Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39125676

RESUMEN

Respiratory viral infections (VRTIs) rank among the leading causes of global morbidity and mortality, affecting millions of individuals each year across all age groups. These infections are caused by various pathogens, including rhinoviruses (RVs), adenoviruses (AdVs), and coronaviruses (CoVs), which are particularly prevalent during colder seasons. Although many VRTIs are self-limiting, their frequent recurrence and potential for severe health complications highlight the critical need for effective therapeutic strategies. Viral proteases are crucial for the maturation and replication of viruses, making them promising therapeutic targets. This review explores the pivotal role of viral proteases in the lifecycle of respiratory viruses and the development of protease inhibitors as a strategic response to these infections. Recent advances in antiviral therapy have highlighted the effectiveness of protease inhibitors in curtailing the spread and severity of viral diseases, especially during the ongoing COVID-19 pandemic. It also assesses the current efforts aimed at identifying and developing inhibitors targeting key proteases from major respiratory viruses, including human RVs, AdVs, and (severe acute respiratory syndrome coronavirus-2) SARS-CoV-2. Despite the recent identification of SARS-CoV-2, within the last five years, the scientific community has devoted considerable time and resources to investigate existing drugs and develop new inhibitors targeting the virus's main protease. However, research efforts in identifying inhibitors of the proteases of RVs and AdVs are limited. Therefore, herein, it is proposed to utilize this knowledge to develop new inhibitors for the proteases of other viruses affecting the respiratory tract or to develop dual inhibitors. Finally, by detailing the mechanisms of action and therapeutic potentials of these inhibitors, this review aims to demonstrate their significant role in transforming the management of respiratory viral diseases and to offer insights into future research directions.


Asunto(s)
Antivirales , Inhibidores de Proteasas , Infecciones del Sistema Respiratorio , SARS-CoV-2 , Humanos , SARS-CoV-2/efectos de los fármacos , Infecciones del Sistema Respiratorio/tratamiento farmacológico , Infecciones del Sistema Respiratorio/virología , Antivirales/uso terapéutico , Antivirales/farmacología , Inhibidores de Proteasas/uso terapéutico , Inhibidores de Proteasas/farmacología , Tratamiento Farmacológico de COVID-19 , Proteasas Virales/metabolismo , COVID-19/virología , Rhinovirus/efectos de los fármacos , Rhinovirus/enzimología
2.
J Virol ; 98(7): e0049824, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38953667

RESUMEN

Coxsackievirus B3 (CVB3) encodes proteinases that are essential for processing of the translated viral polyprotein. Viral proteinases also target host proteins to manipulate cellular processes and evade innate antiviral responses to promote replication and infection. While some host protein substrates of the CVB3 3C and 2A cysteine proteinases have been identified, the full repertoire of targets is not known. Here, we utilize an unbiased quantitative proteomics-based approach termed terminal amine isotopic labeling of substrates (TAILS) to conduct a global analysis of CVB3 protease-generated N-terminal peptides in both human HeLa and mouse cardiomyocyte (HL-1) cell lines infected with CVB3. We identified >800 proteins that are cleaved in CVB3-infected HeLa and HL-1 cells including the viral polyprotein, known substrates of viral 3C proteinase such as PABP, DDX58, and HNRNPs M, K, and D and novel cellular proteins. Network and GO-term analysis showed an enrichment in biological processes including immune response and activation, RNA processing, and lipid metabolism. We validated a subset of candidate substrates that are cleaved under CVB3 infection and some are direct targets of 3C proteinase in vitro. Moreover, depletion of a subset of TAILS-identified target proteins decreased viral yield. Characterization of two target proteins showed that expression of 3Cpro-targeted cleaved fragments of emerin and aminoacyl-tRNA synthetase complex-interacting multifunctional protein 2 modulated autophagy and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathway, respectively. The comprehensive identification of host proteins targeted during virus infection provides insights into the cellular pathways manipulated to facilitate infection. IMPORTANCE: RNA viruses encode proteases that are responsible for processing viral proteins into their mature form. Viral proteases also target and cleave host cellular proteins; however, the full catalog of these target proteins is incomplete. We use a technique called terminal amine isotopic labeling of substrates (TAILS), an N-terminomics to identify host proteins that are cleaved under virus infection. We identify hundreds of cellular proteins that are cleaved under infection, some of which are targeted directly by viral protease. Revealing these target proteins provides insights into the host cellular pathways and antiviral signaling factors that are modulated to promote virus infection and potentially leading to virus-induced pathogenesis.


Asunto(s)
Infecciones por Coxsackievirus , Enterovirus Humano B , Proteolisis , Enterovirus Humano B/metabolismo , Humanos , Ratones , Animales , Células HeLa , Infecciones por Coxsackievirus/virología , Infecciones por Coxsackievirus/metabolismo , Proteínas Virales/metabolismo , Proteómica/métodos , Interacciones Huésped-Patógeno , Proteasas Virales 3C/metabolismo , Línea Celular , Proteasas Virales/metabolismo , Poliproteínas/metabolismo
3.
Virus Res ; 344: 199368, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38588924

RESUMEN

Several viruses are now known to code for deubiquitinating proteases in their genomes. Ubiquitination is an essential post-translational modification of cellular substrates involved in many processes in the cell, including in innate immune signalling. This post-translational modification is regulated by the ubiquitin conjugation machinery, as well as various host deubiquitinating enzymes. The conjugation of ubiquitin chains to several innate immune related factors is often needed to induce downstream signalling, shaping the antiviral response. Viral deubiquitinating proteins, besides often having a primary function in the viral replication cycle by cleaving the viral polyprotein, are also able to cleave ubiquitin chains from such host substrates, in that way exerting a function in innate immune evasion. The presence of viral deubiquitinating enzymes has been firmly established for numerous animal-infecting viruses, such as some well-researched and clinically important nidoviruses, and their presence has now been confirmed in several plant viruses as well. Viral proteases in general have long been highlighted as promising drug targets, with a current focus on small molecule inhibitors. In this review, we will discuss the range of viral deubiquitinating proteases known to date, summarise the various avenues explored to inhibit such proteases and discuss novel strategies and models intended to inhibit and study these specific viral enzymes.


Asunto(s)
Enzimas Desubicuitinizantes , Enzimas Desubicuitinizantes/metabolismo , Enzimas Desubicuitinizantes/antagonistas & inhibidores , Enzimas Desubicuitinizantes/genética , Humanos , Proteasas Virales/metabolismo , Procesamiento Proteico-Postraduccional , Ubiquitinación , Animales , Replicación Viral , Antivirales/farmacología , Inhibidores de Proteasas/farmacología , Virus/efectos de los fármacos , Virus/enzimología , Proteínas Virales/metabolismo , Proteínas Virales/genética , Ubiquitina/metabolismo , Inmunidad Innata
4.
Comput Biol Chem ; 110: 108061, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38574417

RESUMEN

Being widely accepted tools in computational drug search, the (Q)SAR methods have limitations related to data incompleteness. The proteochemometrics (PCM) approach expands the applicability area by using description for both protein and ligand structures. The PCM algorithms are urgently required for the development of new antiviral agents. We suggest the PCM method using the TLMNA descriptors, combining the MNA descriptors of ligands and protein sequence N-grams. Our method was validated on the viral chymotrypsin-like proteases and their ligands. We have developed an original protocol allowing us to collect a comprehensive set of 15 protein sequences and more than 9000 ligands from the ChEMBL database. The N-grams were derived from the 3D-based alignment, accurately superposing ligand-binding regions. In testing the ligand set in SAR mode with MNA descriptors, an accuracy above 0.95 was determined that shows the perspective of the antiviral drug search in virtual chemical libraries. The effective PCM models were built with the TLMNA descriptor. The strong validation procedure with pair exclusion simulated the prediction of interactions between the new ligands and new targets, resulting in accuracy estimation up to 0.89. The PCM approach shows slightly lower accuracy caused by more uncertainty compared with SAR, but it overcomes the problem of data incompleteness.


Asunto(s)
Antivirales , Inhibidores de Proteasas , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Ligandos , Antivirales/química , Antivirales/farmacología , Algoritmos , Proteasas Virales/química , Proteasas Virales/metabolismo
5.
Angew Chem Int Ed Engl ; 63(16): e202400599, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38407550

RESUMEN

Proteins capable of switching between distinct active states in response to biochemical cues are ideal for sensing and controlling biological processes. Activatable CRISPR-Cas systems are significant in precise genetic manipulation and sensitive molecular diagnostics, yet directly controlling Cas protein function remains challenging. Herein, we explore anti-CRISPR (Acr) proteins as modules to create synthetic Cas protein switches (CasPSs) based on computational chemistry-directed rational protein interface engineering. Guided by molecular fingerprint analysis, electrostatic potential mapping, and binding free energy calculations, we rationally engineer the molecular interaction interface between Cas12a and its cognate Acr proteins (AcrVA4 and AcrVA5) to generate a series of orthogonal protease-responsive CasPSs. These CasPSs enable the conversion of specific proteolytic events into activation of Cas12a function with high switching ratios (up to 34.3-fold). These advancements enable specific proteolysis-inducible genome editing in mammalian cells and sensitive detection of viral protease activities during virus infection. This work provides a promising strategy for developing CRISPR-Cas tools for controllable gene manipulation and regulation and clinical diagnostics.


Asunto(s)
Proteínas Asociadas a CRISPR , Edición Génica , Animales , Sistemas CRISPR-Cas/genética , Péptido Hidrolasas/genética , Péptido Hidrolasas/metabolismo , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Endopeptidasas/metabolismo , Proteasas Virales/genética , Proteasas Virales/metabolismo , Mamíferos/metabolismo
6.
J Virol ; 97(12): e0092823, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-38047713

RESUMEN

IMPORTANCE: Most protease-targeted antiviral development evaluates the ability of small molecules to inhibit the cleavage of artificial substrates. However, before they can cleave any other substrates, viral proteases need to cleave themselves out of the viral polyprotein in which they have been translated. This can occur either intra- or inter-molecularly. Whether this process occurs intra- or inter-molecularly has implications for the potential for precursors to accumulate and for the effectiveness of antiviral drugs. We argue that evaluating candidate antivirals for their ability to block these cleavages is vital to drug development because the buildup of uncleaved precursors can be inhibitory to the virus and potentially suppress the selection of drug-resistant variants.


Asunto(s)
Antivirales , Enterovirus , Inhibidores de Proteasa Viral , Proteasas Virales , Antivirales/farmacología , Antivirales/química , Proteolisis , Proteasas Virales/metabolismo , Inhibidores de Proteasa Viral/farmacología , Enterovirus/efectos de los fármacos , Enterovirus/fisiología , Poliproteínas/metabolismo
7.
J Biol Chem ; 299(12): 105388, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37890782

RESUMEN

The main protease of severe acute respiratory syndrome coronavirus 2, Mpro, is a key viral protein essential for viral infection and replication. Mpro has been the target of many pharmacological efforts; however, the host-specific regulation of Mpro protein remains unclear. Here, we report the ubiquitin-proteasome-dependent degradation of Mpro protein in human cells, facilitated by the human E3 ubiquitin ligase ZBTB25. We demonstrate that Mpro has a short half-life that is prolonged via proteasomal inhibition, with its Lys-100 residue serving as a potential ubiquitin acceptor. Using in vitro binding assays, we observed ZBTB25 and Mpro bind to each other in vitro, and using progressive deletional mapping, we further uncovered the required domains for this interaction. Finally, we used an orthologous beta-coronavirus infection model and observed that genetic ablation of ZBTB25 resulted in a more highly infective virus, an effect lost upon reconstitution of ZBTB25 to deleted cells. In conclusion, these data suggest a new mechanism of Mpro protein regulation as well as identify ZBTB25 as an anticoronaviral E3 ubiquitin ligase.


Asunto(s)
Proteasas 3C de Coronavirus , Proteínas de Unión al ADN , SARS-CoV-2 , Humanos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteasas Virales/genética , Proteasas Virales/metabolismo , Proteínas Virales/metabolismo , SARS-CoV-2/fisiología , Proteasas 3C de Coronavirus/metabolismo , COVID-19/virología
8.
Anal Chem ; 95(28): 10728-10735, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37410966

RESUMEN

Viral proteases play a crucial role in viral infection and are regarded as promising targets for antiviral drug development. Consequently, biosensing methods that target viral proteases have contributed to the study of virus-related diseases. This work presents a ratiometric electrochemical sensor that enables highly sensitive detection of viral proteases through the integration of target proteolysis-activated in vitro transcription and the DNA-functionalized electrochemical interface. In particular, each viral protease-mediated proteolysis triggers the transcription of multiple RNA outputs, leading to amplified ratiometric signals on the electrochemical interface. Using the NS3/4A protease of the hepatitis C virus as a model, this method achieves robust and specific NS3/4A protease sensing with sub-femtomolar sensitivity. The feasibility of this sensor was demonstrated by monitoring NS3/4A protease activities in virus-infected cell samples with varying viral loads and post-infection times. This study provides a new approach to analyzing viral proteases and holds the potential for developing direct-acting antivirals and novel therapies for viral infections.


Asunto(s)
Técnicas Electroquímicas , Proteolisis , Proteasas Virales/metabolismo , Hepatitis C/enzimología , Técnicas Electroquímicas/métodos , Humanos , Línea Celular
9.
Curr Opin Immunol ; 83: 102354, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37311351

RESUMEN

Host innate immune sensors are vital for the initial detection of pathogen infection. Such sensors thus need to constantly adapt in escalating evolutionary arms races with pathogens. Recently, two inflammasome-forming proteins, CARD8 and NLRP1, have emerged as innate immune sensors for the enzymatic activity of virus-encoded proteases. When cleaved within a rapidly evolving 'tripwire' region, CARD8 and NLRP1 assemble into inflammasomes that initiate pyroptotic cell death and pro-inflammatory cytokine release as a form of effector-triggered immunity. Short motifs in the CARD8 and NLRP1 tripwires mimic the protease-specific cleavage sites of picornaviruses, coronaviruses, and HIV-1, providing virus-specific sensing that can rapidly change between closely related hosts and within the human population. Recent work highlights the evolutionary arms races between viral proteases and NLRP1 and CARD8, including insights into the mechanisms of inflammasome activation, host diversity of viral sensing, and means that viruses have evolved to avoid tripping the wire.


Asunto(s)
Inflamasomas , Péptido Hidrolasas , Humanos , Inflamasomas/metabolismo , Péptido Hidrolasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas NLR/metabolismo , Proteínas Reguladoras de la Apoptosis , Proteasas Virales/metabolismo , Proteínas Adaptadoras de Señalización CARD , Proteínas de Neoplasias/metabolismo
10.
Bioorg Chem ; 133: 106426, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36801793

RESUMEN

West Nile Virus (WNV) belongs to a group of pathogenic viruses called flaviviruses. West Nile virus infection can be mild, causing so-called West Nile Fever (WNF) or severe neuroinvasive form of the disease (WNND), and ultimately even death. There are currently no known medications to prevent West Nile virus infection. Only symptomatic treatment is used. To date, there are no unequivocal tests enabling a quick and unambiguous assessment of WN virus infection. The aim of the research was to obtain specific and selective tools for determining the activity of the West Nile virus serine proteinase. Using the methods of combinatorial chemistry with iterative deconvolution, the substrate specificity of the enzyme in non-primed and primed positions was determined. The FRET ABZ-Ala-Lys-Gln-Arg-Gly-Gly-Thr-Tyr(3-NO2)-NH2 substrate was obtained, characterized by kinetic parameters (KM = 4.20 ± 0.32 × 10-5 M) as for the majority of proteolytic enzymes. The obtained sequence was used to develop and synthesize highly sensitive functionalized quantum dot-based protease probes (QD). A QD WNV NS3 protease probe was obtained to detect an increase in fluorescence of 0.05 nmol enzyme in the assay system. This value was at least 20 times lower than that observed with the optimized substrate. The obtained result may be the basis for further research on the potential use of the WNV NS3 protease in the diagnosis of West Nile virus infection.


Asunto(s)
Proteasas Virales , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Humanos , Serina Endopeptidasas , Fiebre del Nilo Occidental/diagnóstico , Virus del Nilo Occidental/metabolismo , Proteasas Virales/química , Proteasas Virales/metabolismo
11.
Mol Aspects Med ; 88: 101143, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36152458

RESUMEN

Toll-like receptors (TLRs) are pattern recognition receptors (PRRs) that respond to pathogen-associated molecular patterns (PAMPs). The recognition of specific microbial ligands by TLRs triggers an innate immune response and also promotes adaptive immunity, which is necessary for the efficient elimination of invading pathogens. Successful pathogens have therefore evolved strategies to subvert and/or manipulate TLR signaling. Both the impairment and uncontrolled activation of TLR signaling can harm the host, causing tissue destruction and allowing pathogens to proliferate, thus favoring disease progression. In this context, microbial proteases are key virulence factors that modify components of the TLR signaling pathway. In this review, we discuss the role of bacterial and viral proteases in the manipulation of TLR signaling, highlighting the importance of these enzymes during the development of infectious diseases.


Asunto(s)
Enfermedades Transmisibles , Receptores Toll-Like , Proteasas Virales , Humanos , Enfermedades Transmisibles/metabolismo , Enfermedades Transmisibles/microbiología , Inmunidad Innata , Transducción de Señal , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Proteasas Virales/inmunología , Proteasas Virales/metabolismo , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Péptido Hidrolasas/inmunología , Péptido Hidrolasas/metabolismo , Virosis/metabolismo , Infecciones Bacterianas/metabolismo
12.
J Virol ; 96(15): e0198021, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35852352

RESUMEN

Atypical porcine pestiviruses (APPV; Pestivirus K) are a recently discovered, very divergent species of the genus Pestivirus within the family Flaviviridae. The presence of APPV in piglet-producing farms is associated with the occurrence of so-called "shaking piglets," suffering from mild to severe congenital tremor type A-II. Previous studies showed that the cellular protein DNAJC14 is an essential cofactor of the NS2 autoprotease of all classical pestiviruses. Consequently, genetically engineered DNAJC14 knockout cell lines were resistant to all tested noncytopathogenic (non-cp) pestiviruses. Surprisingly, we found that the non-cp APPV can replicate in these cells in the absence of DNAJC14, suggesting a divergent mechanism of polyprotein processing. A complete laboratory system for the study of APPV was established to learn more about the replication of this unusual virus. The inactivation of the APPV NS2 autoprotease using reverse genetics resulted in nonreplicative genomes. To further investigate whether a regulation of the NS2-3 cleavage is also existing in APPV, we constructed synthetic viral genomes with deletions and duplications leading to the NS2 independent release of mature NS3. As observed with other pestiviruses, the increase of mature NS3 resulted in elevated viral RNA replication levels and increased protein expression. Our data suggest that APPV exhibit a divergent mechanism for the regulation of the NS2 autoprotease activity most likely utilizing a different cellular protein for the adjustment of replication levels. IMPORTANCE DNAJC14 is an essential cofactor of the pestiviral NS2 autoprotease, limiting replication to tolerable levels as a prerequisite for the noncytopathogenic biotype of pestiviruses. Surprisingly, we found that the atypical porcine pestivirus (APPV) is able to replicate in the absence of DNAJC14. We further investigated the NS2-3 processing of APPV using a molecular clone, monoclonal antibodies, and DNAJC14 knockout cells. We identified two potential active site residues of the NS2 autoprotease and could demonstrate that the release of NS3 by the NS2 autoprotease is essential for APPV replication. Defective interfering genomes and viral genomes with duplicated NS3 sequences that produce mature NS3 independent of the NS2 autoprotease activity showed increased replication and antigen expression. It seems likely that an alternative cellular cofactor controls NS2-3 cleavage and thus replication of APPV. The replication-optimized synthetic APPV genomes might be suitable live vaccine candidates, whose establishment and testing warrant further research.


Asunto(s)
Chaperonas Moleculares , Infecciones por Pestivirus , Pestivirus , Porcinos , Replicación Viral , Animales , Línea Celular , Coenzimas , Genoma Viral/genética , Interacciones Huésped-Patógeno , Chaperonas Moleculares/genética , Pestivirus/clasificación , Pestivirus/enzimología , Pestivirus/crecimiento & desarrollo , Infecciones por Pestivirus/veterinaria , ARN Viral/genética , Porcinos/virología , Enfermedades de los Porcinos/virología , Proteasas Virales/metabolismo , Replicación Viral/genética
13.
Viruses ; 14(2)2022 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-35215882

RESUMEN

Stephen Oroszlan received his early education in Hungary, graduating in 1950 from the Technical University in Budapest with a degree in chemical engineering [...].


Asunto(s)
Proteínas de los Retroviridae/química , Proteínas de los Retroviridae/metabolismo , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Masculino , Retroviridae/efectos de los fármacos , Retroviridae/metabolismo , Inhibidores de Proteasa Viral/farmacología , Proteasas Virales/química , Proteasas Virales/metabolismo
14.
Viruses ; 13(11)2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34835024

RESUMEN

Steve Oroszlan determined the sequences at the ends of virion proteins for a number of different retroviruses. This work led to the insight that the amino-terminal amino acid of the mature viral CA protein is always proline. In this remembrance, we review Steve's work that led to this insight and show how that insight was a necessary precursor to the work we have done in the subsequent years exploring the cleavage rate determinants of viral protease processing sites and the multiple roles the amino-terminal proline of CA plays after protease cleavage liberates it from its position in a protease processing site.


Asunto(s)
Prolina/química , Proteínas de los Retroviridae/química , Proteínas de los Retroviridae/metabolismo , Animales , Cápside/química , Cápside/metabolismo , VIH-1/química , VIH-1/metabolismo , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Proteolisis , Retroviridae/química , Retroviridae/metabolismo , Proteasas Virales/química , Proteasas Virales/metabolismo , Ensamble de Virus
15.
Viruses ; 13(10)2021 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-34696411

RESUMEN

Viral proteases are indispensable for successful virion maturation, thus making them a prominent drug target. Their enzyme activity is tightly spatiotemporally regulated by expression in the precursor form with little or no activity, followed by activation via autoprocessing. These cleavage events are frequently triggered upon transportation to a specific compartment inside the host cell. Typically, precursor oligomerization or the presence of a co-factor is needed for activation. A detailed understanding of these mechanisms will allow ligands with non-canonical mechanisms of action to be designed, which would specifically modulate the initial irreversible steps of viral protease autoactivation. Binding sites exclusive to the precursor, including binding sites beyond the protease domain, can be exploited. Both inhibition and up-regulation of the proteolytic activity of viral proteases can be detrimental for the virus. All these possibilities are discussed using examples of medically relevant viruses including herpesviruses, adenoviruses, retroviruses, picornaviruses, caliciviruses, togaviruses, flaviviruses, and coronaviruses.


Asunto(s)
Antivirales/farmacología , Inhibidores de Proteasa Viral/farmacología , Proteasas Virales/metabolismo , Virosis/tratamiento farmacológico , Adenovirus Humanos/efectos de los fármacos , Adenovirus Humanos/metabolismo , Flavivirus/efectos de los fármacos , Flavivirus/metabolismo , VIH-1/efectos de los fármacos , Herpesviridae/efectos de los fármacos , Herpesviridae/metabolismo , Humanos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , Proteasas Virales/biosíntesis
16.
Nat Commun ; 12(1): 5553, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34548480

RESUMEN

SARS-CoV-2 is the causative agent behind the COVID-19 pandemic, responsible for over 170 million infections, and over 3.7 million deaths worldwide. Efforts to test, treat and vaccinate against this pathogen all benefit from an improved understanding of the basic biology of SARS-CoV-2. Both viral and cellular proteases play a crucial role in SARS-CoV-2 replication. Here, we study proteolytic cleavage of viral and cellular proteins in two cell line models of SARS-CoV-2 replication using mass spectrometry to identify protein neo-N-termini generated through protease activity. We identify previously unknown cleavage sites in multiple viral proteins, including major antigens S and N: the main targets for vaccine and antibody testing efforts. We discover significant increases in cellular cleavage events consistent with cleavage by SARS-CoV-2 main protease, and identify 14 potential high-confidence substrates of the main and papain-like proteases. We show that siRNA depletion of these cellular proteins inhibits SARS-CoV-2 replication, and that drugs targeting two of these proteins: the tyrosine kinase SRC and Ser/Thr kinase MYLK, show a dose-dependent reduction in SARS-CoV-2 titres. Overall, our study provides a powerful resource to understand proteolysis in the context of viral infection, and to inform the development of targeted strategies to inhibit SARS-CoV-2 and treat COVID-19.


Asunto(s)
Antivirales/farmacología , COVID-19/metabolismo , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , Animales , Línea Celular , Dipéptidos/farmacología , Humanos , Mutación , Quinasa de Cadena Ligera de Miosina/antagonistas & inhibidores , Quinasa de Cadena Ligera de Miosina/genética , Quinasa de Cadena Ligera de Miosina/metabolismo , Proteolisis , Proteómica , ARN Interferente Pequeño/farmacología , SARS-CoV-2/genética , Proteasas Virales/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Familia-src Quinasas/antagonistas & inhibidores , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo , Tratamiento Farmacológico de COVID-19
17.
Expert Rev Clin Pharmacol ; 14(10): 1305-1315, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34301158

RESUMEN

BACKGROUND: The high transmission and pathogenicity of SARS-CoV-2 has led to a pandemic that has halted the world's economy and health. The newly evolved strains and scarcity of vaccines has worsened the situation. The main protease (Mpro) of SARS-CoV-2 can act as a potential target due to its role in viral replication and conservation level. METHODS: In this study, we have enlisted more than 1100 phytochemicals from Asian plants based on deep literature mining. The compounds library was screened against the Mpro of SARS-CoV-2. RESULTS: The selected three ligands, Flemichin, Delta-Oleanolic acid, and Emodin 1-O-beta-D-glucoside had a binding energy of -8.9, -8.9, -8.7 KJ/mol respectively. The compounds bind to the active groove of the main protease at; Cys145, Glu166, His41, Met49, Pro168, Met165, Gln189. The multiple descriptors from the simulation study; root mean square deviation, root mean square fluctuation, radius of gyration, hydrogen bond, solvent accessible surface area confirms the stable nature of the protein-ligand complexes. Furthermore, post-md analysis confirms the rigidness in the docked poses over the simulation trajectories. CONCLUSIONS: Our combinatorial drug design approaches may help researchers to identify suitable drug candidates against SARS-CoV-2.


Asunto(s)
Antivirales/farmacología , Descubrimiento de Drogas , Fitoquímicos/farmacología , SARS-CoV-2/enzimología , Proteasas Virales/metabolismo , Antivirales/química , Bases de Datos de Compuestos Químicos , Regulación Viral de la Expresión Génica/efectos de los fármacos , Simulación del Acoplamiento Molecular , Estructura Molecular , Fitoquímicos/química , Proteasas Virales/genética
18.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34299333

RESUMEN

In the last year, the COVID-19 pandemic has highly affected the lifestyle of the world population, encouraging the scientific community towards a great effort on studying the infection molecular mechanisms. Several vaccine formulations are nowadays available and helping to reach immunity. Nevertheless, there is a growing interest towards the development of novel anti-covid drugs. In this scenario, the main protease (Mpro) represents an appealing target, being the enzyme responsible for the cleavage of polypeptides during the viral genome transcription. With the aim of sharing new insights for the design of novel Mpro inhibitors, our research group developed a machine learning approach using the support vector machine (SVM) classification. Starting from a dataset of two million commercially available compounds, the model was able to classify two hundred novel chemo-types as potentially active against the viral protease. The compounds labelled as actives by SVM were next evaluated through consensus docking studies on two PDB structures and their binding mode was compared to well-known protease inhibitors. The best five compounds selected by consensus docking were then submitted to molecular dynamics to deepen binding interactions stability. Of note, the compounds selected via SVM retrieved all the most important interactions known in the literature.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Inhibidores de Proteasa de Coronavirus/farmacología , Evaluación Preclínica de Medicamentos/métodos , SARS-CoV-2/efectos de los fármacos , Máquina de Vectores de Soporte , Antivirales/farmacología , COVID-19/virología , Inhibidores de Proteasa de Coronavirus/metabolismo , Bases de Datos Farmacéuticas , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Pandemias , SARS-CoV-2/enzimología , Bibliotecas de Moléculas Pequeñas , Aprendizaje Automático Supervisado , Proteínas no Estructurales Virales/metabolismo , Proteasas Virales/metabolismo
19.
J Virol ; 95(18): e0084821, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34232702

RESUMEN

Reverse transcriptases (RTs) use their DNA polymerase and RNase H activities to catalyze the conversion of single-stranded RNA to double-stranded DNA (dsDNA), a crucial process for the replication of retroviruses. Foamy viruses (FVs) possess a unique RT, which is a fusion with the protease (PR) domain. The mechanism of substrate binding by this enzyme has been unknown. Here, we report a crystal structure of monomeric full-length marmoset FV (MFV) PR-RT in complex with an RNA/DNA hybrid substrate. We also describe a structure of MFV PR-RT with an RNase H deletion in complex with a dsDNA substrate in which the enzyme forms an asymmetric homodimer. Cryo-electron microscopy reconstruction of the full-length MFV PR-RT-dsDNA complex confirmed the dimeric architecture. These findings represent the first structural description of nucleic acid binding by a foamy viral RT and demonstrate its ability to change its oligomeric state depending on the type of bound nucleic acid. IMPORTANCE Reverse transcriptases (RTs) are intriguing enzymes converting single-stranded RNA to dsDNA. Their activity is essential for retroviruses, which are divided into two subfamilies differing significantly in their life cycles: Orthoretrovirinae and Spumaretrovirinae. The latter family is much more ancient and comprises five genera. A unique feature of foamy viral RTs is that they contain N-terminal protease (PR) domains, which are not present in orthoretroviral enzymes. So far, no structural information for full-length foamy viral PR-RT interacting with nucleic substrates has been reported. Here, we present crystal and cryo-electron microscopy structures of marmoset foamy virus (MFV) PR-RT. These structures revealed the mode of binding of RNA/DNA and dsDNA substrates. Moreover, unexpectedly, the structures and biochemical data showed that foamy viral PR-RT can adopt both a monomeric configuration, which is observed in our structures in the presence of an RNA/DNA hybrid, and an asymmetric dimer arrangement, which we observed in the presence of dsDNA.


Asunto(s)
ADN/metabolismo , ADN Polimerasa Dirigida por ARN/química , ARN/metabolismo , Ribonucleasa H/química , Spumavirus/enzimología , Proteasas Virales/química , Proteínas Virales/química , Microscopía por Crioelectrón , ADN/química , Conformación Proteica , ARN/química , ADN Polimerasa Dirigida por ARN/metabolismo , Ribonucleasa H/metabolismo , Proteasas Virales/metabolismo , Proteínas Virales/metabolismo
20.
Biomolecules ; 11(6)2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071582

RESUMEN

The urgent need for novel and effective drugs against the SARS-CoV-2 coronavirus pandemic has stimulated research worldwide. The Papain-like protease (PLpro), which is essential for viral replication, shares a similar active site structural architecture to other cysteine proteases. Here, we have used representatives of the Ovarian Tumor Domain deubiquitinase family OTUB1 and OTUB2 along with the PLpro of SARS-CoV-2 to validate and rationalize the binding of inhibitors from previous SARS-CoV candidate compounds. By forming a new chemical bond with the cysteine residue of the catalytic triad, covalent inhibitors irreversibly suppress the protein's activity. Modeling covalent inhibitor binding requires detailed knowledge about the compounds' reactivities and binding. Molecular Dynamics refinement simulations of top poses reveal detailed ligand-protein interactions and show their stability over time. The recently discovered selective OTUB2 covalent inhibitors were used to establish and validate the computational protocol. Structural parameters and ligand dynamics are in excellent agreement with the ligand-bound OTUB2 crystal structures. For SARS-CoV-2 PLpro, recent covalent peptidomimetic inhibitors were simulated and reveal that the ligand-protein interaction is very dynamic. The covalent and non-covalent docking plus subsequent MD refinement of known SARS-CoV inhibitors into DUBs and the SARS-CoV-2 PLpro point out a possible approach to target the PLpro cysteine protease from SARS-CoV-2. The results show that such an approach gives insight into ligand-protein interactions, their dynamic character, and indicates a path for selective ligand design.


Asunto(s)
Enzimas Desubicuitinizantes/antagonistas & inhibidores , Inhibidores de Proteasas/química , SARS-CoV-2/metabolismo , Proteasas Virales/química , Sitios de Unión , COVID-19/patología , Dominio Catalítico , Enzimas Desubicuitinizantes/metabolismo , Diseño de Fármacos , Femenino , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Simulación de Dinámica Molecular , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Inhibidores de Proteasas/metabolismo , SARS-CoV-2/aislamiento & purificación , Proteasas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA