Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Mol Cell ; 84(18): 3373-3374, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39303677

RESUMEN

During cold shock, bacteria shut down translation of all but a set of cold-shock proteins critical for recovery; in this issue of Molecular Cell, Delaleau et al.1 show that Rho-dependent transcription termination plays an important role in cold adaptation, via temperature-regulated termination of the cold-shock protein mRNAs.


Asunto(s)
Adaptación Fisiológica , Frío , Terminación de la Transcripción Genética , Factor Rho/metabolismo , Factor Rho/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Respuesta al Choque por Frío , Proteínas y Péptidos de Choque por Frío/metabolismo , Proteínas y Péptidos de Choque por Frío/genética , Escherichia coli/genética , Escherichia coli/metabolismo
2.
Genes Genomics ; 46(9): 1023-1036, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38997611

RESUMEN

BACKGROUND: Cold shock proteins (CSPs) are ubiquitous nucleic acid-binding proteins involved in growth, development, and stress response across various organisms. While extensively studied in many species, their regulatory roles in sweet cherry (Prunus avium L.) remain unclear. OBJECTIVE: To identify and analyze CSP genes (PavCSPs) in sweet cherry genome, and explore the differential responses of PavCSP1 and PavCSP3 to low temperature and salt stress. METHODS: Three methods were employed to identify and characterize CSP in sweet cherry genomes. To explore the potential functions and evolutionary relationships of sweet cherry CSP proteins, sequence alignment and phylogenetic tree incorporating genes from five species were conducted and constructed, respectively. To investigate the responses to abiotic stresses, cis-acting elements analysis and gene expression patterns to low-temperature and salt stress were examined. Moreover, transgenic yeasts overexpressing PavCSP1 or PavCSP3 were generated and their growth under stress conditions were observed. RESULTS: In this study, three CSP genes (PavCSPs) were identified and comprehensively analyzed. The quantitative real-time PCR revealed diverse expression patterns, with PavCSP1-3 demonstrating a particular activity in the upper stem and all members were responsive to low-temperature and salt stress. Further investigation demonstrated that transgenic yeasts overexpressing PavCSP1 or PavCSP3 exhibited improved growth states following high-salt and low-temperature stress. CONCLUSION: These findings elucidated the responses of PavCSP1 and PavCSP3 to salt and low-temperature stresses, laying the groundwork for further functional studies of PavCSPs in response to abiotic stresses.


Asunto(s)
Proteínas y Péptidos de Choque por Frío , Frío , Filogenia , Proteínas de Plantas , Prunus avium , Estrés Salino , Proteínas y Péptidos de Choque por Frío/genética , Proteínas y Péptidos de Choque por Frío/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Salino/genética , Prunus avium/genética , Prunus avium/metabolismo , Prunus avium/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Respuesta al Choque por Frío/genética , Genoma de Planta/genética
3.
Arch Microbiol ; 206(7): 329, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940837

RESUMEN

The ability of cold-adapted bacteria to survive in extreme cold and diverse temperatures is due to their unique attributes like cell membrane stability, up-regulation of peptidoglycan biosynthesis, increased production of extracellular polymeric substances, and expansion of membrane pigment. Various cold-adapted proteins, including ice-nucleating proteins (INPs), antifreeze proteins (AFPs), cold shock proteins (Csps), and cold-acclimated proteins (CAPs), help the bacteria to survive in these environments. To sustain cells from extreme cold conditions and maintain stability in temperature fluctuations, survival strategies at the molecular level and their mechanism play significant roles in adaptations in cryospheric conditions. Furthermore, cold shock domains present in the multifunctional cold shock proteins play crucial roles in their adaptation strategies. The considerable contribution of lipopeptides, osmolytes, and membrane pigments plays an integral part in their survival in extreme environments. This review summarizes the evolutionary history of cold-adapted bacteria and their molecular and cellular adaptation strategies to thrive in harsh cold environments. It also discusses the importance of carotenoids produced, lipid composition, cryoprotectants, proteins, and chaperones related to this adaptation. Furthermore, the functions and mechanisms of adaptations within the cell are discussed briefly. One can utilize and explore their potential in various biotechnology applications and their evolutionary journey by knowing the inherent mechanism of their molecular and cellular adaptation to cold climatic conditions. This review will help all branches of the life science community understand the basic microbiology of psychrophiles and their hidden prospect in life science research.


Asunto(s)
Bacterias , Congelación , Bacterias/metabolismo , Bacterias/genética , Ambientes Extremos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Frío , Adaptación Fisiológica , Proteínas Anticongelantes/metabolismo , Fenómenos Fisiológicos Bacterianos , Aclimatación , Proteínas y Péptidos de Choque por Frío/metabolismo , Proteínas y Péptidos de Choque por Frío/genética
4.
Infect Immun ; 92(8): e0001124, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-38920386

RESUMEN

Cold shock proteins (Csp) are pivotal nucleic acid binding proteins known for their crucial roles in the physiology and virulence of various bacterial pathogens affecting plant, insect, and mammalian hosts. However, their significance in bacterial pathogens of teleost fish remains unexplored. Aeromonas salmonicida subsp. salmonicida (hereafter A. salmonicida) is a psychrotrophic pathogen and the causative agent of furunculosis in marine and freshwater fish. Four csp genes (cspB, cspD, cspA, and cspC) have been identified in the genome of A. salmonicida J223 (wild type). Here, we evaluated the role of DNA binding proteins, CspB and CspD, in A. salmonicida physiology and virulence in lumpfish (Cyclopterus lumpus). A. salmonicida ΔcspB, ΔcspD, and the double ΔcspBΔcspD mutants were constructed and characterized. A. salmonicida ΔcspB and ΔcspBΔcspD mutants showed a faster growth at 28°C, and reduced virulence in lumpfish. A. salmonicida ΔcspD showed a slower growth at 28°C, biofilm formation, lower survival in low temperatures and freezing conditions (-20°C, 0°C, and 4°C), deficient in lipopolysaccharide synthesis, and low virulence in lumpfish. Additionally, ΔcspBΔcspD mutants showed less survival in the presence of bile compared to the wild type. Transcriptome analysis revealed that 200, 37, and 921 genes were differentially expressed in ΔcspB, ΔcspD, and ΔcspBΔcspD, respectively. In ΔcspB and ΔcspBΔcspD virulence genes in the chromosome and virulence plasmid were downregulated. Our analysis indicates that CspB and CspD mostly act as a transcriptional activator, influencing cell division (e.g., treB), virulence factors (e.g., aexT), and ultimately virulence.


Asunto(s)
Aeromonas salmonicida , Proteínas Bacterianas , Enfermedades de los Peces , Animales , Aeromonas salmonicida/patogenicidad , Aeromonas salmonicida/genética , Aeromonas salmonicida/metabolismo , Virulencia , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Enfermedades de los Peces/microbiología , Proteínas y Péptidos de Choque por Frío/genética , Proteínas y Péptidos de Choque por Frío/metabolismo , Regulación Bacteriana de la Expresión Génica , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/veterinaria , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Perciformes/microbiología , Forunculosis/microbiología
5.
Clin Transl Sci ; 17(6): e13850, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38807464

RESUMEN

Cold-inducible RNA-binding protein (CIRP) is a damage-associated molecular pattern that plays a critical role in triggering inflammatory responses. It remains unknown whether CIRP is strongly associated with bacterial load, inflammatory response, and mortality in sepsis model. Pneumonia was induced in specific pathogen-free 8-9-week old male rats by injecting bacteria via puncture of the tracheal cartilage. The expressions of CIRP and proinflammatory cytokines [tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and IL-1ß] in lung tissues, alveolar macrophages (AMs), plasma, and bronchoalveolar lavage fluid (BALF) were determined by reverse transcription-polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay. The numbers of bacteria recovered from the lungs were correlated with the bacterial loads injected and mortality. The expressions of CIRP increased sharply as the bacterial loads increased in the lung tissues and AMs. The amounts of TNF-α, IL-6 and IL-1ß proteins synthesized were dependent on the bacterial load in the lung tissues. Releases of CIRP, TNF-α, IL-6, and IL-1ß increased with the bacterial load in the blood plasma. The proteins confirmed similar patterns in the BALF. CIRP was strongly associated with the releases of TNF-α, IL-6, and IL-1ß in the lung tissues, blood plasma, and BALF, and showed a close correlation with mortality. CIRP demonstrated a strong association with bacterial load, which is new evidence, and close correlations with proinflammatory cytokines and mortality of pneumonia in rats, suggesting that it might be an interesting pneumonic biomarker for monitoring host response and predicting mortality, and a promising target for immunotherapy.


Asunto(s)
Carga Bacteriana , Proteínas y Péptidos de Choque por Frío , Citocinas , Proteínas de Unión al ARN , Animales , Masculino , Ratas , Líquido del Lavado Bronquioalveolar/inmunología , Líquido del Lavado Bronquioalveolar/microbiología , Citocinas/metabolismo , Citocinas/sangre , Modelos Animales de Enfermedad , Mediadores de Inflamación/metabolismo , Interleucina-1beta/metabolismo , Interleucina-1beta/sangre , Pulmón/microbiología , Pulmón/inmunología , Pulmón/patología , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/microbiología , Neumonía/microbiología , Neumonía/inmunología , Neumonía/metabolismo , Neumonía/mortalidad , Neumonía Bacteriana/inmunología , Neumonía Bacteriana/microbiología , Neumonía Bacteriana/mortalidad , Ratas Sprague-Dawley , Proteínas de Unión al ARN/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/sangre , Proteínas y Péptidos de Choque por Frío/genética , Proteínas y Péptidos de Choque por Frío/metabolismo
6.
Proc Natl Acad Sci U S A ; 121(23): e2319499121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38814867

RESUMEN

Plants and animals detect biomolecules termed microbe-associated molecular patterns (MAMPs) and induce immunity. Agricultural production is severely impacted by pathogens which can be controlled by transferring immune receptors. However, most studies use a single MAMP epitope and the impact of diverse multicopy MAMPs on immune induction is unknown. Here, we characterized the epitope landscape from five proteinaceous MAMPs across 4,228 plant-associated bacterial genomes. Despite the diversity sampled, natural variation was constrained and experimentally testable. Immune perception in both Arabidopsis and tomato depended on both epitope sequence and copy number variation. For example, Elongation Factor Tu is predominantly single copy, and 92% of its epitopes are immunogenic. Conversely, 99.9% of bacterial genomes contain multiple cold shock proteins, and 46% carry a nonimmunogenic form. We uncovered a mechanism for immune evasion, intrabacterial antagonism, where a nonimmunogenic cold shock protein blocks perception of immunogenic forms encoded in the same genome. These data will lay the foundation for immune receptor deployment and engineering based on natural variation.


Asunto(s)
Arabidopsis , Epítopos , Solanum lycopersicum , Epítopos/inmunología , Solanum lycopersicum/inmunología , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , Arabidopsis/inmunología , Arabidopsis/genética , Genoma Bacteriano , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Inmunidad de la Planta/genética , Inmunidad de la Planta/inmunología , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/inmunología , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/genética , Bacterias/inmunología , Bacterias/genética , Proteínas y Péptidos de Choque por Frío/genética , Proteínas y Péptidos de Choque por Frío/inmunología , Proteínas y Péptidos de Choque por Frío/metabolismo
7.
Front Immunol ; 13: 994699, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36189232

RESUMEN

Cold-inducible RNA-binding-protein (CIRP) is a cold shock protein that plays a protective role in genotoxic stress response. CIRP modulates inflammation in human diseases, inhibits cell proliferation, and protects cells from genotoxic damage during cellular stress. The mild cold responsive element and specificity protein 1 (SP1) play a role in Cirp expression at low temperatures. Although previous studies have provided insights into the immune functions of SP1 or CIRP, the mechanisms by which CIRP and SP1 me diate inflammatory responses remain largely unknown. Therefore, in the current study, we examined whether Cirp expression is affected by genetic factors related to temperature sensitivity as well as under low temperature. We performed a genome-wide association study on cold sensitivity in 2,000 participants. Fifty-six genome-wide significant trait-locus pairs were identified (p<1×10-5, false discovery rate < 0.05). Among these variants, rs1117050 and rs11170510 had a strong linkage disequilibrium (r2 > 0.8) relationship and expression quantitative trait locus-associated signals with the nearest Sp1 gene. We confirmed that the minor alleles of rs11170510 and rs58123204 were associated with increased Sp1 expression. Additionally, Sp1 overexpression led to CIRP translocation from the nucleus to the cytoplasm. CIRP protein levels increased in serum samples that had minor alleles of rs11170510 and rs58123204. Levels of various pro-inflammatory cytokines were also significantly increased in human peripheral blood mononuclear cells with minor alleles of rs11170510 and rs58123204. These results suggest that genetic factors related to cold sensitivity regulate CIRP expression and function and provide valuable insights into prediction of potential diseases through analysis of inherent genetic factors in humans.


Asunto(s)
Proteínas y Péptidos de Choque por Frío , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al ARN , Proteínas y Péptidos de Choque por Frío/genética , Proteínas y Péptidos de Choque por Frío/metabolismo , Citocinas/genética , Citocinas/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Leucocitos Mononucleares/metabolismo , ARN , Proteínas de Unión al ARN/metabolismo , Factor de Transcripción Sp1/genética , Factor de Transcripción Sp1/metabolismo
8.
Infect Immun ; 90(10): e0037622, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36121221

RESUMEN

Acinetobacter baumannii is a formidable opportunistic pathogen that is notoriously difficult to eradicate from hospital settings. This resilience is often attributed to a proclivity for biofilm formation, which facilitates a higher tolerance toward external stress, desiccation, and antimicrobials. Despite this, little is known regarding the mechanisms orchestrating A. baumannii biofilm formation. Here, we performed RNA sequencing (RNA-seq) on biofilm and planktonic populations for the multidrug-resistant isolate AB5075 and identified 438 genes with altered expression. To assess the potential role of genes upregulated within biofilms, we tested the biofilm-forming capacity of their respective mutants from an A. baumannii transposon library. In so doing, we uncovered 24 genes whose disruption led to reduced biofilm formation. One such element, cold shock protein C (cspC), had a highly mucoid colony phenotype, enhanced tolerance to polysaccharide degradation, altered antibiotic tolerance, and diminished adherence to abiotic surfaces. RNA-seq of the cspC mutant revealed 201 genes with altered expression, including the downregulation of pili and fimbria genes and the upregulation of multidrug efflux pumps. Using transcriptional arrest assays, it appears that CspC mediates its effects, at least in part, through RNA chaperone activity, influencing the half-life of several important transcripts. Finally, we show that CspC is required for survival during challenge by the human immune system and is key for A. baumannii dissemination and/or colonization during systemic infection. Collectively, our work identifies a cadre of new biofilm-associated genes within A. baumannii and provides unique insight into the global regulatory network of this emerging human pathogen.


Asunto(s)
Acinetobacter baumannii , Humanos , Acinetobacter baumannii/metabolismo , Antibacterianos/farmacología , Biopelículas , Proteínas y Péptidos de Choque por Frío/genética , Proteínas y Péptidos de Choque por Frío/metabolismo , Polisacáridos/metabolismo , Proteína C/metabolismo , Proteína C/farmacología , ARN/metabolismo , Virulencia/genética
9.
J Cell Physiol ; 237(10): 3788-3802, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35926117

RESUMEN

RNA-binding motif protein 3 (RBM3), an outstanding cold shock protein, is rapidly upregulated to ensure homeostasis and survival in a cold environment, which is an important physiological mechanism in response to cold stress. Meanwhile, RBM3 has multiple physiological functions and participates in the regulation of various cellular physiological processes, such as antiapoptosis, circadian rhythm, cell cycle, reproduction, and tumogenesis. The structure, conservation, and tissue distribution of RBM3 in human are demonstrated in this review. Herein, the multiple physiological functions of RBM3 were summarized based on recent research advances. Meanwhile, the cytoprotective mechanism of RBM3 during stress under various adverse conditions and its regulation of transcription were discussed. In addition, the neuroprotection of RBM3 and its oncogenic role and controversy in various cancers were investigated in our review.


Asunto(s)
Proteínas y Péptidos de Choque por Frío , Hipotermia , Proteínas y Péptidos de Choque por Frío/genética , Proteínas y Péptidos de Choque por Frío/metabolismo , Frío , Respuesta al Choque por Frío , Humanos , Hipotermia/metabolismo , Neuroprotección , Proteínas de Unión al ARN/metabolismo
10.
mSystems ; 7(4): e0008622, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35695420

RESUMEN

The RNA chaperones, cold shock proteins CspC and CspE, are important in stress response and adaptation. We studied their role in the pathogenesis of a virulent Escherichia coli, representative of extraintestinal pathogenic E. coli (ExPEC) which are serum resistant and septicemic. We performed a global analysis to identify transcripts that interact with these cold shock proteins (CSPs), focusing on virulence-related genes. We used CLIP-seq, which combines UV cross-linking, immunoprecipitation and RNA sequencing. A large number of transcripts bound to the CSPs were identified, and many bind both CspC and CspE. Many transcripts were of genes involved in protein synthesis, transcription and energy metabolism. In addition, there were virulence-related genes, (i.e., fur and ryhB), essential for iron homeostasis. The CLIP-seq results were validated on two transcripts, clpX and tdcA, reported as virulence-associated. Deletion of either CspC or CspE significantly decreased their transcript levels and in a double deletion mutant cspC/cspE, the transcript stability of tdcA and clpX was reduced by 32-fold and 10-fold, respectively. We showed that these two genes are important for virulence, as deleting either of them resulted in loss of serum resistance, a requirement for sepsis. As several virulence-related transcripts interact with CspC or CspE, we determined the importance of these proteins for growth in serum and showed that deletion of either gene significantly reduced serum survival. This phenotype could be partially complemented by cspE and fully complemented by cspC. These results indicate that the two RNA chaperones are essential for virulence, and that CspC particularly critical. IMPORTANCE Virulent Escherichia coli strains that cause infections outside the intestinal tract-extraintestinal pathogenic E. coli (ExPEC)-constitute a major clinical problem worldwide. They are involved in several distinct conditions, including urinary tract infections, newborn meningitis, and sepsis. Due to increasing antibiotic resistance, these strains are a main factor in hospital and community-acquired infections. Because many strains, which do not cross-react immunologically are involved, developing a simple vaccine is not possible. Therefore, it is essential to understand the pathogenesis of these bacteria to identify potential targets for developing drugs or vaccines. One of the least investigated systems involves RNA binding proteins, important for stability of transcripts and global gene regulation. Two such proteins are CspC and CspE ("cold shock proteins"), RNA chaperones involved in stress adaptation. Here we performed a global analysis to identify the transcripts which are affected by these two chaperones, with focus on virulence-associated transcripts.


Asunto(s)
Proteínas de Escherichia coli , Sepsis , Humanos , Escherichia coli/genética , Proteínas y Péptidos de Choque por Frío/genética , Proteínas de Escherichia coli/genética , Respuesta al Choque por Frío/genética , Proteínas de Choque Térmico/genética , ARN Bacteriano/genética , Sepsis/genética
11.
Fungal Genet Biol ; 161: 103698, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35483517

RESUMEN

Fungi of the order Pucciniales are obligate plant biotrophs causing rust diseases. They exhibit a complex life cycle with the production of up to five spore types, infection of two unrelated hosts and an overwintering stage. Transcription factors (TFs) are key regulators of gene expression in eukaryote cells. In order to better understand genetic programs expressed during major transitions of the rust life cycle, we surveyed the complement of TFs in fungal genomes with an emphasis on Pucciniales. We found that despite their large gene numbers, rust genomes have a reduced repertoire of TFs compared to other fungi. The proportions of C2H2 and Zinc cluster - two of the most represented TF families in fungi - indicate differences in their evolutionary relationships in Pucciniales and other fungal taxa. The regulatory gene family encoding cold shock protein (CSP) showed a striking expansion in Pucciniomycotina with specific duplications in the order Pucciniales. The survey of expression profiles collected by transcriptomics along the life cycle of the poplar rust fungus revealed TF genes related to major biological transitions, e.g. response to environmental cues and host infection. Particularly, poplar rust CSPs were strongly expressed in basidia produced after the overwintering stage suggesting a possible role in dormancy exit. Expression during transition from dormant telia to basidia confirmed the specific expression of the three poplar rust CSP genes. Their heterologous expression in yeast improved cell growth after cold stress exposure, suggesting a probable regulatory function when the poplar rust fungus exits dormancy. This study addresses for the first time TF and regulatory genes involved in developmental transition in the rust life cycle opening perspectives to further explore molecular regulation in the biology of the Pucciniales.


Asunto(s)
Basidiomycota , Populus , Animales , Basidiomycota/genética , Proteínas y Péptidos de Choque por Frío/genética , Proteínas y Péptidos de Choque por Frío/metabolismo , Estadios del Ciclo de Vida , Enfermedades de las Plantas/microbiología , Populus/microbiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma/genética
12.
EMBO J ; 41(4): e109175, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34994471

RESUMEN

Cellular proteins begin to fold as they emerge from the ribosome. The folding landscape of nascent chains is not only shaped by their amino acid sequence but also by the interactions with the ribosome. Here, we combine biophysical methods with cryo-EM structure determination to show that folding of a ß-barrel protein begins with formation of a dynamic α-helix inside the ribosome. As the growing peptide reaches the end of the tunnel, the N-terminal part of the nascent chain refolds to a ß-hairpin structure that remains dynamic until its release from the ribosome. Contacts with the ribosome and structure of the peptidyl transferase center depend on nascent chain conformation. These results indicate that proteins may start out as α-helices inside the tunnel and switch into their native folds only as they emerge from the ribosome. Moreover, the correlation of nascent chain conformations with reorientation of key residues of the ribosomal peptidyl-transferase center suggest that protein folding could modulate ribosome activity.


Asunto(s)
Proteínas y Péptidos de Choque por Frío/química , Proteínas y Péptidos de Choque por Frío/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Dicroismo Circular , Proteínas y Péptidos de Choque por Frío/genética , Microscopía por Crioelectrón , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Modelos Moleculares , Biosíntesis de Proteínas , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Pliegue de Proteína , Procesamiento Proteico-Postraduccional , Ribosomas/genética , Ribosomas/metabolismo
13.
Protein Pept Lett ; 29(2): 133-142, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34791998

RESUMEN

The organism responds to a decrease in temperature by producing a series of cold shock proteins (CSPs). These proteins play a critical role in growing and functioning characteristics at low temperatures. CSPs have been discovered in a wide range of organisms and have shown enormous diversity; their mechanisms of action are also complicated. Transcription and translation in microorganisms typically occur via a single linear chain, but upon exposure to low temperatures, RNA forms a complex secondary structure that prevents ribosomes from binding to it, thus slowing down translation. CSPs bind to mRNA as RNA molecular chaperones to keep the mRNA secondary structure in a single-stranded linear conformation, allowing successful translation at low temperatures.


Asunto(s)
Proteínas Bacterianas , Proteínas y Péptidos de Choque por Frío , Proteínas Bacterianas/metabolismo , Proteínas y Péptidos de Choque por Frío/genética , Estructura Secundaria de Proteína , ARN , ARN Mensajero
14.
Microbiol Spectr ; 9(3): e0159121, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34787465

RESUMEN

Bacterial cold shock-domain proteins are conserved nucleic acid binding chaperones that play important roles in stress adaptation and pathogenesis. Csp1 is a temperature-independent cold shock protein homolog in Xylella fastidiosa, a bacterial plant pathogen of grapevine and other economically important crops. Csp1 contributes to stress tolerance and virulence in X. fastidiosa. However, besides general single-stranded nucleic acid binding activity, little is known about the specific function(s) of Csp1. To further investigate the role(s) of Csp1, we compared phenotypic differences and transcriptome profiles between the wild type and a csp1 deletion mutant (Δcsp1). Csp1 contributes to attachment and long-term survival and influences gene expression. We observed reduced cell-to-cell attachment and reduced attachment to surfaces with the Δcsp1 strain compared to those with the wild type. Transmission electron microscopy imaging revealed that Δcsp1 was deficient in pili formation compared to the wild type and complemented strains. The Δcsp1 strain also showed reduced survival after long-term growth in vitro. Long-read nanopore transcriptome sequencing (RNA-Seq) analysis revealed changes in expression of several genes important for attachment and biofilm formation in Δcsp1 compared to that in the wild type. One gene of interest, pilA1, which encodes a type IV pili subunit protein, was upregulated in Δcsp1. Deleting pilA1 in X. fastidiosa strain Stag's Leap increased surface attachment in vitro and reduced virulence in grapevines. X. fastidiosa virulence depends on bacterial attachment to host tissue and movement within and between xylem vessels. Our results show that the impact of Csp1 on virulence may be due to changes in expression of attachment genes. IMPORTANCE Xylella fastidiosa is a major threat to the worldwide agriculture industry. Despite its global importance, many aspects of X. fastidiosa biology and pathogenicity are poorly understood. There are currently few effective solutions to suppress X. fastidiosa disease development or eliminate bacteria from infected plants. Recently, disease epidemics due to X. fastidiosa have greatly expanded, increasing the need for better disease prevention and control strategies. Our studies show a novel connection between cold shock protein Csp1 and pili abundance and attachment, which have not been reported for X. fastidiosa. Understanding how pathogenesis-related gene expression is regulated can aid in developing novel pathogen and disease control strategies. We also streamlined a bioinformatics protocol to process and analyze long-read nanopore bacterial RNA-Seq data, which will benefit the research community, particularly those working with non-model bacterial species.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas y Péptidos de Choque por Frío/genética , Proteínas y Péptidos de Choque por Frío/metabolismo , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Xylella/genética , Xylella/metabolismo , Adaptación Fisiológica , Proteínas Bacterianas/genética , Biopelículas/crecimiento & desarrollo , Genes Bacterianos/genética , Mutación , Enfermedades de las Plantas/microbiología , Virulencia/genética , Factores de Virulencia/genética , Xilema/metabolismo
15.
Plant Physiol Biochem ; 168: 83-92, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34627025

RESUMEN

As RNA chaperones, cold shock proteins (CSPs) are essential for cold adaptation. Although the functions of CSPs in cold response have been demonstrated in several species, the roles of CSPs in response to drought are largely unknown. Here, we demonstrated that MdCSP3, a downstream target gene of MdMYB88 and MdMYB124, contributes to drought tolerance in apple (Malus × domestica). MdCSP3 responds to various abiotic stresses, including drought, cold, heat, and salt stress. Compared with non-transgenic apple GL-3, the MdCSP3 overexpressing plants exhibit significantly lower drought resistance and a reduced capacity for ROS scavenging by the regulation of antioxidant enzymes SOD, CAT, and POD. Additionally, RNA-seq data shows that MdCSP3 regulates expression of genes involved in oxidative stress response. Taken together, our results demonstrate the functions of MdCSP3 in apple drought tolerance, and this finding provides a new direction for breeding of drought resistant apple.


Asunto(s)
Malus , Proteínas y Péptidos de Choque por Frío/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Malus/genética , Malus/metabolismo , Estrés Oxidativo , Fitomejoramiento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico
16.
Nucleic Acids Res ; 49(6): 3427-3440, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33693785

RESUMEN

Lateral gene transfer (LGT) plays a key role in shaping the genome evolution and environmental adaptation of bacteria. Xenogeneic silencing is crucial to ensure the safe acquisition of LGT genes into host pre-existing regulatory networks. We previously found that the host nucleoid structuring protein (H-NS) silences prophage CP4So at warm temperatures yet enables this prophage to excise at cold temperatures in Shewanella oneidensis. However, whether H-NS silences other genes and how bacteria modulate H-NS to regulate the expression of genes have not been fully elucidated. In this study, we discovered that the H-NS silences many LGT genes and the xenogeneic silencing of H-NS relies on a temperature-dependent phosphorylation at warm temperatures in S. oneidensis. Specifically, phosphorylation of H-NS at Ser42 is critical for silencing the cold-inducible genes including the excisionase of CP4So prophage, a cold shock protein, and a stress-related chemosensory system. By contrast, nonphosphorylated H-NS derepresses the promoter activity of these genes/operons to enable their expression at cold temperatures. Taken together, our results reveal that the posttranslational modification of H-NS can function as a regulatory switch to control LGT gene expression in host genomes to enable the host bacterium to react and thrive when environmental temperature changes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Silenciador del Gen , Procesamiento Proteico-Postraduccional , Shewanella/genética , Temperatura , Proteínas Bacterianas/química , Proteínas y Péptidos de Choque por Frío/genética , Proteínas de Unión al ADN/química , Transferencia de Gen Horizontal , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Profagos/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Shewanella/metabolismo
17.
Funct Plant Biol ; 48(5): 542-555, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33487217

RESUMEN

In this study, label-free quantitative proteomics were used to study cold stress-related proteins in Dongxiang wild rice (Oryza rufipogon Griff., DWR) and cold sensitive cultivated rice 'Xieqingzao B'(Oryza sativa L. ssp. indica cv., XB). The results demonstrated the presence of 101 and 216 differentially expressed proteins (DEPs) were detected in DWR and XB, respectively, after cold stress. Bioinformatics analysis showed that DWR and XB differed significantly in their ability to scavenge reactive oxygen species (ROS) and regulate energy metabolism. Of the 101 DEPs of DWR, 46 DEPs related to differential expressed genes were also detected by transcriptome analysis. And 13 out of 101 DEPs were located in previous cold related quantitative trait loci (QTL). Quantitative real-time PCR analysis indicated that protein expression and transcription patterns were not similar in XB and DWR. Protein-protein interaction (PPI) network was constituted using the DEPs of DWR and XB, and the following three centre proteins were identified: Q8H3I3, Q9LDN2, and Q2QXR8. Next, we selected a centre protein and two of the 37 DEPs with high levels of differential expression (fold change ≥ 2) were used for cloning and prokaryotic expression. We found that Q5Z9Q8 could significantly improve the cold tolerance of Escherichia coli.


Asunto(s)
Oryza , Proteínas y Péptidos de Choque por Frío/genética , Respuesta al Choque por Frío , Oryza/genética , Proteómica , Plantones/genética
18.
J Biomol Struct Dyn ; 39(3): 841-850, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31959085

RESUMEN

Cold shock domain (CSD) proteins with nucleic acid binding properties are well conserved from bacteria to higher organisms. In bacteria, the cold shock proteins (CSPs) are single domain RNA chaperones, whereas in animals and plants, CSDs are accompanied by additional domains with roles in transcription regulation. Bacterial CSPs (Escherischia coli-cspA and Bacilus subtilis-cspB) have successfully imparted drought tolerance in transgenic plants; however, these cannot be deployed in food crops due to their low public acceptance of transgenics with bacterial genes. Therefore, this study aimed to identify CSPB-like proteins from plants that can be used for developing drought tolerant transgenic crops. Twelve single domain plant CSPs presenting >40% sequence identity with CSPB were identified. All 12 plant CSPs were modeled by homology modeling and refined by molecular dynamics simulation for 10 ns. Selected plant CSPs and CSPB exhibited high structural similarity (Tm-score: 0.63-0.86). Structure based phylogenetic analysis revealed that Triticum aestivum-csp1 and Aegilops tauschii-cspE are structurally closer to CSPB compared to their orthologs and paralogs. Molecular docking with three RNA molecules (5U, UC3U, and C2UC) indicates that Ricinus communis-csd1 and T. aestivum-csp1 have a binding pattern and docking scores similar to those of CSPB. Furthermore, MD simulations for 20 ns and analysis of RMSD, RMSF, Rg as well as the number of hydrogen bonds in all the three complexes revealed that plant CSP-RNA complexes behave in a similar manner to that of the CSPB-RNA complex, making them highly potential candidate genes for developing drought tolerance in transgenic plants. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Bacillus subtilis , Proteínas y Péptidos de Choque por Frío , Bacillus subtilis/genética , Proteínas Bacterianas/genética , Secuencia de Bases , Proteínas y Péptidos de Choque por Frío/genética , Frío , Respuesta al Choque por Frío , Simulación del Acoplamiento Molecular , Filogenia , ARN de Planta
19.
Malar J ; 19(1): 382, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-33109193

RESUMEN

The cold shock domain (CSD) forms the hallmark of the cold shock protein family that provides the characteristic feature of binding with nucleic acids. While much of the information is available on bacterial, plants and human cold shock proteins, their existence and functions in the malaria parasite remains undefined. In the present review, the available information on functions of well-characterized cold shock protein members in different organisms has been collected and an attempt was made to identify the presence and role of cold shock proteins in malaria parasite. A single Plasmodium falciparum cold shock protein (PfCoSP) was found in P. falciparum which is reported to be essential for parasite survival. Essentiality of PfCoSP underscores its importance in malaria parasite life cycle. In silico tools were used to predict the features of PfCoSP and to identify its homologues in bacteria, plants, humans, and other Plasmodium species. Modelled structures of PfCoSP and its homologues in Plasmodium species were compared with human cold shock protein 'YBOX-1' (Y-box binding protein 1) that provide important insights into their functioning. PfCoSP model was subjected to docking with B-form DNA and RNA to reveal a number of residues crucial for their interaction. Transcriptome analysis and motifs identified in PfCoSP implicate its role in controlling gene expression at gametocyte, ookinete and asexual blood stages of malaria parasite. Overall, this review emphasizes the functional diversity of the cold shock protein family by discussing their known roles in gene expression regulation, cold acclimation, developmental processes like flowering transition, and flower and seed development, and probable function in gametocytogenesis in case of malaria parasite. This enables readers to view the cold shock protein family comprehensively.


Asunto(s)
Proteínas y Péptidos de Choque por Frío/genética , Regulación de la Expresión Génica , Pleiotropía Genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Secuencia de Aminoácidos , Proteínas y Péptidos de Choque por Frío/química , Proteínas y Péptidos de Choque por Frío/metabolismo , Perfilación de la Expresión Génica , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Alineación de Secuencia
20.
Int J Mol Sci ; 21(20)2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33081309

RESUMEN

The biofilm-producing strains of P. aeruginosa colonize various surfaces, including food products and industry equipment that can cause serious human and animal health problems. The biofilms enable microorganisms to evolve the resistance to antibiotics and disinfectants. Analysis of the P. aeruginosa strain (serotype O6, sequence type 2502), isolated from an environment of meat processing (PAEM) during a ready-to-cook product storage (-20 °C), showed both the mosaic similarity and differences between free-living and clinical strains by their coding DNA sequences. Therefore, a cold shock protein (CspA) has been suggested for consideration of the evolution probability of the cold-adapted P. aeruginosa strains. In addition, the study of the action of cold-active enzymes from marine bacteria against the food-derived pathogen could contribute to the methods for controlling P. aeruginosa biofilms. The genes responsible for bacterial biofilm regulation are predominantly controlled by quorum sensing, and they directly or indirectly participate in the synthesis of extracellular polysaccharides, which are the main element of the intercellular matrix. The levels of expression for 14 biofilm-associated genes of the food-derived P. aeruginosa strain PAEM in the presence of different concentrations of the glycoside hydrolase of family 36, α-galactosidase α-PsGal, from the marine bacterium Pseudoalteromonas sp. KMM 701 were determined. The real-time PCR data clustered these genes into five groups according to the pattern of positive or negative regulation of their expression in response to the action of α-galactosidase. The results revealed a dose-dependent mechanism of the enzymatic effect on the PAEM biofilm synthesis and dispersal genes.


Asunto(s)
Biopelículas , Microbiología de Alimentos , Genes Bacterianos , Pseudomonas aeruginosa/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas y Péptidos de Choque por Frío/genética , Proteínas y Péptidos de Choque por Frío/metabolismo , Productos de la Carne/microbiología , Pseudomonas aeruginosa/aislamiento & purificación , Pseudomonas aeruginosa/fisiología , Percepción de Quorum , alfa-Galactosidasa/genética , alfa-Galactosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA