Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.769
Filtrar
1.
Breast Cancer Res ; 26(1): 86, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807216

RESUMEN

Copy number gains in genes coding for Rho activating exchange factors as well as losses affecting genes coding for RhoGAP proteins are common in breast cancer (BC), suggesting that elevated Rho signaling may play an important role. Extra copies and overexpression of RHOC also occur, although a role for RhoC overexpression in driving tumor formation has not been assessed in vivo. To this end, we report on the development of a Rosa26 (R26)-targeted Cre-conditional RhoC overexpression mouse (R26RhoC). This mouse was crossed to two models for ERBB2/NEU+ breast cancer: one based on expression of an oncogenic ErbB2/Neu cDNA downstream of the endogenous ErbB2 promoter (FloxNeoNeuNT), the other, a metastatic model that is based on high-level expression from MMTV regulatory elements (NIC). RhoC overexpression dramatically enhanced mammary tumor formation in FloxNeoNeuNT mice but showed a more subtle effect in the NIC line, which forms multiple mammary tumors after a very short latency. RhoC overexpression also enhanced mammary tumor formation in an activated Pik3ca model for breast cancer (Pik3caH1047R). The transforming effect of RhoC was associated with epithelial/mesenchymal transition (EMT) in ErbB2/NeuNT and Pik3caH1047R systems. Thus, our study reveals the importance of elevated wildtype Rho protein expression as a driver of breast tumor formation and highlights the significance of Copy Number Abberations that affect Rho signalling.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I , Regulación Neoplásica de la Expresión Génica , Fosfatidilinositol 3-Quinasas , Receptor ErbB-2 , Proteínas de Unión al GTP rho , Proteína rhoC de Unión a GTP , Animales , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Femenino , Proteína rhoC de Unión a GTP/metabolismo , Proteína rhoC de Unión a GTP/genética , Ratones , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Proteínas de Unión al GTP rho/metabolismo , Proteínas de Unión al GTP rho/genética , Humanos , Ratones Transgénicos , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Neoplasias Mamarias Experimentales/metabolismo , Transición Epitelial-Mesenquimal/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Transducción de Señal
2.
Elife ; 122024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713746

RESUMEN

Phosphoinositide 3-kinase (PI3K) beta (PI3Kß) is functionally unique in the ability to integrate signals derived from receptor tyrosine kinases (RTKs), G-protein coupled receptors, and Rho-family GTPases. The mechanism by which PI3Kß prioritizes interactions with various membrane-tethered signaling inputs, however, remains unclear. Previous experiments did not determine whether interactions with membrane-tethered proteins primarily control PI3Kß localization versus directly modulate lipid kinase activity. To address this gap in our knowledge, we established an assay to directly visualize how three distinct protein interactions regulate PI3Kß when presented to the kinase in a biologically relevant configuration on supported lipid bilayers. Using single molecule Total Internal Reflection Fluorescence (TIRF) Microscopy, we determined the mechanism controlling PI3Kß membrane localization, prioritization of signaling inputs, and lipid kinase activation. We find that auto-inhibited PI3Kß prioritizes interactions with RTK-derived tyrosine phosphorylated (pY) peptides before engaging either GßGγ or Rac1(GTP). Although pY peptides strongly localize PI3Kß to membranes, stimulation of lipid kinase activity is modest. In the presence of either pY/GßGγ or pY/Rac1(GTP), PI3Kß activity is dramatically enhanced beyond what can be explained by simply increasing membrane localization. Instead, PI3Kß is synergistically activated by pY/GßGγ and pY/Rac1 (GTP) through a mechanism consistent with allosteric regulation.


Asunto(s)
Proteínas de Unión al GTP rho , Proteínas de Unión al GTP rho/metabolismo , Proteínas de Unión al GTP rho/química , Humanos , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Tirosina Quinasas Receptoras/química , Unión Proteica , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades beta de la Proteína de Unión al GTP/química , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/química , Subunidades gamma de la Proteína de Unión al GTP/genética , Transducción de Señal , Microscopía Fluorescente , Fosfatidilinositol 3-Quinasas/metabolismo
3.
Sci Rep ; 14(1): 10393, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710741

RESUMEN

The transforming growth factor (TGF)-ß3 is a well-known inducer for tenogenic differentiation, signaling via the Smad2/3 pathway. Furthermore, other factors like extracellular matrix or mechanical force can induce tenogenic differentiation and possibly alter the response to TGF-ß3 by signaling via the Rho/ROCK pathway. The aim of this study was to investigate the interplay of Rho/ROCK and TGF-ß3/Smad signaling in tenogenic differentiation, with the Smad2/3 molecule hypothesized as a possible interface. Cultured as monolayers or on collagen I matrices, mesenchymal stromal cells (MSC) were treated with the ROCK inhibitor Y-27632 (10 µM), TGF-ß3 (10 ng/ml) or both combined. Control cells were cultured accordingly, without Y-27632 and/or without TGF-ß3. At different time points, MSC were analyzed by real-time RT-PCR, immunofluorescence, and Western blot. Cultivation of MSC on collagen matrices and ROCK inhibition supported tenogenic differentiation and fostered the effect of TGF-ß3. The phosphorylation of the linker region of Smad2 was reduced by cultivation on collagen matrices, but not by ROCK inhibition. The latter, however, led to increased phosphorylation of the linker region of Smad3. In conclusion, collagen matrices and the Rho/ROCK signaling pathway influence the TGF-ß3/Smad2/3 pathway by regulating different phosphorylation sites of the Smad linker region.


Asunto(s)
Diferenciación Celular , Células Madre Mesenquimatosas , Transducción de Señal , Proteína Smad2 , Proteína smad3 , Factor de Crecimiento Transformador beta3 , Quinasas Asociadas a rho , Quinasas Asociadas a rho/metabolismo , Fosforilación , Diferenciación Celular/efectos de los fármacos , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Factor de Crecimiento Transformador beta3/metabolismo , Células Cultivadas , Piridinas/farmacología , Amidas/farmacología , Proteínas de Unión al GTP rho/metabolismo
4.
Life Sci ; 348: 122701, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38724005

RESUMEN

Hyperinflammatory responses are pivotal in the cardiomyocyte senescence pathophysiology, with IL33 serving as a crucial pro-inflammatory mediator. Our previous findings highlighted RND3's suppressive effect on IL33 expression. This study aims to explore the role of RND3 in IL33/ST2 signaling activation and in cardiomyocyte senescence. Intramyocardial injection of exogenous IL33 reduces the ejection fraction and fractional shortening of rats, inducing the appearance of senescence-associated secretory phenotype (SASP) in myocardial tissues. Recombinant IL33 treatment of AC16 cardiomyocytes significantly upregulated expression of SASP factors like IL1α, IL6, and MCP1, and increased the p-p65/p65 ratio and proportions of SA-ß-gal and γH2AX-positive cells. NF-κB inhibitor pyrrolidinedithiocarbamate ammonium (PDTC) and ST2 antibody astegolimab treatments mitigated above effects. RND3 gene knockout H9C2 cardiomyocytes using CRISPR/Cas9 technology upregulated IL33, ST2L, IL1α, IL6, and MCP1 levels, decreased sST2 levels, and increased SA-ß-gal and γH2AX-positive cells. A highly possibility of binding between RND3 and IL33 proteins was showed by molecular docking and co-immunoprecipitation, and loss of RND3 attenuated ubiquitination mediated degradation of IL33; what's more, a panel of ubiquitination regulatory genes closely related to RND3 were screened using qPCR array. In contrast, RND3 overexpression in rats by injection of AAV9-CMV-RND3 particles inhibited IL33, ST2L, IL1α, IL6, and MCP1 expression in cardiac tissues, decreased serum IL33 levels, and increased sST2 levels. These results suggest that RND3 expression in cardiomyocytes modulates cell senescence by inhibiting the IL33/ST2/NF-κB signaling pathway, underscoring its potential as a therapeutic target in cardiovascular senescence.


Asunto(s)
Senescencia Celular , Interleucina-33 , Miocitos Cardíacos , Transducción de Señal , Animales , Masculino , Ratas , Línea Celular , Senescencia Celular/efectos de los fármacos , Interleucina-33/metabolismo , Miocitos Cardíacos/metabolismo , FN-kappa B/metabolismo , Ratas Sprague-Dawley , Receptores de Interleucina-1 , Proteínas de Unión al GTP rho/metabolismo , Proteínas de Unión al GTP rho/genética
5.
Cell Commun Signal ; 22(1): 206, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38566133

RESUMEN

BACKGROUND: The protein annexin A6 (AnxA6) is involved in numerous membrane-related biological processes including cell migration and invasion by interacting with other proteins. The dysfunction of AnxA6, including protein expression abundance change and imbalance of post-translational modification, is tightly related to multiple cancers. Herein we focus on the biological function of AnxA6 SUMOylation in hepatocellular carcinoma (HCC) progression. METHODS: The modification sites of AnxA6 SUMOylation were identified by LC-MS/MS and amino acid site mutation. AnxA6 expression was assessed by immunohistochemistry and immunofluorescence. HCC cells were induced into the epithelial-mesenchymal transition (EMT)-featured cells by 100 ng/mL 12-O-tetradecanoylphorbol-13-acetate exposure. The ability of cell migration was evaluated under AnxA6 overexpression by transwell assay. The SUMO1 modified AnxA6 proteins were enriched from total cellular proteins by immunoprecipitation with anti-SUMO1 antibody, then the SUMOylated AnxA6 was detected by Western blot using anti-AnxA6 antibody. The nude mouse xenograft and orthotopic hepatoma models were established to determine HCC growth and tumorigenicity in vivo. The HCC patient's overall survival versus AnxA6 expression level was evaluated by the Kaplan-Meier method. RESULTS: Lys579 is a major SUMO1 modification site of AnxA6 in HCC cells, and SUMOylation protects AnxA6 from degradation via the ubiquitin-proteasome pathway. Compared to the wild-type AnxA6, its SUMO site mutant AnxA6K579R leads to disassociation of the binding of AnxA6 with RHOU, subsequently RHOU-mediated p-AKT1ser473 is upregulated to facilitate cell migration and EMT progression in HCC. Moreover, the SENP1 deSUMOylates AnxA6, and AnxA6 expression is negatively correlated with SENP1 protein expression level in HCC tissues, and a high gene expression ratio of ANXA6/SENP1 indicates a poor overall survival of patients. CONCLUSIONS: AnxA6 deSUMOylation contributes to HCC progression and EMT phenotype, and the combination of AnxA6 and SENP1 is a better tumor biomarker for diagnosis of HCC grade malignancy and prognosis.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Humanos , Ratones , Anexina A6/genética , Anexina A6/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Cromatografía Liquida , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Sumoilación , Espectrometría de Masas en Tándem
6.
Cells ; 13(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38534316

RESUMEN

Small GTPases are molecular switches that participate in many essential cellular processes. Amongst them, human Rac1 was first described for its role in regulating actin cytoskeleton dynamics and cell migration, with a close relation to carcinogenesis. More recently, the role of Rac1 in regulating the production of reactive oxygen species (ROS), both as a subunit of NADPH oxidase complexes and through its association with mitochondrial functions, has drawn attention. Malfunctions in this context affect cellular plasticity and apoptosis, related to neurodegenerative diseases and diabetes. Some of these features of Rac1 are conserved in its yeast homologue Rho5. Here, we review the structural and functional similarities and differences between these two evolutionary distant proteins and propose yeast as a useful model and a device for high-throughput screens for specific drugs.


Asunto(s)
Proteínas de Unión al GTP Monoméricas , Saccharomyces cerevisiae , Masculino , Humanos , Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Estrés Oxidativo , Proteínas de Unión al GTP rho/metabolismo , Especies Reactivas de Oxígeno/metabolismo
7.
Neuroscience ; 545: 111-124, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38492796

RESUMEN

Armcx1 is a member of the ARMadillo repeat-Containing protein on the X chromosome (ARMCX) family, which is recognized to have evolutionary conserved roles in regulating mitochondrial transport and dynamics. Previous research has shown that Armcx1 is expressed at higher levels in mice after axotomy and in adult retinal ganglion cells after crush injury, and this protein increases neuronal survival and axonal regeneration. However, its role in traumatic brain injury (TBI) is unclear. Therefore, the aim of this study was to assess the expression of Armcx1 after TBI and to explore possible related mechanisms by which Armcx1 is involved in TBI. We used C57BL/6 male mice to model TBI and evaluated the role of Armcx1 in TBI by transfecting mice with Armcx1 small interfering RNA (siRNA) to inhibit Armcx1 expression 24 h before TBI modeling. Western blotting, immunofluorescence, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining, Nissl staining, transmission electron microscopy, adenosine triphosphate (ATP) level measurement, neuronal apoptosis analysis, neurological function scoring and the Morris water maze were performed. The results demonstrated that Armcx1 protein expression was elevated after TBI and that the Armcx1 protein was localized in neurons and astroglial cells in cortical tissue surrounding the injury site. In addition, inhibition of Armcx1 expression further led to impaired mitochondrial transport, abnormal morphology, reduced ATP levels, aggravation of neuronal apoptosis and neurological dysfunction, and decrease Miro1 expression. In conclusion, our findings indicate that Armcx1 may exert neuroprotective effects by ameliorating neurological injury after TBI through a mitochondrial transport pathway involving Miro1.


Asunto(s)
Proteínas del Dominio Armadillo , Lesiones Traumáticas del Encéfalo , Ratones Endogámicos C57BL , Mitocondrias , Proteínas de Unión al GTP rho , Animales , Masculino , Ratones , Adenosina Trifosfato/metabolismo , Apoptosis/fisiología , Proteínas del Dominio Armadillo/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Modelos Animales de Enfermedad , Aprendizaje por Laberinto/fisiología , Mitocondrias/metabolismo , Neuronas/metabolismo , Neuronas/patología , Proteínas de Unión al GTP rho/metabolismo
8.
Biochem Pharmacol ; 223: 116141, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38499108

RESUMEN

Small Ras homologous guanosine triphosphatase (Rho GTPase) family proteins are highly associated with tumorigenesis and development. As intrinsic exchange activity regulators of Rho GTPases, Rho guanine nucleotide exchange factors (RhoGEFs) have been demonstrated to be closely involved in tumor development and received increasing attention. They mainly contain two families: the diffuse B-cell lymphoma (Dbl) family and the dedicator of cytokinesis (Dock) family. More and more emphasis has been paid to the Dbl family members for their abnormally high expression in various cancers and their correlation to poor prognosis. In this review, the common and distinctive structures of Dbl family members are discussed, and their roles in cancer are summarized with a focus on Ect2, Tiam1/2, P-Rex1/2, Vav1/2/3, Trio, KALRN, and LARG. Significantly, the strategies targeting Dbl family RhoGEFs are highlighted as novel therapeutic opportunities for cancer.


Asunto(s)
Linfoma de Células B , Neoplasias , Humanos , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Carcinogénesis
9.
Arterioscler Thromb Vasc Biol ; 44(5): e145-e167, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38482696

RESUMEN

BACKGROUND: New blood vessel formation requires endothelial cells to transition from a quiescent to an invasive phenotype. Transcriptional changes are vital for this switch, but a comprehensive genome-wide approach focused exclusively on endothelial cell sprout initiation has not been reported. METHODS: Using a model of human endothelial cell sprout initiation, we developed a protocol to physically separate cells that initiate the process of new blood vessel formation (invading cells) from noninvading cells. We used this model to perform multiple transcriptomics analyses from independent donors to monitor endothelial gene expression changes. RESULTS: Single-cell population analyses, single-cell cluster analyses, and bulk RNA sequencing revealed common transcriptomic changes associated with invading cells. We also found that collagenase digestion used to isolate single cells upregulated the Fos proto-oncogene transcription factor. Exclusion of Fos proto-oncogene expressing cells revealed a gene signature consistent with activation of signal transduction, morphogenesis, and immune responses. Many of the genes were previously shown to regulate angiogenesis and included multiple tip cell markers. Upregulation of SNAI1 (snail family transcriptional repressor 1), PTGS2 (prostaglandin synthase 2), and JUNB (JunB proto-oncogene) protein expression was confirmed in invading cells, and silencing JunB and SNAI1 significantly reduced invasion responses. Separate studies investigated rounding 3, also known as RhoE, which has not yet been implicated in angiogenesis. Silencing rounding 3 reduced endothelial invasion distance as well as filopodia length, fitting with a pathfinding role for rounding 3 via regulation of filopodial extensions. Analysis of in vivo retinal angiogenesis in Rnd3 heterozygous mice confirmed a decrease in filopodial length compared with wild-type littermates. CONCLUSIONS: Validation of multiple genes, including rounding 3, revealed a functional role for this gene signature early in the angiogenic process. This study expands the list of genes associated with the acquisition of a tip cell phenotype during endothelial cell sprout initiation.


Asunto(s)
Perfilación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Neovascularización Fisiológica , Proteínas Proto-Oncogénicas c-fos , Transcriptoma , Proteínas de Unión al GTP rho , Animales , Humanos , Ratones , Células Cultivadas , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/genética , Células Endoteliales/metabolismo , Perfilación de la Expresión Génica/métodos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Neovascularización Fisiológica/genética , Fenotipo , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Proteínas de Unión al GTP rho/genética , Transducción de Señal , Análisis de la Célula Individual , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción de la Familia Snail/genética
10.
Biochem Soc Trans ; 52(1): 89-97, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38314621

RESUMEN

RhoU and RhoV are members of the Rho family of small GTPases that comprise their own subfamily. RhoUV GTPases are classified as atypical due to the kinetics of their GTP/GDP binding cycles. They also possess unique N- and C-termini that regulate their subcellular localization and activity. RhoU and RhoV have been linked to cytoskeletal regulation, cell adhesion, and cell migration. They each exhibit distinct expression patterns during embryonic development and diseases such as cancer metastasis, suggesting they have specialized functions. In this review, we will discuss the known functions of RhoU and RhoV, with a focus on their roles in early development, organogenesis, and disease.


Asunto(s)
Proteínas de Unión al GTP , Proteínas de Unión al GTP rho , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Transducción de Señal , Adhesión Celular
11.
Sci Rep ; 14(1): 4060, 2024 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-38374399

RESUMEN

VAV2 is an activator of RHO GTPases that promotes and maintains regenerative proliferation-like states in normal keratinocytes and oral squamous cell carcinoma (OSCC) cells. Here, we demonstrate that VAV2 also regulates ribosome biogenesis in those cells, a program associated with poor prognosis of human papilloma virus-negative (HPV-) OSCC patients. Mechanistically, VAV2 regulates this process in a catalysis-dependent manner using a conserved pathway comprising the RAC1 and RHOA GTPases, the PAK and ROCK family kinases, and the c-MYC and YAP/TAZ transcription factors. This pathway directly promotes RNA polymerase I activity and synthesis of 47S pre-rRNA precursors. This process is further consolidated by the upregulation of ribosome biogenesis factors and the acquisition of the YAP/TAZ-dependent undifferentiated cell state. Finally, we show that RNA polymerase I is a therapeutic Achilles' heel for both keratinocytes and OSCC patient-derived cells endowed with high VAV2 catalytic activity. Collectively, these findings highlight the therapeutic potential of modulating VAV2 and the ribosome biogenesis pathways in both preneoplastic and late progression stages of OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Proteínas Proto-Oncogénicas c-vav , Humanos , Carcinoma de Células Escamosas/patología , Proliferación Celular , Queratinocitos/metabolismo , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Proteínas Proto-Oncogénicas c-vav/metabolismo , Proteínas de Unión al GTP rho/metabolismo , ARN Polimerasa I/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello
12.
Zhongguo Zhong Yao Za Zhi ; 49(1): 185-196, 2024 Jan.
Artículo en Chino | MEDLINE | ID: mdl-38403351

RESUMEN

This study investigated the effect of trametenolic acid(TA) on the migration and invasion of human hepatocellular carcinoma HepG2.2.15 cells by using Ras homolog gene family member C(RhoC) as the target and probed into the mechanism, aiming to provide a basis for the utilization of TA. The methyl thiazolyl tetrazolium(MTT) assay was employed to examine the proliferation of HepG2.2.15 cells exposed to TA, and scratch and Transwell assays to examine the cell migration and invasion. The pull down assay was employed to determine the impact of TA on RhoC GTPase activity. Western blot was employed to measure the effect of TA on the transport of RhoC from cytoplasm to cell membrane and the expression of RhoC/Rho-associated kinase 1(ROCK1)/myosin light chain(MLC)/matrix metalloprotease 2(MMP2)/MMP9 pathway-related proteins. RhoC was over-expressed by transient transfection of pcDNA3.1-RhoC. The changes of F-actin in the cytoskeleton were detected by Laser confocal microscopy. In addition, the changes of cell migration and invasion, expression of proteins in the RhoC/ROCK1/MLC/MMP2/MMP9 pathway, and RhoC GTPase activity were detected. The subcutaneously transplanted tumor model of BALB/c nude mice and the low-, medium-, and high-dose(40, 80, and 120 mg·kg~(-1), respectively) TA groups were established and sorafenib(20 mg·kg~(-1)) was used as the positive control. The tumor volume and weight in each group were measured, and the expression of related proteins in the tumor tissue was determined by Western blot. The results showed that TA inhibited the proliferation of HepG2.2.15 cells in a concentration-dependent manner, with the IC_(50) of 66.65 and 23.09 µmol·L~(-1) at the time points of 24 and 48 h, respectively. The drug administration groups had small tumors with low mass. The tumor inhibition rates of sorafenib and low-, medium-and high-dose TA were 62.23%, 26.48%, 55.45%, and 62.36%, respectively. TA reduced migrating and invading cells and inhibited RhoC protein expression and RhoC GTPase activity in a concentration-dependent manner, dramatically reducing RhoC and membrane-bound RhoC GTPase. The expression of ROCK1, MLC, p-MLC, MMP2, and MMP9 downstream of RhoC can be significantly inhibited by TA, as confirmed in both in vitro and in vivo experiments. After HepG2.2.15 cells were transfected with pcDNA3.1-RhoC to overexpress RhoC, TA down-regulated the protein levels of RhoC, ROCK1, MLC, p-MLC, MMP2, and MMP9 and decreased the activity of RhoC GTPase, with the inhibition level comparable to that before overexpression. In summary, TA can inhibit the migration and invasion of HepG2.2.15 cells. It can inhibit the RhoC/ROCK1/MLC/MMP2/MMP9 signaling pathway by suppressing RhoC GTPase activity and down-regulating RhoC expression. This study provides a new idea for the development of autophagy modulators targeting HSP90α to block the proliferation and inhibit the invasion and migration of hepatocellular carcinoma cells via multiple targets of active components in traditional Chinese medicines.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Humanos , Proteína rhoC de Unión a GTP/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Metaloproteinasa 9 de la Matriz/metabolismo , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo , Sorafenib , Ratones Desnudos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Línea Celular Tumoral , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Movimiento Celular , Proliferación Celular
13.
Cell Death Dis ; 15(2): 155, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38378644

RESUMEN

Mitochondrial transfer plays an important role in various diseases, and many mitochondrial biological functions can be regulated by HMGB1. To explore the role of mitochondrial transfer in hepatocellular carcinoma (HCC) and its relationship with HMGB1, field emission scanning electron microscopy, immunofluorescence, and flow cytometry were used to detect the mitochondrial transfer between HCC cells. We found that mitochondrial transfer between HCC cells was confirmed using tunnel nanotubes (TNTs). The transfer of mitochondria from the highly invasive HCC cells to the less invasive HCC cells could enhance the migration and invasion ability of the latter. The hypoxic conditions increased the mitochondrial transfer between HCC cells. Then the mechanism was identified using co-immunoprecipitation, luciferase reporter assay, and chromatin immunoprecipitation. We found that RHOT1, a mitochondrial transport protein, promoted mitochondrial transfer and the migration and metastasis of HCC cells during this process. Under hypoxia, HMGB1 further regulated RHOT1 expression by increasing the expression of NFYA and NFYC subunits of the NF-Y complex. RAC1, a protein associated with TNTs formation, promoted mitochondrial transfer and HCC development. Besides, HMGB1 regulated RAC1 aggregation to the cell membrane under hypoxia. Finally, the changes and significance of related molecules in clinical samples of HCC were analyzed using bioinformatics and tissue microarray analyses. We found that HCC patients with high HMGB1, RHOT1, or RAC1 expression exhibited a relatively shorter overall survival period. In conclusion, under hypoxic conditions, HMGB1 promoted mitochondrial transfer and migration and invasion of HCC cells by increasing the expression of mitochondrial transport protein RHOT1 and TNTs formation-related protein RAC1.


Asunto(s)
Carcinoma Hepatocelular , Proteína HMGB1 , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Hipoxia/genética , Neoplasias Hepáticas/patología , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo , Proteínas de Unión al GTP rho/metabolismo
14.
J Immunol Res ; 2024: 2264799, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38343633

RESUMEN

Macrophage activation is a complex process with multiple control elements that ensures an adequate response to the aggressor pathogens and, on the other hand, avoids an excess of inflammatory activity that could cause tissue damage. In this study, we have identified RND3, a small GTP-binding protein, as a new element in the complex signaling process that leads to macrophage activation. We show that RND3 expression is transiently induced in macrophages activated through Toll receptors and potentiated by IFN-γ. We also demonstrate that RND3 increases NOTCH signaling in macrophages by favoring NOTCH1 expression and its nuclear activity; however, Rnd3 expression seems to be inhibited by NOTCH signaling, setting up a negative regulatory feedback loop. Moreover, increased RND3 protein levels seem to potentiate NFκB and STAT1 transcriptional activity resulting in increased expression of proinflammatory genes, such as Tnf-α, Irf-1, or Cxcl-10. Altogether, our results indicate that RND3 seems to be a new regulatory element which could control the activation of macrophages, able to fine tune the inflammatory response through NOTCH.


Asunto(s)
Macrófagos , Transducción de Señal , Proteínas de Unión al GTP rho , Macrófagos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Ratones , Proteínas de Unión al GTP rho/metabolismo
15.
J Virol ; 98(3): e0191523, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38334327

RESUMEN

As an intrinsic cellular mechanism responsible for the internalization of extracellular ligands and membrane components, caveolae-mediated endocytosis (CavME) is also exploited by certain pathogens for endocytic entry [e.g., Newcastle disease virus (NDV) of paramyxovirus]. However, the molecular mechanisms of NDV-induced CavME remain poorly understood. Herein, we demonstrate that sialic acid-containing gangliosides, rather than glycoproteins, were utilized by NDV as receptors to initiate the endocytic entry of NDV into HD11 cells. The binding of NDV to gangliosides induced the activation of a non-receptor tyrosine kinase, Src, leading to the phosphorylation of caveolin-1 (Cav1) and dynamin-2 (Dyn2), which contributed to the endocytic entry of NDV. Moreover, an inoculation of cells with NDV-induced actin cytoskeletal rearrangement through Src to facilitate NDV entry via endocytosis and direct fusion with the plasma membrane. Subsequently, unique members of the Rho GTPases family, RhoA and Cdc42, were activated by NDV in a Src-dependent manner. Further analyses revealed that RhoA and Cdc42 regulated the activities of specific effectors, cofilin and myosin regulatory light chain 2, responsible for actin cytoskeleton rearrangement, through diverse intracellular signaling cascades. Taken together, our results suggest that an inoculation of NDV-induced Src-mediated cellular activation by binding to ganglioside receptors. This process orchestrated NDV endocytic entry by modulating the activities of caveolae-associated Cav1 and Dyn2, as well as specific Rho GTPases and downstream effectors. IMPORTANCE: In general, it is known that the paramyxovirus gains access to host cells through direct penetration at the plasma membrane; however, emerging evidence suggests more complex entry mechanisms for paramyxoviruses. The endocytic entry of Newcastle disease virus (NDV), a representative member of the paramyxovirus family, into multiple types of cells has been recently reported. Herein, we demonstrate the binding of NDV to induce ganglioside-activated Src signaling, which is responsible for the endocytic entry of NDV through caveolae-mediated endocytosis. This process involved Src-dependent activation of the caveolae-associated Cav1 and Dyn2, as well as specific Rho GTPase and downstream effectors, thereby orchestrating the endocytic entry process of NDV. Our findings uncover a novel molecular mechanism of endocytic entry of NDV into host cells and provide novel insight into paramyxovirus mechanisms of entry.


Asunto(s)
Macrófagos , Enfermedad de Newcastle , Virus de la Enfermedad de Newcastle , Transducción de Señal , Internalización del Virus , Animales , Endocitosis , Gangliósidos/metabolismo , Macrófagos/metabolismo , Macrófagos/virología , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/fisiología , Proteínas de Unión al GTP rho/metabolismo
16.
Mitochondrion ; 76: 101856, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38408618

RESUMEN

Mitochondria are important for maintaining cellular energy metabolism and regulating cellular senescence. Mitochondrial DNA (mtDNA) encodes subunits of the OXPHOS complexes which are essential for cellular respiration and energy production. Meanwhile, mtDNA variants have been associated with the pathogenesis of neurodegenerative diseases, including MELAS, for which no effective treatment has been developed. To alleviate the pathological conditions involved in mitochondrial disorders, mitochondria transfer therapy has shown promise. Wharton's jelly mesenchymal stem cells (WJMSCs) have been identified as suitable mitochondria donors for mitochondria-defective cells, wherein mitochondrial functions can be rescued. Miro1 participates in mitochondria trafficking by anchoring mitochondria to microtubules. In this study, we identified Miro1 over-expression as a factor that could help to enhance the efficiency of mitochondrial delivery. More specifically, we reveal that Miro1 over-expressed WJMSCs significantly improved intercellular communications, cell proliferation rates, and mitochondrial membrane potential, while restoring mitochondrial bioenergetics in mitochondria-defective fibroblasts. Furthermore, Miro1 over-expressed WJMSCs decreased rates of induced apoptosis and ROS production in MELAS fibroblasts; although, Miro1 over-expression did not rescue mtDNA mutation ratios nor mitochondrial biogenesis. This study presents a potentially novel therapeutic strategy for treating mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS), and other diseases associated with dysfunctional mitochondria, while the pathophysiological relevance of our results should be further verified by animal models and clinical studies.


Asunto(s)
Células Madre Mesenquimatosas , Mitocondrias , Gelatina de Wharton , Proteínas de Unión al GTP rho , Humanos , Apoptosis , Proliferación Celular , Células Cultivadas , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Fibroblastos/metabolismo , Potencial de la Membrana Mitocondrial , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Proteínas de Unión al GTP rho/genética , Gelatina de Wharton/citología
17.
Mar Drugs ; 22(2)2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38393059

RESUMEN

Anithiactin D (1), a 2-phenylthiazole class of natural products, was isolated from marine mudflat-derived actinomycetes Streptomyces sp. 10A085. The chemical structure of 1 was elucidated based on the interpretation of NMR and MS data. The absolute configuration of 1 was determined by comparing the experimental and calculated electronic circular dichroism (ECD) spectral data. Anithiactin D (1) significantly decreased cancer cell migration and invasion activities at a concentration of 5 µM via downregulation of the epithelial-to-mesenchymal transition (EMT) markers in A549, AGS, and Caco-2 cell lines. Moreover, 1 inhibited the activity of Rho GTPases, including Rac1 and RhoA in the A549 cell line, suppressed RhoA in AGS and Caco-2 cell lines, and decreased the mRNA expression levels of some matrix metalloproteinases (MMPs) in AGS and Caco-2 cell lines. Thus 1, which is a new entity of the 2-phenylthiazole class of natural products with a unique aniline-indole fused moiety, is a potent inhibitor of the motility of cancer cells.


Asunto(s)
Neoplasias , Streptomyces , Humanos , Línea Celular Tumoral , Células CACO-2 , Streptomyces/metabolismo , Células A549 , Proteínas de Unión al GTP rho/metabolismo , Movimiento Celular , Transición Epitelial-Mesenquimal
18.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(1): 74-80, 2024 Jan 20.
Artículo en Chino | MEDLINE | ID: mdl-38322523

RESUMEN

Objective: To explore the mechanobiological mechanism of fluid shear force (FSF) on the protection, injury, and destruction of the structure and function of the blood-brain barrier (BBB) under normal physiological conditions, ischemic hypoperfusion, and postoperative hyperperfusion conditions. BBB is mainly composed of brain microvascular endothelial cells. Rat brain microvascular endothelial cells (rBMECs) were used as model cells to conduct the investigation. Methods: rBMECs were seeded at a density of 1×105 cells/cm2 and incubated for 48 h. FSF was applied to the rBMECs at 0.5, 2, and 20 dyn/cm2, respectively, simulating the stress BBB incurs under low perfusion, normal physiological conditions, and high FSF after bypass grafting when there is cerebral vascular stenosis. In addition, a rBMECs static culture group was set up as the control (no force was applied). Light microscope, scanning electron microscope (SEM), and laser confocal microscope (LSCM) were used to observe the changes in cell morphology and cytoskeleton. Transmission electron microscope (TEM) was used to observe the tight junctions. Immunofluorescence assay was performed to determine changes in the distribution of tight junction-associated proteins claudin-5, occludin, and ZO-1 and adherens junction-associated proteins VE-cadherin and PECAM-1. Western blot was performed to determine the expression levels of tight junction-associated proteins claudin-5, ZO-1, and JAM4, adherens junction-associated protein VE-cadherin, and key proteins in Rho GTPases signaling (Rac1, Cdc42, and RhoA) under FSF at different intensities. Results: Microscopic observation showed that the cytoskeleton exhibited disorderly arrangement and irregular orientation under static culture and low shear force (0.5 dyn/cm2). Under normal physiological shear force (2 dyn/cm2), the cytoskeleton was rearranged in the orientation of the FSF and an effective tight junction structure was observed between cells. Under high shear force (20 dyn/cm2), the intercellular space was enlarged and no effective tight junction structure was observed. Immunofluorescence results showed that, under low shear force, the gap between the cells decreased, but there was also decreased distribution of tight junction-associated proteins and adherens junction-associated proteins at the intercellular junctions. Under normal physiological conditions, the cells were tightly connected and most of the tight junction-associated proteins were concentrated at the intercellular junctions. Under high shear force, the gap between the cells increased significantly and the tight junction and adherens junction structures were disrupted. According to the Western blot results, under low shear force, the expression levels of claudin-5, ZO-1, and VE-cadherin were significantly up-regulated compared with those of the control group (P<0.05). Under normal physiological shear force, claudin-5, ZO-1, JAM4, and VE-cadherin were highly expressed compared with those of the control group (P<0.05). Under high shear force, the expressions of claudin-5, ZO-1, JAM4, and VE-cadherin were significantly down-regulated compared with those of the normal physiological shear force group (P<0.05). Under normal physiological shear force, intercellular expressions of Rho GTPases proteins (Rac1, Cdc42, and RhoA) were up-regulated and were higher than those of the other experimental groups (P<0.05). The expressions of Rho GTPases under low and high shear forces were down-regulated compared with that of the normal physiological shear force group (P<0.05). Conclusion: Under normal physiological conditions, FSF helps maintain the integrity of the BBB structure, while low or high shear force can damage or destroy the BBB structure. The regulation of BBB by FSF is closely related to the expression and distribution of tight junction-associated proteins and adherens junction-associated proteins.


Asunto(s)
Barrera Hematoencefálica , Células Endoteliales , Ratas , Animales , Claudina-5/metabolismo , Encéfalo/metabolismo , Proteínas de Unión al GTP rho/metabolismo
19.
J Neurosci ; 44(11)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38326036

RESUMEN

Intercellular adhesion molecule-1 (ICAM-1) is identified as an initiator of neuroinflammatory responses that lead to neurodegeneration and cognitive and sensory-motor deficits in several pathophysiological conditions including traumatic brain injury (TBI). However, the underlying mechanisms of ICAM-1-mediated leukocyte adhesion and transmigration and its link with neuroinflammation and functional deficits following TBI remain elusive. Here, we hypothesize that blocking of ICAM-1 attenuates the transmigration of leukocytes to the brain and promotes functional recovery after TBI. The experimental TBI was induced in vivo by fluid percussion injury (25 psi) in male and female wild-type and ICAM-1-/- mice and in vitro by stretch injury (3 psi) in human brain microvascular endothelial cells (hBMVECs). We treated hBMVECs and animals with ICAM-1 CRISPR/Cas9 and conducted several biochemical analyses and demonstrated that CRISPR/Cas9-mediated ICAM-1 deletion mitigates blood-brain barrier (BBB) damage and leukocyte transmigration to the brain by attenuating the paxillin/focal adhesion kinase (FAK)-dependent Rho GTPase pathway. For analyzing functional outcomes, we used a cohort of behavioral tests that included sensorimotor functions, psychological stress analyses, and spatial memory and learning following TBI. In conclusion, this study could establish the significance of deletion or blocking of ICAM-1 in transforming into a novel preventive approach against the pathophysiology of TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Molécula 1 de Adhesión Intercelular , Animales , Femenino , Humanos , Masculino , Ratones , Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Sistemas CRISPR-Cas , Células Endoteliales/metabolismo , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Leucocitos , Paxillin , Proteínas de Unión al GTP rho/metabolismo
20.
Cells ; 13(2)2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38247865

RESUMEN

Obesity is a growing pandemic with an increasing risk of inducing different cancer types, including breast cancer. Adipose tissue is proposed to be a major player in the initiation and progression of breast cancer in obese people. However, the mechanistic link between adipogenicity and tumorigenicity in breast tissues is poorly understood. We used in vitro and in vivo approaches to investigate the mechanistic relationship between obesity and the onset and progression of breast cancer. In obesity, adipose tissue expansion and remodeling are associated with increased inflammatory mediator's release and anti-inflammatory mediators' reduction.. In order to mimic the obesity micro-environment, we cultured cells in an enriched pro-inflammatory cytokine medium to which we added a low concentration of beneficial adipokines. Epithelial cells exposed to the obesity micro-environment were phenotypically transformed into mesenchymal-like cells, characterized by an increase in different mesenchymal markers and the acquisition of the major hallmarks of cancerous cells; these include sustained DNA damage, the activation of the ATR-Chk2 pathway, an increase in proliferation rate, cell invasion, and resistance to conventional chemotherapy. Transcriptomic analysis revealed that several genes, including RhoJ, CCL7, and MMP9, acted as potential major players in the observed phenomenon. The transcriptomics findings were confirmed in vitro using qRT-PCR and in vivo using high-fat-diet-fed mice. Our data suggests RhoJ as a potential novel molecular driver of tumor development in breast tissues and a mediator of cell resistance to conventional chemotherapy through PAK1 activation. These data propose that RhoJ is a potential target for therapeutic interventions in obese breast cancer patients.


Asunto(s)
Neoplasias de la Mama , Obesidad , Proteínas de Unión al GTP rho , Animales , Femenino , Humanos , Ratones , Adipoquinas , Adiposidad , Neoplasias de la Mama/etiología , Neoplasias de la Mama/genética , Obesidad/complicaciones , Microambiente Tumoral , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA