Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73.494
Filtrar
1.
Elife ; 132024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38752835

RESUMEN

Hibernation is a period of metabolic suppression utilized by many small and large mammal species to survive during winter periods. As the underlying cellular and molecular mechanisms remain incompletely understood, our study aimed to determine whether skeletal muscle myosin and its metabolic efficiency undergo alterations during hibernation to optimize energy utilization. We isolated muscle fibers from small hibernators, Ictidomys tridecemlineatus and Eliomys quercinus and larger hibernators, Ursus arctos and Ursus americanus. We then conducted loaded Mant-ATP chase experiments alongside X-ray diffraction to measure resting myosin dynamics and its ATP demand. In parallel, we performed multiple proteomics analyses. Our results showed a preservation of myosin structure in U. arctos and U. americanus during hibernation, whilst in I. tridecemlineatus and E. quercinus, changes in myosin metabolic states during torpor unexpectedly led to higher levels in energy expenditure of type II, fast-twitch muscle fibers at ambient lab temperatures (20 °C). Upon repeating loaded Mant-ATP chase experiments at 8 °C (near the body temperature of torpid animals), we found that myosin ATP consumption in type II muscle fibers was reduced by 77-107% during torpor compared to active periods. Additionally, we observed Myh2 hyper-phosphorylation during torpor in I. tridecemilineatus, which was predicted to stabilize the myosin molecule. This may act as a potential molecular mechanism mitigating myosin-associated increases in skeletal muscle energy expenditure during periods of torpor in response to cold exposure. Altogether, we demonstrate that resting myosin is altered in hibernating mammals, contributing to significant changes to the ATP consumption of skeletal muscle. Additionally, we observe that it is further altered in response to cold exposure and highlight myosin as a potentially contributor to skeletal muscle non-shivering thermogenesis.


Many animals use hibernation as a tactic to survive harsh winters. During this dormant, inactive state, animals reduce or limit body processes, such as heart rate and body temperature, to minimise their energy use. To conserve energy during hibernation, animals can use different approaches. For example, garden dormice undergo periodic states of extremely low core temperatures (down to 4­8oC); whereas Eurasian brown bears see milder temperature drops (down to 23­25oC). An important organ that changes during hibernation is skeletal muscle. Skeletal muscle typically uses large amounts of energy, making up around 50% of body mass. To survive, hibernating animals must change how their skeletal muscle uses energy. Traditionally, active myosin ­ a protein found in muscles that helps muscles to contract ­ was thought to be responsible for most of the energy use by skeletal muscle. But, more recently, resting myosin has also been found to use energy when muscles are relaxed. Lewis et al. studied myosin and skeletal muscle energy use changes during hibernation and whether they could impact the metabolism of hibernating animals. Lewis et al. assessed myosin changes in muscle samples from squirrels, dormice and bears during hibernation and during activity. Experiments showed changes in resting myosin in squirrels and dormice (whose temperature drops to 4­8oC during hibernation) but not in bears. Further analysis revealed that cooling samples from non-hibernating muscle to 4­8oC increased energy use in resting myosin, thereby generating heat. However, no increase in energy use was found after cooling hibernating muscle samples to 4­8oC. This suggest that resting myosin generates heat at cool temperatures ­ a mechanism that is switched off in hibernating animals to allow them to cool their body temperature. These findings reveal key insights into how animals conserve energy during hibernation. In addition, the results show that myosin regulates energy use in skeletal muscles, which indicates myosin may be a potential drug target in metabolic diseases, such as obesity.


Asunto(s)
Hibernación , Animales , Hibernación/fisiología , Metabolismo Energético , Miosinas del Músculo Esquelético/metabolismo , Ursidae/metabolismo , Ursidae/fisiología , Adenosina Trifosfato/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Fibras Musculares Esqueléticas/metabolismo , Proteómica
2.
Mol Cell ; 84(10): 1904-1916.e7, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38759626

RESUMEN

Many types of human cancers suppress the expression of argininosuccinate synthase 1 (ASS1), a rate-limiting enzyme for arginine production. Although dependency on exogenous arginine can be harnessed by arginine-deprivation therapies, the impact of ASS1 suppression on the quality of the tumor proteome is unknown. We therefore interrogated proteomes of cancer patients for arginine codon reassignments (substitutants) and surprisingly identified a strong enrichment for cysteine (R>C) in lung tumors specifically. Most R>C events did not coincide with genetically encoded R>C mutations but were likely products of tRNA misalignments. The expression of R>C substitutants was highly associated with oncogenic kelch-like epichlorohydrin (ECH)-associated protein 1 (KEAP1)-pathway mutations and suppressed by intact-KEAP1 in KEAP1-mutated cancer cells. Finally, functional interrogation indicated a key role for R>C substitutants in cell survival to cisplatin, suggesting that regulatory codon reassignments endow cancer cells with more resilience to stress. Thus, we present a mechanism for enriching lung cancer proteomes with cysteines that may affect therapeutic decisions.


Asunto(s)
Arginina , Cisteína , Proteína 1 Asociada A ECH Tipo Kelch , Neoplasias Pulmonares , Proteoma , Humanos , Cisteína/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteoma/metabolismo , Arginina/metabolismo , Mutación , Argininosuccinato Sintasa/metabolismo , Argininosuccinato Sintasa/genética , Cisplatino/farmacología , Línea Celular Tumoral , Proteómica/métodos , Regulación Neoplásica de la Expresión Génica , Supervivencia Celular/efectos de los fármacos , ARN de Transferencia/metabolismo , ARN de Transferencia/genética
3.
BMC Genomics ; 25(1): 500, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773374

RESUMEN

BACKGROUND: The ricefield eel Monopterus albus undergoes a natural sex change from female to male during its life cycle, and previous studies have shown the potential mechanisms of this transition at the transcriptional and protein levels. However, the changes in protein levels have not been fully explored, especially in the intersexual stage. RESULTS: In the present study, the protein expression patterns in the gonadal tissues from five different periods, the ovary (OV), early intersexual stage gonad (IE), middle intersexual stage gonad (IM), late intersexual stage gonad (IL), and testis (TE), were determined by untargeted proteomics sequencing. A total of 5125 proteins and 394 differentially expressed proteins (DEPs) were detected in the gonadal tissues. Of the 394 DEPs, there were 136 between the OV and IE groups, 20 between the IM and IE groups, 179 between the IL and IM groups, and 59 between the TE and IL groups. Three candidate proteins, insulin-like growth factor 2 mRNA-binding protein 3 isoform X1 (Igf2bp3), triosephosphate isomerase (Tpi), and Cu-Zn superoxide dismutase isoform X1 [(Cu-Zn) Sod1], were validated by western blotting to verify the reliability of the data. Furthermore, metal metabolite-related proteins were enriched in the IL vs. IM groups and TE vs. IL groups, which had close relationships with sex change, including Cu2+-, Ca2+-, Zn2+- and Fe2+/Fe3+-related proteins. Analysis of the combined transcriptome data revealed consistent protein/mRNA expression trends for two metal metabolite-related proteins/genes [LOC109953912 and calcium Binding Protein 39 Like (cab39l)]. Notably, we detected significantly higher levels of Cu2+ during the sex change process, suggesting that Cu2+ is a male-related metal metabolite that may have an important function in male reproductive development. CONCLUSIONS: In summary, we analyzed the protein profiles of ricefield eel gonadal tissues in five sexual stages (OV, IE, IM, IL, and TE) and verified the plausibility of the data. After preforming the functional enrichment of metal metabolite-related DEPs, we detected the contents of the metal metabolites Zn2+, Cu2+, Ca2+, and Fe2+/Fe3+ at these five stages and screened for (Cu-Zn) Sod1 and Mmp-9 as possible key proteins in the sex reversal process.


Asunto(s)
Metales , Animales , Masculino , Femenino , Metales/metabolismo , Anguilas/metabolismo , Anguilas/genética , Proteómica , Proteínas de Peces/metabolismo , Proteínas de Peces/genética , Smegmamorpha/metabolismo , Smegmamorpha/genética , Organismos Hermafroditas/metabolismo , Organismos Hermafroditas/genética , Perfilación de la Expresión Génica , Testículo/metabolismo
4.
BMC Genomics ; 25(1): 503, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38773393

RESUMEN

BACKGROUND: While numerous allergy-related biomarkers and targeted treatment strategies have been developed and employed, there are still signifcant limitations and challenges in the early diagnosis and targeted treatment for allegic diseases. Our study aims to identify circulating proteins causally associated with allergic disease-related traits through Mendelian randomization (MR)-based analytical framework. METHODS: Large-scale cis-MR was employed to estimate the effects of thousands of plasma proteins on five main allergic diseases. Additional analyses including MR Steiger analyzing and Bayesian colocalisation, were performed to test the robustness of the associations; These findings were further validated utilizing meta-analytical methods in the replication analysis. Both proteome- and transcriptome-wide association studies approach was applied, and then, a protein-protein interaction was conducted to examine the interplay between the identified proteins and the targets of existing medications. RESULTS: Eleven plasma proteins were identified with links to atopic asthma (AA), atopic dermatitis (AD), and allergic rhinitis (AR). Subsequently, these proteins were classified into four distinct target groups, with a focus on tier 1 and 2 targets due to their higher potential to become drug targets. MR analysis and extra validation revealed STAT6 and TNFRSF6B to be Tier 1 and IL1RL2 and IL6R to be Tier 2 proteins with the potential for AA treatment. Two Tier 1 proteins, CRAT and TNFRSF6B, and five Tier 2 proteins, ERBB3, IL6R, MMP12, ICAM1, and IL1RL2, were linked to AD, and three Tier 2 proteins, MANF, STAT6, and TNFSF8, to AR. CONCLUSION: Eleven Tier 1 and 2 protein targets that are promising drug target candidates were identified for AA, AD, and AR, which influence the development of allergic diseases and expose new diagnostic and therapeutic targets.


Asunto(s)
Biomarcadores , Proteínas Sanguíneas , Hipersensibilidad , Análisis de la Aleatorización Mendeliana , Proteómica , Humanos , Proteómica/métodos , Biomarcadores/sangre , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/análisis , Hipersensibilidad/genética , Hipersensibilidad/sangre , Teorema de Bayes , Estudio de Asociación del Genoma Completo
5.
J Tradit Chin Med ; 44(3): 554-563, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38767640

RESUMEN

OBJECTIVE: To investigate the underlying protein molecular mechanisms of "Qi stagnation and blood stasis syndrome" (QS) and "Qi deficiency and blood stasis syndrome" (QD), as two subtypes of coronary artery disease (CAD) in Traditional Chinese Medicine (TCM), following percutaneous coronary intervention (PCI). METHODS: In this study, a total of 227 CAD patients with QS and 211 CAD patients with QD were enrolled; all participants underwent PCI. Label-free quantification proteomics were employed to analyze the changes in serum in two subtypes of CAD patients before and 6 months after PCI, aiming to elucidate the intervention mechanism of PCI in treating CAD characterized by two different TCM syndromes. RESULTS: Biochemical analysis revealed significant changes in tumor necrosis factor-α, high density lipoprotein cholesterol, blood stasis clinical symptoms observation, and Gensini levels in both patient groups post-PCI; Proteomic analysis identified 79 and 95 differentially expressed proteins in the QS and QD patient groups, respectively, compared to their control groups. complement C8 alpha chain, complement factor H, apolipoprotein H, apolipoprotein B, plasminogen, carbonic anhydrase 2, and complement factor I were altered in both comparison groups. Furthermore, enrichment analysis demonstrated that cell adhesion and connectivity-related processes underwent changes in QS patients post-PCI, whereas lipid metabolism-related pathways, including the peroxisome proliferator-activated receptor signaling pathway and extracellular matrix receptor interaction, underwent changes in the QD group. The protein-protein interaction network analysis further enriched 52 node proteins, including apolipoprotein B, lipoprotein (a), complement C5, apolipoprotein A4, complement C8 alpha chain, complement C8 beta chain, complement C8 gamma chain, apolipoprotein H, apolipoprotein A-Ⅱ, albumin, complement C4-B, apolipoprotein C3, among others. The functional network of these proteins is posited to contribute to the pathophysiology of CAD characterized by TCM syndromes. CONCLUSION: The current quantitative proteomic study has preliminarily identified biomarkers of CAD in different TCM subtypes treated with PCI, potentially laying the groundwork for understanding the protein profiles associated with the treatment of various TCM subtypes of CAD.


Asunto(s)
Enfermedad de la Arteria Coronaria , Medicina Tradicional China , Intervención Coronaria Percutánea , Proteómica , Humanos , Masculino , Femenino , Persona de Mediana Edad , Enfermedad de la Arteria Coronaria/metabolismo , Enfermedad de la Arteria Coronaria/cirugía , Enfermedad de la Arteria Coronaria/terapia , Enfermedad de la Arteria Coronaria/sangre , Anciano
6.
J Transl Med ; 22(1): 431, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715059

RESUMEN

BACKGROUND: In humans, two ubiquitously expressed N-myristoyltransferases, NMT1 and NMT2, catalyze myristate transfer to proteins to facilitate membrane targeting and signaling. We investigated the expression of NMTs in numerous cancers and found that NMT2 levels are dysregulated by epigenetic suppression, particularly so in hematologic malignancies. This suggests that pharmacological inhibition of the remaining NMT1 could allow for the selective killing of these cells, sparing normal cells with both NMTs. METHODS AND RESULTS: Transcriptomic analysis of 1200 NMT inhibitor (NMTI)-treated cancer cell lines revealed that NMTI sensitivity relates not only to NMT2 loss or NMT1 dependency, but also correlates with a myristoylation inhibition sensitivity signature comprising 54 genes (MISS-54) enriched in hematologic cancers as well as testis, brain, lung, ovary, and colon cancers. Because non-myristoylated proteins are degraded by a glycine-specific N-degron, differential proteomics revealed the major impact of abrogating NMT1 genetically using CRISPR/Cas9 in cancer cells was surprisingly to reduce mitochondrial respiratory complex I proteins rather than cell signaling proteins, some of which were also reduced, albeit to a lesser extent. Cancer cell treatments with the first-in-class NMTI PCLX-001 (zelenirstat), which is undergoing human phase 1/2a trials in advanced lymphoma and solid tumors, recapitulated these effects. The most downregulated myristoylated mitochondrial protein was NDUFAF4, a complex I assembly factor. Knockout of NDUFAF4 or in vitro cell treatment with zelenirstat resulted in loss of complex I, oxidative phosphorylation and respiration, which impacted metabolomes. CONCLUSIONS: Targeting of both, oxidative phosphorylation and cell signaling partly explains the lethal effects of zelenirstat in select cancer types. While the prognostic value of the sensitivity score MISS-54 remains to be validated in patients, our findings continue to warrant the clinical development of zelenirstat as cancer treatment.


Asunto(s)
Aciltransferasas , Neoplasias , Fosforilación Oxidativa , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/genética , Línea Celular Tumoral , Fosforilación Oxidativa/efectos de los fármacos , Aciltransferasas/metabolismo , Ácido Mirístico/metabolismo , Proteómica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Perfilación de la Expresión Génica , Multiómica
7.
BMC Vet Res ; 20(1): 179, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715123

RESUMEN

Salmonella infections pose a significant threat to animal and human health. Phytochemicals present a potential alternative treatment. Galla chinensis tannic acid (GCTA), a hydrolyzable polyphenolic compound, inhibits bacterial growth and demonstrates potential as an alternative or supplement to antibiotics to prevent Salmonella infections. However, little is known about the antimicrobial mechanism of GCTA against Salmonella. Here, we revealed 456 differentially expressed proteins upon GCTA treatment, impacting pathways related to DNA replication, repair, genomic stability, cell wall biogenesis, and lipid metabolism using TMT-labeled proteomic analysis. TEM analysis suggested altered bacterial morphology and structure post-treatment. A Salmonella-infected-mouse model indicated that GCTA administration improved inflammatory markers, alleviated intestinal histopathological alterations, and reduced Salmonella enterica serovar Enteritidis (S. Enteritidis) colonization in the liver and spleen of Salmonella-infected mice. The LD50 of GCTA was 4100 mg/kg with an oral single dose, vastly exceeding the therapeutic dose. Thus, GCTA exhibited antibacterial and anti-infective activity against S. Enteritidis. Our results provided insight into the molecular mechanisms of these antibacterial effects, and highlights the potential of GCTA as an alternative to antibiotics.


Asunto(s)
Proteómica , Salmonelosis Animal , Salmonella enteritidis , Taninos , Animales , Salmonella enteritidis/efectos de los fármacos , Ratones , Taninos/farmacología , Taninos/uso terapéutico , Salmonelosis Animal/tratamiento farmacológico , Salmonelosis Animal/microbiología , Femenino , Antibacterianos/uso terapéutico , Antibacterianos/farmacología , Ratones Endogámicos BALB C , Medicamentos Herbarios Chinos , Polifenoles
8.
Life Sci Alliance ; 7(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38719747

RESUMEN

The differential expression of plasma membrane proteins is integrally analyzed for their diagnosis, prognosis, and therapeutic applications in diverse clinical manifestations. Necessarily, distinct membrane protein enrichment methods and mass spectrometry platforms are employed for their global and relative quantitation. First of its kind to explore, we compiled membrane-associated proteomes in human and mouse systems into a database named, Resource of Experimental Membrane-Enriched Mass spectrometry-derived Proteome (REMEMProt). It currently hosts 14,626 proteins (9,507 proteins in Homo sapiens; 5,119 proteins in Mus musculus) with information on their membrane-protein enrichment methods, experimental/physiological context of detection in cells or tissues, transmembrane domain analysis, and their current attribution as biomarkers. Based on these annotations and the transmembrane domain analysis in proteins or their binary/complex protein-protein interactors, REMEMProt facilitates the assessment of the plasma membrane localization potential of proteins through batch query. A cross-study enrichment analysis platform is enabled in REMEMProt for comparative analysis of proteomes using novel/modified membrane enrichment methods and evaluation of methods for targeted enrichment of membrane proteins. REMEMProt data are made freely accessible to explore and download at https://rememprot.ciods.in/.


Asunto(s)
Biomarcadores , Bases de Datos de Proteínas , Proteínas de la Membrana , Proteoma , Proteómica , Humanos , Proteoma/metabolismo , Proteínas de la Membrana/metabolismo , Biomarcadores/metabolismo , Animales , Ratones , Proteómica/métodos , Membrana Celular/metabolismo , Espectrometría de Masas/métodos
10.
Geobiology ; 22(3): e12600, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725144

RESUMEN

Microbial sulfate reduction is central to the global carbon cycle and the redox evolution of Earth's surface. Tracking the activity of sulfate reducing microorganisms over space and time relies on a nuanced understanding of stable sulfur isotope fractionation in the context of the biochemical machinery of the metabolism. Here, we link the magnitude of stable sulfur isotopic fractionation to proteomic and metabolite profiles under different cellular energetic regimes. When energy availability is limited, cell-specific sulfate respiration rates and net sulfur isotope fractionation inversely covary. Beyond net S isotope fractionation values, we also quantified shifts in protein expression, abundances and isotopic composition of intracellular S metabolites, and lipid structures and lipid/water H isotope fractionation values. These coupled approaches reveal which protein abundances shift directly as a function of energy flux, those that vary minimally, and those that may vary independent of energy flux and likely do not contribute to shifts in S-isotope fractionation. By coupling the bulk S-isotope observations with quantitative proteomics, we provide novel constraints for metabolic isotope models. Together, these results lay the foundation for more predictive metabolic fractionation models, alongside interpretations of environmental sulfur and sulfate reducer lipid-H isotope data.


Asunto(s)
Desulfovibrio vulgaris , Proteómica , Isótopos de Azufre , Isótopos de Azufre/análisis , Isótopos de Azufre/metabolismo , Desulfovibrio vulgaris/metabolismo , Proteoma/metabolismo , Proteoma/análisis , Metabolismo Energético , Metaboloma , Proteínas Bacterianas/metabolismo , Oxidación-Reducción , Sulfatos/metabolismo
11.
J Mass Spectrom ; 59(6): e5034, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38726698

RESUMEN

Glycosylation is an incredibly common and diverse post-translational modification that contributes widely to cellular health and disease. Mass spectrometry is the premier technique to study glycoproteins; however, glycoproteomics has lagged behind traditional proteomics due to the challenges associated with studying glycosylation. For instance, glycans dissociate by collision-based fragmentation, thus necessitating electron-based fragmentation for site-localization. The vast glycan heterogeneity leads to lower overall abundance of each glycopeptide, and often, ion suppression is observed. One of the biggest issues facing glycoproteomics is the lack of reliable software for analysis, which necessitates manual validation and serves as a massive bottleneck in data processing. Here, I will discuss each of these challenges and some ways in which the field is attempting to address them, along with perspectives on how I believe we should move forward.


Asunto(s)
Glicómica , Glicoproteínas , Espectrometría de Masas , Proteómica , Proteómica/métodos , Glicómica/métodos , Espectrometría de Masas/métodos , Glicoproteínas/análisis , Glicoproteínas/química , Humanos , Glicosilación , Polisacáridos/análisis , Polisacáridos/química , Glicopéptidos/análisis , Glicopéptidos/química , Programas Informáticos , Procesamiento Proteico-Postraduccional , Animales
12.
J Sep Sci ; 47(9-10): e2400061, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38726749

RESUMEN

Determination of proteins from dried matrix spots using MS is an expanding research area. Mainly, the collected dried matrix sample is whole blood from a finger or heal prick, resulting in dried blood spots. However as other matrices such as plasma, serum, urine, and tear fluid also can be collected in this way, the term dried matrix spot is used as an overarching term. In this review, the focus is on advancements in the field made from 2017 up to 2023. In the first part reviews concerning the subject are discussed. After this, advancements made for clinical purposes are highlighted. Both targeted protein analyses, with and without the use of affinity extractions, as well as untargeted, global proteomic approaches are discussed. In the last part, both methodological advancements are being reviewed as well as the possibility to integrate sample preparation steps during the sample handling. The focus, of this so-called smart sampling, is on the incorporation of cell separation, proteolysis, and antibody-based affinity capture.


Asunto(s)
Pruebas con Sangre Seca , Espectrometría de Masas , Proteínas , Humanos , Cromatografía Liquida , Proteínas/análisis , Proteómica/métodos , Manejo de Especímenes , Cromatografía Líquida con Espectrometría de Masas
13.
Molecules ; 29(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731468

RESUMEN

Phosphorylation of tyrosine is the basic mode of protein function and signal transduction in organisms. This process is regulated by protein tyrosine kinases (PTKs) and protein tyrosinases (PTPs). Immunoreceptor tyrosine-based inhibition motif (ITIM) has been considered as regulating the PTP activity through the interaction with the partner proteins in the cell signal pathway. The ITIM sequences need to be phosphorylated first to active the downstream signaling proteins. To explore potential regulatory mechanisms, the ITIM sequences of two transmembrane immunoglobulin proteins, myelin P0 protein-related protein (PZR) and programmed death 1 (PD-1), were analyzed to investigate their interaction with proteins involved in regulatory pathways. We discovered that phosphorylated ITIM sequences can selectively interact with the tyrosine phosphatase SHP2. Specifically, PZR-N-ITIM (pY) may be critical in the interaction between the ITIM and SH2 domains of SHP2, while PD1-C-ITSM (pY) may play a key role in the interaction between the ITIM and SH2 domains of SHP2. Quite a few proteins were identified containing the SH2 domain, exhibiting phosphorylation-mediated interaction with PZR-ITIM. In this study, 14 proteins with SH2 structural domains were identified by GO analysis on 339 proteins associated to the affinity pull-down of PZR-N-ITIM (pY). Through the SH2 domains, these proteins may interact with PZR-ITIM in a phosphorylation-dependent manner.


Asunto(s)
Motivo de Inhibición del Inmunorreceptor Basado en Tirosina , Unión Proteica , Proteómica , Fosforilación , Humanos , Proteómica/métodos , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/química , Dominios Homologos src , Secuencia de Aminoácidos , Transducción de Señal , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/química
14.
Nat Commun ; 15(1): 3992, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734767

RESUMEN

Visual proteomics attempts to build atlases of the molecular content of cells but the automated annotation of cryo electron tomograms remains challenging. Template matching (TM) and methods based on machine learning detect structural signatures of macromolecules. However, their applicability remains limited in terms of both the abundance and size of the molecular targets. Here we show that the performance of TM is greatly improved by using template-specific search parameter optimization and by including higher-resolution information. We establish a TM pipeline with systematically tuned parameters for the automated, objective and comprehensive identification of structures with confidence 10 to 100-fold above the noise level. We demonstrate high-fidelity and high-confidence localizations of nuclear pore complexes, vaults, ribosomes, proteasomes, fatty acid synthases, lipid membranes and microtubules, and individual subunits inside crowded eukaryotic cells. We provide software tools for the generic implementation of our method that is broadly applicable towards realizing visual proteomics.


Asunto(s)
Microscopía por Crioelectrón , Tomografía con Microscopio Electrónico , Complejo de la Endopetidasa Proteasomal , Proteómica , Ribosomas , Programas Informáticos , Tomografía con Microscopio Electrónico/métodos , Microscopía por Crioelectrón/métodos , Ribosomas/ultraestructura , Ribosomas/metabolismo , Complejo de la Endopetidasa Proteasomal/ultraestructura , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/química , Humanos , Proteómica/métodos , Poro Nuclear/ultraestructura , Poro Nuclear/metabolismo , Microtúbulos/ultraestructura , Microtúbulos/metabolismo , Ácido Graso Sintasas/metabolismo , Aprendizaje Automático , Imagenología Tridimensional/métodos , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos
15.
Int J Biol Sci ; 20(7): 2339-2355, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725853

RESUMEN

Chronic cholestatic damage is associated to both accumulation of cytotoxic levels of bile acids and expansion of adult hepatic progenitor cells (HPC) as part of the ductular reaction contributing to the regenerative response. Here, we report a bile acid-specific cytotoxic response in mouse HPC, which is partially impaired by EGF signaling. Additionally, we show that EGF synergizes with bile acids to trigger inflammatory signaling and NLRP3 inflammasome activation in HPC. Aiming at understanding the impact of this HPC specific response on the liver microenvironment we run a proteomic analysis of HPC secretome. Data show an enrichment in immune and TGF-ß regulators, ECM components and remodeling proteins in HPC secretome. Consistently, HPC-derived conditioned medium promotes hepatic stellate cell (HSC) activation and macrophage M1-like polarization. Strikingly, EGF and bile acids co-treatment leads to profound changes in the secretome composition, illustrated by an abolishment of HSC activating effect and by promoting macrophage M2-like polarization. Collectively, we provide new specific mechanisms behind HPC regulatory action during cholestatic liver injury, with an active role in cellular interactome and inflammatory response regulation. Moreover, findings prove a key contribution for EGFR signaling jointly with bile acids in HPC-mediated actions.


Asunto(s)
Ácidos y Sales Biliares , Receptores ErbB , Inflamación , Ratones Endogámicos C57BL , Transducción de Señal , Animales , Ácidos y Sales Biliares/metabolismo , Receptores ErbB/metabolismo , Ratones , Inflamación/metabolismo , Células Madre/metabolismo , Hígado/metabolismo , Hígado/patología , Masculino , Proteómica , Macrófagos/metabolismo , Células Estrelladas Hepáticas/metabolismo
16.
Cell ; 187(10): 2557-2573.e18, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38729111

RESUMEN

Many of the world's most devastating crop diseases are caused by fungal pathogens that elaborate specialized infection structures to invade plant tissue. Here, we present a quantitative mass-spectrometry-based phosphoproteomic analysis of infection-related development by the rice blast fungus Magnaporthe oryzae, which threatens global food security. We mapped 8,005 phosphosites on 2,062 fungal proteins following germination on a hydrophobic surface, revealing major re-wiring of phosphorylation-based signaling cascades during appressorium development. Comparing phosphosite conservation across 41 fungal species reveals phosphorylation signatures specifically associated with biotrophic and hemibiotrophic fungal infection. We then used parallel reaction monitoring (PRM) to identify phosphoproteins regulated by the fungal Pmk1 MAPK that controls plant infection by M. oryzae. We define 32 substrates of Pmk1 and show that Pmk1-dependent phosphorylation of regulator Vts1 is required for rice blast disease. Defining the phosphorylation landscape of infection therefore identifies potential therapeutic interventions for the control of plant diseases.


Asunto(s)
Proteínas Fúngicas , Oryza , Enfermedades de las Plantas , Fosforilación , Oryza/microbiología , Oryza/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas Fúngicas/metabolismo , Fosfoproteínas/metabolismo , Ascomicetos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Proteómica , Transducción de Señal
17.
Food Res Int ; 186: 114356, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38729722

RESUMEN

The quality of Pacific oyster (Crassostrea gigas) can be affected by many factors during depuration, in which temperature is the major element. In this study, we aim to determine the quality and plasmalogen changes in C. gigas depurated at different temperatures. The quality was significantly affected by temperature, represented by varying survival rate, glycogen content, total antioxidant capacity, alkaline phosphatase activity between control and stressed groups. Targeted MS analysis demonstrated that plasmalogen profile was significantly changed during depuration with PUFA-containing plasmalogen species being most affected by temperature. Proteomics analysis and gene expression assay further verified that plasmalogen metabolism is regulated by temperature, specifically, the plasmalogen synthesis enzyme EPT1 was significantly downregulated by high temperature and four plasmalogen-related genes (GPDH, PEDS, Pex11, and PLD1) were transcriptionally regulated. The positive correlations between the plasmalogen level and quality characteristics suggested plasmalogen could be regarded as a quality indicator of oysters during depuration.


Asunto(s)
Crassostrea , Plasmalógenos , Temperatura , Animales , Plasmalógenos/metabolismo , Plasmalógenos/análisis , Crassostrea/genética , Crassostrea/metabolismo , Mariscos/análisis , Proteómica/métodos , Antioxidantes/metabolismo , Antioxidantes/análisis , Fosfatasa Alcalina/metabolismo , Calidad de los Alimentos
18.
J Extracell Vesicles ; 13(5): e12431, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38711329

RESUMEN

The budding yeast Saccharomyces cerevisiae is a proven model organism for elucidating conserved eukaryotic biology, but to date its extracellular vesicle (EV) biology is understudied. Here, we show yeast transmit information through the extracellular medium that increases survival when confronted with heat stress and demonstrate the EV-enriched samples mediate this thermotolerance transfer. These samples contain vesicle-like particles that are exosome-sized and disrupting exosome biogenesis by targeting endosomal sorting complexes required for transport (ESCRT) machinery inhibits thermotolerance transfer. We find that Bro1, the yeast ortholog of the human exosome biomarker ALIX, is present in EV samples, and use Bro1 tagged with green fluorescent protein (GFP) to track EV release and uptake by endocytosis. Proteomics analysis reveals that heat shock protein 70 (HSP70) family proteins are enriched in EV samples that provide thermotolerance. We confirm the presence of the HSP70 ortholog stress-seventy subunit A2 (Ssa2) in EV samples and find that mutant yeast cells lacking SSA2 produce EVs but they fail to transfer thermotolerance. We conclude that Ssa2 within exosomes shared between yeast cells contributes to thermotolerance. Through this work, we advance Saccharomyces cerevisiae as an emerging model organism for elucidating molecular details of eukaryotic EV biology and establish a role for exosomes in heat stress and proteostasis that seems to be evolutionarily conserved.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte , Exosomas , Vesículas Extracelulares , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Termotolerancia , Saccharomyces cerevisiae/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Exosomas/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Proteómica/métodos
19.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38711370

RESUMEN

Across many scientific disciplines, the development of computational models and algorithms for generating artificial or synthetic data is gaining momentum. In biology, there is a great opportunity to explore this further as more and more big data at multi-omics level are generated recently. In this opinion, we discuss the latest trends in biological applications based on process-driven and data-driven aspects. Moving ahead, we believe these methodologies can help shape novel multi-omics-scale cellular inferences.


Asunto(s)
Algoritmos , Biología Computacional , Biología Computacional/métodos , Genómica/métodos , Humanos , Macrodatos , Proteómica/métodos , Multiómica
20.
Int J Mol Sci ; 25(9)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38732251

RESUMEN

Asthma is a chronic respiratory disease with one of the largest numbers of cases in the world; thus, constant investigation and technical development are needed to unravel the underlying biochemical mechanisms. In this study, we aimed to develop a nano-DESI MS method for the in vivo characterization of the cellular metabolome. Using air-liquid interface (ALI) cell layers, we studied the role of Interleukin-13 (IL-13) on differentiated lung epithelial cells acting as a lung tissue model. We demonstrate the feasibility of nano-DESI MS for the in vivo monitoring of basal-apical molecular transport, and the subsequent endogenous metabolic response, for the first time. Conserving the integrity of the ALI lung-cell layer enabled us to perform temporally resolved metabolomic characterization followed by "bottom-up" proteomics on the same population of cells. Metabolic remodeling was observed upon histamine and corticosteroid treatment of the IL-13-exposed lung cell monolayers, in correlation with alterations in the proteomic profile. This proof of principle study demonstrates the utility of in vivo nano-DESI MS for characterizing ALI tissue layers, and the new markers identified in our study provide a good starting point for future, larger-scale studies.


Asunto(s)
Interleucina-13 , Pulmón , Metaboloma , Metabolómica , Proteoma , Proteómica , Interleucina-13/metabolismo , Pulmón/metabolismo , Proteómica/métodos , Metabolómica/métodos , Humanos , Metaboloma/efectos de los fármacos , Proteoma/metabolismo , Espectrometría de Masas/métodos , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Asma/metabolismo , Asma/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA