin protein. Elevated levels of the FXN antisense transcript (FAST-1) have previously been detected in FRDA. To investigate the effects of FAST-1 on the FXN gene expression, we first stably overexpressed FAST-1 in non-FRDA cell lines and then we knocked down FAST-1 in FRDA fibroblast cells. We observed decreased FXN expression in each FAST-1 overexpressing cell type compared to control cells. We also found that FAST-1 overexpression is associated with both CCCTC-Binding Factor (CTCF) depletion and heterochromatin formation at the 5'UTR of the FXN gene. We further showed that knocking down FAST-1 in FRDA fibroblast cells significantly increased FXN expression. Our results indicate that FAST-1 can act in trans in a similar manner to the cis-acting FAST-1 overexpression that has previously been identified in FRDA fibroblasts. The effects of stably transfected FAST-1 expression on CTCF occupancy and heterochromatin formation at the FXN locus suggest a direct role for FAST-1 in the FRDA molecular disease mechanism. Our findings also support the hypothesis that inhibition of FAST-1 may be a potential approach for FRDA therapy.


Asunto(s)
Ataxia de Friedreich/fisiopatología , Regulación de la Expresión Génica , Proteínas de Unión a Hierro/biosíntesis , ARN sin Sentido/metabolismo , Células Cultivadas , Humanos , Proteínas de Unión a Hierro/genética , ARN sin Sentido/genética , Frataxina
5.
Protein Expr Purif ; 149: 7-12, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29655787

RESUMEN

The human thyroid peroxidase (hTPO) is an essential enzyme for thyroid hormone biosynthesis and is expressed in thyroid cells. It is an autoantigen against which antibodies are found in the sera of patients with a number of autoimmune thyroid disorders. Overexpression of hTPO has been achieved using the baculovirus expression vector system (BEVS). However, it is produced largely in an aggregated form in the cell lysate fraction, which increases the complexity of protein extraction. In this study, to achieve improved secretory expression of hTPO via BEVS, a truncated recombinant hTPO protein (hTPOt) was engineered by replacing its original signal peptide (SP) in the N-terminal with five heterologous SPs. Our data showed that the SP from the peptidyl-glycine alpha-amidating monooxygenase (PAM), referred to as SPPAM, significantly promoted the secretion of SPPAM-fused hTPOt (p-hTPOt) in High Five cells. Subsequently, we established an optimized scale-up production procedure for p-hTPOt in a 5-L wave-type bioreactor. The secretory p-hTPOt was purified by immobilized metal-chelating affinity chromatography and ion-exchange chromatography, achieving a protein purity of >95%. Finally, the purified p-hTPOt showed high sensitivity and specificity in reactions with positive or negative human serum samples via the double-antigen sandwich method, suggesting potential applications in hTPO-based research and product development.


Asunto(s)
Autoantígenos/biosíntesis , Reactores Biológicos , Yoduro Peroxidasa/biosíntesis , Proteínas de Unión a Hierro/biosíntesis , Animales , Autoantígenos/genética , Baculoviridae/metabolismo , Cromatografía de Afinidad , Cromatografía por Intercambio Iónico , Escherichia coli , Expresión Génica , Humanos , Yoduro Peroxidasa/genética , Proteínas de Unión a Hierro/genética , Oxigenasas de Función Mixta/química , Complejos Multienzimáticos/química , Señales de Clasificación de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Células Sf9/metabolismo , Transducción de Señal
6.
Sci Rep ; 8(1): 5118, 2018 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-29572489

RESUMEN

Iron is essential for growth and proliferation of mammalian cells. The maintenance of cellular iron homeostasis is regulated by iron regulatory proteins (IRPs) through binding to the cognate iron-responsive elements in target mRNAs and thereby regulating the expression of target genes. Irp1 or Irp2-null mutation is known to reduce the cellular iron level by decreasing transferrin receptor 1 and increasing ferritin. Here, we report that Irp1 or Irp2-null mutation also causes downregulation of frataxin and IscU, two of the core components in the iron-sulfur cluster biogenesis machinery. Interestingly, while the activities of some of iron-sulfur cluster-containing enzymes including mitochondrial aconitase and cytosolic xanthine oxidase were not affected by the mutations, the activities of respiratory chain complexes were drastically diminished resulting in mitochondrial dysfunction. Overexpression of human ISCU and frataxin in Irp1 or Irp2-null cells was able to rescue the defects in iron-sulfur cluster biogenesis and mitochondrial quality. Our results strongly suggest that iron regulatory proteins regulate the part of iron sulfur cluster biogenesis tailored specifically for mitochondrial electron transport chain complexes.


Asunto(s)
Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Embrión de Mamíferos/metabolismo , Fibroblastos/metabolismo , Proteína 1 Reguladora de Hierro/deficiencia , Proteína 2 Reguladora de Hierro/deficiencia , Proteínas de Unión a Hierro/biosíntesis , Animales , Embrión de Mamíferos/patología , Ferritinas/metabolismo , Fibroblastos/patología , Humanos , Ratones , Ratones Noqueados , Mitocondrias/patología , Mutación , Frataxina
7.
Elife ; 62017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29257745

RESUMEN

Friedreich's ataxia (FRDA), the most common inherited ataxia, is caused by recessive mutations that reduce the levels of frataxin (FXN), a mitochondrial iron binding protein. We developed an inducible mouse model of Fxn deficiency that enabled us to control the onset and progression of disease phenotypes by the modulation of Fxn levels. Systemic knockdown of Fxn in adult mice led to multiple phenotypes paralleling those observed in human patients across multiple organ systems. By reversing knockdown after clinical features appear, we were able to determine to what extent observed phenotypes represent reversible cellular dysfunction. Remarkably, upon restoration of near wild-type FXN levels, we observed significant recovery of function, associated pathology and transcriptomic dysregulation even after substantial motor dysfunction and pathology were observed. This model will be of broad utility in therapeutic development and in refining our understanding of the relative contribution of reversible cellular dysfunction at different stages in disease.


Asunto(s)
Modelos Animales de Enfermedad , Ataxia de Friedreich/patología , Regulación de la Expresión Génica , Proteínas de Unión a Hierro/biosíntesis , Fenotipo , Animales , Técnicas de Silenciamiento del Gen , Humanos , Proteínas de Unión a Hierro/genética , Ratones , Frataxina
8.
J Biol Chem ; 292(31): 12744-12753, 2017 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-28615439

RESUMEN

Fe-S cofactors are composed of iron and inorganic sulfur in various stoichiometries. A complex assembly pathway conducts their initial synthesis and subsequent binding to recipient proteins. In this minireview, we discuss how discovery of the role of the mammalian cytosolic aconitase, known as iron regulatory protein 1 (IRP1), led to the characterization of the function of its Fe-S cluster in sensing and regulating cellular iron homeostasis. Moreover, we present an overview of recent studies that have provided insights into the mechanism of Fe-S cluster transfer to recipient Fe-S proteins.


Asunto(s)
Homeostasis , Proteína 1 Reguladora de Hierro/fisiología , Hierro/fisiología , Modelos Moleculares , Animales , Apoenzimas/química , Apoenzimas/metabolismo , Liasas de Carbono-Azufre/biosíntesis , Liasas de Carbono-Azufre/química , Liasas de Carbono-Azufre/fisiología , Transporte de Electrón , Regulación Enzimológica de la Expresión Génica , Proteínas HSP70 de Choque Térmico/biosíntesis , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/fisiología , Humanos , Proteína 1 Reguladora de Hierro/biosíntesis , Proteína 1 Reguladora de Hierro/química , Proteínas de Unión a Hierro/biosíntesis , Proteínas de Unión a Hierro/química , Proteínas de Unión a Hierro/fisiología , Proteínas Reguladoras del Hierro/biosíntesis , Proteínas Reguladoras del Hierro/química , Proteínas Reguladoras del Hierro/fisiología , Proteínas Hierro-Azufre/biosíntesis , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/fisiología , Proteínas Mitocondriales/biosíntesis , Proteínas Mitocondriales/química , Proteínas Mitocondriales/fisiología , Chaperonas Moleculares/biosíntesis , Chaperonas Moleculares/química , Chaperonas Moleculares/fisiología , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Elementos de Respuesta , Succinato Deshidrogenasa/biosíntesis , Succinato Deshidrogenasa/química , Succinato Deshidrogenasa/fisiología , Frataxina
9.
Biochimie ; 140: 34-47, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28630009

RESUMEN

Frataxin is a ubiquitous protein that plays a role in Fe-S cluster biosynthesis and iron and heme metabolism, although its molecular functions are not entirely clear. In non-photosynthetic eukaryotes, frataxin is encoded by a single gene, and the protein localizes to mitochondria. Here we report the presence of two functional frataxin isoforms in Zea mays, ZmFH-1 and ZmFH-2. We confirmed our previous findings regarding plant frataxins: both proteins have dual localization in mitochondria and chloroplasts. Physiological, biochemical and biophysical studies show some differences in the expression pattern, protection against oxidants and in the aggregation state of both isoforms, suggesting that the two frataxin homologs would play similar but not identical roles in plant cell metabolism. In addition, two specific features of plant frataxins were evidenced: their ability to form dimers and their tendency to undergo conformational change under oxygen exposure.


Asunto(s)
Proteínas de Cloroplastos , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Unión a Hierro , Mitocondrias , Proteínas Mitocondriales , Plastidios , Zea mays , Proteínas de Cloroplastos/biosíntesis , Proteínas de Cloroplastos/genética , Proteínas de Unión a Hierro/biosíntesis , Proteínas de Unión a Hierro/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/biosíntesis , Proteínas Mitocondriales/genética , Plastidios/genética , Plastidios/metabolismo , Isoformas de Proteínas , Zea mays/genética , Zea mays/metabolismo , Frataxina
10.
Invest Ophthalmol Vis Sci ; 57(10): 4115-24, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27537261

RESUMEN

PURPOSE: The mitochondrial protein frataxin (FXN) is highly expressed in metabolically active tissues and has been shown to improve cell survival in response to oxidative stress after ischemia. Retinal ischemia/hypoxia is a complication of ocular diseases such as diabetic retinopathy and glaucoma. There are no effective therapeutic approaches currently available. This study was performed to evaluate the neuroprotective effects of FXN after acute retinal ischemia/reperfusion in vivo. METHODS: Retinal ischemia/reperfusion was induced in adult wild-type and FXN-overexpressing mice by transient elevation of intraocular pressure (IOP) for 45 minutes. Expression of FXN was evaluated by quantitative (q)RT-PCR and Western blot analysis between 6 and 48 hours after ischemia. Retinal ganglion cell (RGC) survival was determined with immunofluorescent staining and fluorescence microscopy 14 days after lesion. Expression of hypoxia-inducible factors Hif-1α and Hif-2α and of oxidative stress markers heme oxygenase-1 (Hmox1), glutathione peroxidase 1 (Gpx1), superoxidase dismutase 1 and 2 (Sod1, Sod2), and catalase was evaluated by qRT-PCR. RESULTS: Endogenous FXN levels were upregulated for up to 24 hours after retinal ischemia in vivo. Retinal ganglion cell survival was significantly improved in FXN-overexpressing mice 14 days after ischemia. Expression of antioxidative enzymes Gpx1, Sod2, and catalase was significantly increased in FXN-overexpressing mice after lesion. CONCLUSIONS: Retinal FXN levels are increased in response to ischemia. Furthermore, elevated FXN levels had a clear neuroprotective effect as shown by increased ganglion cell survival after acute retinal ischemia/reperfusion. Frataxin's neuroprotective effect was associated with an upregulation of antioxidative enzymes. The data suggest that FXN induces neuroprotection by decreasing oxidative stress.


Asunto(s)
Regulación de la Expresión Génica , Proteínas de Unión a Hierro/genética , ARN Mensajero/genética , Daño por Reperfusión/metabolismo , Enfermedades de la Retina/metabolismo , Células Ganglionares de la Retina/metabolismo , Enfermedad Aguda , Animales , Western Blotting , Supervivencia Celular , Modelos Animales de Enfermedad , Proteínas de Unión a Hierro/biosíntesis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Estrés Oxidativo , Reacción en Cadena de la Polimerasa , Daño por Reperfusión/patología , Daño por Reperfusión/prevención & control , Enfermedades de la Retina/patología , Enfermedades de la Retina/prevención & control , Células Ganglionares de la Retina/patología , Frataxina
11.
Oncotarget ; 7(29): 45776-45788, 2016 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-27329729

RESUMEN

The search for preoperative biomarkers for thyroid malignancies, in particular for follicular thyroid carcinoma (FTC) diagnostics, is of utmost clinical importance. We thus aimed at screening for potential biomarker candidates for FTC. To evaluate dynamic alterations in molecular patterns as a function of thyroid malignancy progression, a comparative analysis was conducted in clinically distinct subgroups of FTC and poorly differentiated thyroid carcinoma (PDTC) nodules. NanoString analysis of FFPE samples was performed in 22 follicular adenomas, 56 FTC and 25 PDTC nodules, including oncocytic and non-oncocytic subgroups. The expression levels of CHEK1, c-KIT, SLC26A4, TG and TPO were significantly altered in all types of thyroid carcinomas. Based on collective changes of these biomarkers which correlating among each other, a predictive score has been established, allowing for discrimination between benign and FTC samples with high sensitivity and specificity. Additional transcripts related to thyroid function, cell cycle, circadian clock, and apoptosis regulation were altered in the more aggressive oncocytic subgroups only, with expression levels correlating with disease progression. Distinct molecular patterns were observed for oncocytic and non-oncocytic FTCs and PDTCs. A predictive score correlation coefficient based on collective alterations of identified here biomarkers might help to improve the preoperative diagnosis of FTC nodules.


Asunto(s)
Adenocarcinoma Folicular/metabolismo , Biomarcadores de Tumor/análisis , Neoplasias de la Tiroides/metabolismo , Transcriptoma , Autoantígenos/análisis , Autoantígenos/biosíntesis , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/análisis , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/biosíntesis , Perfilación de la Expresión Génica , Humanos , Yoduro Peroxidasa/análisis , Yoduro Peroxidasa/biosíntesis , Proteínas de Unión a Hierro/análisis , Proteínas de Unión a Hierro/biosíntesis , Proteínas de Transporte de Membrana/análisis , Proteínas de Transporte de Membrana/biosíntesis , Proteínas de Microfilamentos/análisis , Proteínas de Microfilamentos/biosíntesis , Proteínas Musculares/análisis , Proteínas Musculares/biosíntesis , Proteínas Proto-Oncogénicas c-kit/análisis , Proteínas Proto-Oncogénicas c-kit/biosíntesis , Transportadores de Sulfato
12.
Int J Cardiol ; 203: 964-71, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26625322

RESUMEN

BACKGROUND: Friedreich's ataxia (FRDA), a recessive neurodegenerative disorder commonly associated with hypertrophic cardiomyopathy, is caused by silencing of the frataxin (FXN) gene encoding the mitochondrial protein involved in iron-sulfur cluster biosynthesis. METHODS: Application of our previously established FRDA human induced pluripotent stem cell (hiPSC) derived cardiomyocytes model as a platform to assess the efficacy of treatment with either the antioxidant coenzyme Q10 analog, idebenone (IDE) or the iron chelator, deferiprone (DFP), which are both under clinical trial. RESULTS: DFP was able to more significantly suppress synthesis of reactive oxygen species (ROS) than IDE at the dosages of 25 µM and 10nM respectively which agreed with the reduced rate of intracellular accumulation of iron by DFP treatment from 25 to 50 µM. With regard to cardiac electrical-contraction (EC) coupling function, decay velocity of calcium handling kinetics in FRDA-hiPSC-cardiomyocytes was significantly improved by DFP treatment but not by IDE. Further mechanistic studies revealed that DFP also modulated iron induced mitochondrial stress as reflected by mitochondria network disorganization and decline level of respiratory chain protein, succinate dehydrogenase (CxII) and cytochrome c oxidase (COXIV). In addition, iron-response protein (IRP-1) regulatory loop was overridden by DFP as reflected by resumed level of ferritin (FTH) back to basal level and the attenuated transferrin receptor (TSFR) mRNA level suppression thereby reducing further iron uptake. CONCLUSIONS: DFP modulated iron homeostasis in FRDA-hiPSC-cardiomyocytes and effectively relieved stress-stimulation related to cardiomyopathy. The resuming of redox condition led to the significantly improved cardiac prime events, cardiac electrical-coupling during contraction.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Ataxia de Friedreich/terapia , Células Madre Pluripotentes Inducidas , Hierro/metabolismo , Miocitos Cardíacos/metabolismo , Piridonas/farmacología , Ubiquinona/análogos & derivados , Antioxidantes/farmacología , Deferiprona , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Regulación de la Expresión Génica , Homeostasis , Humanos , Quelantes del Hierro/farmacología , Proteínas de Unión a Hierro/biosíntesis , Proteínas de Unión a Hierro/genética , Miocitos Cardíacos/patología , Estrés Oxidativo , ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ubiquinona/farmacología , Frataxina
13.
J Biol Chem ; 290(30): 18584-95, 2015 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-26063801

RESUMEN

Cadmium is a well known mutagenic metal that can enter cells via nonspecific metal transporters, causing several cellular damages and eventually leading to death. In the yeast Saccharomyces cerevisiae, the transcription factor Yap1 plays a key role in the regulation of several genes involved in metal stress response. We have previously shown that Yap1 represses the expression of FET4, a gene encoding a low affinity iron transporter able to transport metals other than iron. Here, we have studied the relevance of this repression in cell tolerance to cadmium. Our results indicate that genomic deletion of Yap1 increases FET4 transcript and protein levels. In addition, the cadmium toxicity exhibited by this strain is completely reversed by co-deletion of FET4 gene. These data correlate well with the increased intracellular levels of cadmium observed in the mutant yap1. Rox1, a well known aerobic repressor of hypoxic genes, conveys the Yap1-mediated repression of FET4. We further show that, in a scenario where the activity of Yap1 or Rox1 is compromised, cells activate post-transcriptional mechanisms, involving the exoribonuclease Xrn1, to compensate the derepression of FET4. Our data thus reveal a novel protection mechanism against cadmium toxicity mediated by Yap1 that relies on the aerobic repression of FET4 and results in the impairment of cadmium uptake.


Asunto(s)
Cadmio/metabolismo , Proteínas de Transporte de Catión/biosíntesis , Proteínas de Unión a Hierro/biosíntesis , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/metabolismo , Transporte Biológico/genética , Cadmio/toxicidad , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Proteínas Transportadoras de Cobre , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Exorribonucleasas/metabolismo , Regulación Fúngica de la Expresión Génica , Hierro/metabolismo , Proteínas de Unión a Hierro/genética , Proteínas de Unión a Hierro/metabolismo , Mutación , Proteínas Represoras/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
14.
Hum Mol Genet ; 24(15): 4296-305, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25948553

RESUMEN

Defective expression of frataxin is responsible for the inherited, progressive degenerative disease Friedreich's Ataxia (FRDA). There is currently no effective approved treatment for FRDA and patients die prematurely. Defective frataxin expression causes critical metabolic changes, including redox imbalance and ATP deficiency. As these alterations are known to regulate the tyrosine kinase Src, we investigated whether Src might in turn affect frataxin expression. We found that frataxin can be phosphorylated by Src. Phosphorylation occurs primarily on Y118 and promotes frataxin ubiquitination, a signal for degradation. Accordingly, Src inhibitors induce accumulation of frataxin but are ineffective on a non-phosphorylatable frataxin-Y118F mutant. Importantly, all the Src inhibitors tested, some of them already in the clinic, increase frataxin expression and rescue the aconitase defect in frataxin-deficient cells derived from FRDA patients. Thus, Src inhibitors emerge as a new class of drugs able to promote frataxin accumulation, suggesting their possible use as therapeutics in FRDA.


Asunto(s)
Ataxia de Friedreich/genética , Proteínas de Unión a Hierro/biosíntesis , Familia-src Quinasas/genética , Adenosina Trifosfato/deficiencia , Adenosina Trifosfato/genética , Inhibidores Enzimáticos/farmacología , Ataxia de Friedreich/tratamiento farmacológico , Ataxia de Friedreich/patología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Proteínas de Unión a Hierro/genética , Oxidación-Reducción , Ubiquitinación/genética , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/metabolismo , Frataxina
15.
Exp Cell Res ; 335(1): 51-61, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25929520

RESUMEN

It is generally accepted that Friedreich's ataxia (FRDA) is caused by a deficiency in frataxin expression, a mitochondrial protein involved in iron homeostasis, which mainly affects the brain, dorsal root ganglia of the spinal cord, heart and in certain cases the pancreas. However, there is little knowledge as to other possible genes that may be affected in this disorder, and which can contribute to its complexity. In the current study we compared human periodontal ligament cells gene expression of healthy individuals and FRDA patients. The expression of active-caspase 3, as well as other apoptosis-related genes, was increased in the FRDA cells. Furthermore, iron-sulphur cluster genes, as well as oxidative stress-related genes were overexpressed in FRDA. Moreover, brain-derived neurotrophic factor, neuregulin 1 and miR-132 were all upregulated. These three genes are capable of regulating the expression of each other. Interestingly, when the cells from FRDA patients were co-cultured in the presence of idebenone and deferiprone, caspase expression decreased while antioxidant gene expression, as well as frataxin expression, increased. Regarding epigenetic mechanisms, the frataxin gene was hypermethylated, compared to the healthy counterparts, in the upstream GAA repetitive region. Of the three DNA methyltransferases, DNMT1 but not DNMT3׳s gene expression was higher in FRDA cells. In conclusion, our data show that FRDA cells present altered expression of genes related to cell cycle, oxidative stress and iron homeostasis which may be implicated in the increased apoptotic levels. Also, the altered expression is in a certain degree normalized in the presence of idebenone and deferiprone.


Asunto(s)
Caspasa 3/biosíntesis , Ataxia de Friedreich/genética , Proteínas de Unión a Hierro/biosíntesis , MicroARNs/biosíntesis , Estrés Oxidativo/genética , Antioxidantes/farmacología , Apoptosis/genética , Azacitidina/análogos & derivados , Azacitidina/farmacología , Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Células Cultivadas , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/biosíntesis , Metilación de ADN , Decitabina , Deferiprona , Epigénesis Genética , Perfilación de la Expresión Génica , Humanos , Quelantes del Hierro/farmacología , Neurregulina-1/biosíntesis , Ligamento Periodontal/citología , Piridonas/farmacología , Superóxido Dismutasa/genética , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Frataxina
16.
Transcription ; 6(2): 33-6, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25831023

RESUMEN

Reduced expression of the mitochondrial protein Frataxin (FXN) is the underlying cause of Friedreich's ataxia. We propose a model of premature termination of FXN transcription induced by pathogenic expanded GAA repeats that links R-loop structures, antisense transcription, and heterochromatin formation as a novel mechanism of transcriptional repression in Friedreich's ataxia.


Asunto(s)
Ataxia de Friedreich/genética , Proteínas de Unión a Hierro/biosíntesis , Terminación de la Transcripción Genética , Expansión de Repetición de Trinucleótido/genética , Ataxia de Friedreich/patología , Regulación de la Expresión Génica , Heterocromatina/genética , Humanos , Proteínas de Unión a Hierro/genética , Mitocondrias/genética , Frataxina
17.
Biochim Biophys Acta ; 1840(10): 3022-33, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24997422

RESUMEN

BACKGROUND: The neurodegenerative disease Friedreich's ataxia is the result of frataxin deficiency. Frataxin is a mitochondrial protein involved in iron-sulfur cluster (Fe-S) cofactor biogenesis, but its functional role in this pathway is debated. This is due to the interconnectivity of iron metabolic and oxidative stress response pathways that make distinguishing primary effects of frataxin deficiency challenging. Since Fe-S cluster assembly is conserved, frataxin overexpression phenotypes in a simple eukaryotic organism will provide additional insight into frataxin function. METHODS: The Schizosaccharomyces pombe frataxin homologue (fxn1) was overexpressed from a plasmid under a thiamine repressible promoter. The S. pombe transformants were characterized at several expression strengths for cellular growth, mitochondrial organization, iron levels, oxidative stress, and activities of Fe-S cluster containing enzymes. RESULTS: Observed phenotypes were dependent on the amount of Fxn1 overexpression. High Fxn1 overexpression severely inhibited S. pombe growth, impaired mitochondrial membrane integrity and cellular respiration, and led to Fxn1 aggregation. Cellular iron accumulation was observed at moderate Fxn1 overexpression but was most pronounced at high levels of Fxn1. All levels of Fxn1 overexpression up-regulated oxidative stress defense and mitochondrial Fe-S cluster containing enzyme activities. CONCLUSIONS: Despite the presence of oxidative stress and accumulated iron, activation of Fe-S cluster enzymes was common to all levels of Fxn1 overexpression; therefore, Fxn1 may regulate the efficiency of Fe-S cluster biogenesis in S. pombe. GENERAL SIGNIFICANCE: We provide evidence that suggests that dysregulated Fe-S cluster biogenesis is a primary effect of both frataxin overexpression and deficiency as in Friedreich's ataxia.


Asunto(s)
Ataxia de Friedreich/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Unión a Hierro/biosíntesis , Hierro/metabolismo , Membranas Mitocondriales/metabolismo , Schizosaccharomyces/metabolismo , Ataxia de Friedreich/genética , Proteínas Fúngicas/genética , Proteínas de Unión a Hierro/genética , Estrés Oxidativo/genética , Schizosaccharomyces/genética , Homología de Secuencia de Aminoácido , Regulación hacia Arriba , Frataxina
18.
Lancet ; 384(9942): 504-13, 2014 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-24794816

RESUMEN

BACKGROUND: Friedreich's ataxia is a progressive degenerative disorder caused by deficiency of the frataxin protein. Expanded GAA repeats within intron 1 of the frataxin (FXN) gene lead to its heterochromatinisation and transcriptional silencing. Preclinical studies have shown that the histone deacetylase inhibitor nicotinamide (vitamin B3) can remodel the pathological heterochromatin and upregulate expression of FXN. We aimed to assess the epigenetic and neurological effects and safety of high-dose nicotinamide in patients with Friedreich's ataxia. METHODS: In this exploratory, open-label, dose-escalation study in the UK, male and female patients (aged 18 years or older) with Friedreich's ataxia were given single doses (phase 1) and repeated daily doses of 2-8 g oral nicotinamide for 5 days (phase 2) and 8 weeks (phase 3). Doses were gradually escalated during phases 1 and 2, with individual maximum tolerated doses used in phase 3. The primary outcome was the upregulation of frataxin expression. We also assessed the safety and tolerability of nicotinamide, used chromatin immunoprecipitation to investigate changes in chromatin structure at the FXN gene locus, and assessed the effect of nicotinamide treatment on clinical scales for ataxia. This study is registered with ClinicalTrials.gov, number NCT01589809. FINDINGS: Nicotinamide was generally well tolerated; the main adverse event was nausea, which in most cases was mild, dose-related, and resolved spontaneously or after dose reduction, use of antinausea drugs, or both. Phase 1 showed a dose-response relation for proportional change in frataxin protein concentration from baseline to 8 h post-dose, which increased with increasing dose (p=0·0004). Bayesian analysis predicted that 3·8 g would result in a 1·5-times increase and 7·5 g in a doubling of frataxin protein concentration. Phases 2 and 3 showed that daily dosing at 3·5-6 g resulted in a sustained and significant (p<0·0001) upregulation of frataxin expression, which was accompanied by a reduction in heterochromatin modifications at the FXN locus. Clinical measures showed no significant changes. INTERPRETATION: Nicotinamide was associated with a sustained improvement in frataxin concentrations towards those seen in asymptomatic carriers during 8 weeks of daily dosing. Further investigation of the long-term clinical benefits of nicotinamide and its ability to ameliorate frataxin deficiency in Friedreich's ataxia is warranted. FUNDING: Ataxia UK, Ataxia Ireland, Association Suisse de l'Ataxie de Friedreich, Associazione Italiana per le Sindromi Atassiche, UK National Institute for Health Research, European Friedreich's Ataxia Consortium for Translational Studies, and Imperial Biomedical Research Centre.


Asunto(s)
Ataxia de Friedreich/tratamiento farmacológico , Proteínas de Unión a Hierro/efectos de los fármacos , Niacinamida/administración & dosificación , Complejo Vitamínico B/administración & dosificación , Adulto , Cromatina/efectos de los fármacos , Cromatina/genética , Relación Dosis-Respuesta a Droga , Epigénesis Genética , Femenino , Ataxia de Friedreich/genética , Humanos , Proteínas de Unión a Hierro/biosíntesis , Masculino , Persona de Mediana Edad , Resultado del Tratamiento , Reino Unido , Adulto Joven , Frataxina
19.
Growth Factors ; 32(1): 1-10, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24438103

RESUMEN

SOCS3 (suppressor of cytokine signaling 3) inhibits the intracellular signaling cascade initiated by exposure of cells to cytokines. SOCS3 regulates signaling via two distinct mechanisms: directly inhibiting the catalytic activity of Janus kinases (JAKs) that initiate the intracellular signaling cascade and catalysing the ubiquitination of signaling components by recruiting components of an E3 ubiquitin ligase complex. Here we investigate the latter mode-of-action biochemically by reconstructing a SOCS3-based E3 ubiquitin ligase complex in vitro using fully purified, recombinant components and examining its ability to promote the ubiquitination of molecules involved in the cytokine signaling cascade. We show that SOCS3 is an active substrate recruitment module for a Cullin5-based E3 ligase and have defined the core protein components required for ubiquitination. SOCS3-induced polyubiquitination was rapid and could proceed through a number of different ubiquitin lysines. SOCS3 catalyzed the ubiquitination of both the IL-6 receptor common chain (gp130) and JAK2.


Asunto(s)
Receptor gp130 de Citocinas/genética , Janus Quinasa 2/genética , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Animales , Línea Celular , Clonación Molecular , Proteínas Cullin/biosíntesis , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Receptor gp130 de Citocinas/metabolismo , Elonguina , Humanos , Proteínas de Unión a Hierro/biosíntesis , Proteínas de Unión a Hierro/genética , Janus Quinasa 2/metabolismo , Ratones , Proteína NEDD8 , Fosforilación , Unión Proteica , Transducción de Señal/genética , Spodoptera/citología , Proteína 3 Supresora de la Señalización de Citocinas , Proteínas Supresoras de la Señalización de Citocinas/biosíntesis , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Enzimas Ubiquitina-Conjugadoras/biosíntesis , Enzimas Ubiquitina-Conjugadoras/genética , Ubiquitina-Proteína Ligasas/biosíntesis , Ubiquitinación/genética , Ubiquitinas/química
20.
Hum Mol Genet ; 23(7): 1829-41, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24242291

RESUMEN

Friedreich ataxia (FRDA) is a neurodegenerative disease characterized by a decreased expression of the mitochondrial protein frataxin. Major neurological symptoms of the disease are due to degeneration of dorsal root ganglion (DRG) sensory neurons. In this study we have explored the neurodegenerative events occurring by frataxin depletion on primary cultures of neurons obtained from rat DRGs. Reduction of 80% of frataxin levels in these cells was achieved by transduction with lentivirus containing shRNA silencing sequences. Frataxin depletion caused mitochondrial membrane potential decrease, neurite degeneration and apoptotic cell death. A marked increase of free intracellular Ca(2+) levels and alteration in Ca(2+)-mediated signaling pathways was also observed, thus suggesting that altered calcium homeostasis can play a pivotal role in neurodegeneration caused by frataxin deficiency. These deleterious effects were reverted by the addition of a cell-penetrant TAT peptide coupled to the BH4, the anti-apoptotic domain of Bcl-x(L). Treatment of cultured frataxin-depleted neurons with TAT-BH4 was able to restore the free intracellular Ca(2+) levels and protect the neurons from degeneration. These observations open the possibility of new therapies of FRDA based on modulating the Ca(2+) signaling and prevent apoptotic process to protect DRG neurons from neurodegeneration.


Asunto(s)
Apoptosis/genética , Ganglios Espinales/citología , Proteínas de Unión a Hierro/genética , Células Receptoras Sensoriales/citología , Proteína bcl-X/genética , Animales , Calcio/metabolismo , Señalización del Calcio/genética , Células Cultivadas , Ataxia de Friedreich/genética , Productos del Gen tat/genética , Homeostasis , Proteínas de Unión a Hierro/biosíntesis , Proteínas de Unión a Hierro/metabolismo , Potencial de la Membrana Mitocondrial/genética , Proteínas Mitocondriales/metabolismo , Neuritas/patología , Enfermedades Neurodegenerativas , Estructura Terciaria de Proteína/genética , Interferencia de ARN , ARN Interferente Pequeño , Ratas , Frataxina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA