Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.272
Filtrar
1.
Glycobiology ; 34(10)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39223703

RESUMEN

AIM: This study examined the roles of the laminin and proteoglycan receptor dystroglycan (DG) in extracellular matrix stabilization and cellular mechanosensory processes conveyed through communication between the extracellular matrix (ECM) and cytoskeleton facilitated by DG. Specific functional attributes of HS-proteoglycans (HSPGs) are conveyed through interactions with DG and provide synaptic specificity through diverse interactions with an extensive range of cell attachment and adaptor proteins which convey synaptic plasticity. HSPG-DG interactions are important in phototransduction and neurotransduction and facilitate retinal bipolar-photoreceptor neuronal signaling in vision. Besides synaptic stabilization, HSPG-DG interactions also stabilize basement membranes and the ECM and have specific roles in the assembly and function of the neuromuscular junction. This provides neuromuscular control of muscle systems that control conscious body movement as well as essential autonomic control of diaphragm, intercostal and abdominal muscles and muscle systems in the face, mouth and pharynx which assist in breathing processes. DG is thus a multifunctional cell regulatory glycoprotein receptor and regulates a diverse range of biological and physiological processes throughout the human body. The unique glycosylation of the αDG domain is responsible for its diverse interactions with ECM components in cell-ECM signaling. Cytoskeletal cell regulatory switches assembled by the ßDG domain in its role as a nuclear scaffolding protein respond to such ECM cues to regulate cellular behavior and tissue homeostasis thus DG has fascinating and diverse roles in health and disease.


Asunto(s)
Distroglicanos , Plasticidad Neuronal , Distroglicanos/metabolismo , Humanos , Plasticidad Neuronal/fisiología , Animales , Matriz Extracelular/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo
2.
J Med Entomol ; 61(5): 1214-1221, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39001615

RESUMEN

Directly involved in the "suck-and-spit" physiology, female mosquito salivary glands (SGs) primarily imbibe blood for egg development and release anticoagulants to keep blood flowing. Indirectly involved, mosquitoes can uptake arboviruses during blood feeding from a viremic host. This research examined the presence of the filamentous cytoplasmic contractile protein (F-actin) and heparan sulfate proteoglycan (HSPG), in the female mosquito SGs. Immunofluorescent antibody labeling of actin molecules or HSPG combined with anatomy suggests that F-actin forms a network in the SG lobe parenchymal cells attached to intralobar ducts by HSPG. In addition, F-actin twists around intralobar SG ducts in a beaded manner, altogether involved in the expulsion of SG secretions. This arrangement in female Aedes aegypti SGs, suggests that F-actin structures are integrally involved in transmitting infectious agents into hosts.


Asunto(s)
Actinas , Aedes , Proteoglicanos de Heparán Sulfato , Glándulas Salivales , Animales , Glándulas Salivales/metabolismo , Femenino , Aedes/metabolismo , Actinas/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo
3.
Biomed Pharmacother ; 176: 116893, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38850653

RESUMEN

Polymer-cationic mediated gene delivery is a well-stablished strategy of transient gene expression (TGE) in mammalian cell cultures. Nonetheless, its industrial implementation is hindered by the phenomenon known as cell density effect (CDE) that limits the cell density at which cultures can be efficiently transfected. The rise in personalized medicine and multiple cell and gene therapy approaches based on TGE, make more relevant to understand how to circumvent the CDE. A rational study upon DNA/PEI complex formation, stability and delivery during transfection of HEK293 cell cultures has been conducted, providing insights on the mechanisms for polyplexes uptake at low cell density and disruption at high cell density. DNA/PEI polyplexes were physiochemically characterized by coupling X-ray spectroscopy, confocal microscopy, cryo-transmission electron microscopy (TEM) and nuclear magnetic resonance (NMR). Our results showed that the ionic strength of polyplexes significantly increased upon their addition to exhausted media. This was reverted by depleting extracellular vesicles (EVs) from the media. The increase in ionic strength led to polyplex aggregation and prevented efficient cell transfection which could be counterbalanced by implementing a simple media replacement (MR) step before transfection. Inhibiting and labeling specific cell-surface proteoglycans (PGs) species revealed different roles of PGs in polyplexes uptake. Importantly, the polyplexes uptake process seemed to be triggered by a coalescence phenomenon of HSPG like glypican-4 around polyplex entry points. Ultimately, this study provides new insights into PEI-based cell transfection methodologies, enabling to enhance transient transfection and mitigate the cell density effect (CDE).


Asunto(s)
ADN , Glipicanos , Transfección , Humanos , Células HEK293 , Transfección/métodos , Glipicanos/metabolismo , Glipicanos/genética , ADN/metabolismo , ADN/genética , Polietileneimina/química , Proteoglicanos de Heparán Sulfato/metabolismo , Concentración Osmolar
4.
Mol Cell Proteomics ; 23(7): 100793, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38825040

RESUMEN

Human extracellular 6-O-endosulfatases Sulf-1 and Sulf-2 are the only enzymes that post-synthetically alter the 6-O sulfation of heparan sulfate proteoglycans (HSPG), which regulates interactions of HSPG with many proteins. Oncogenicity of Sulf-2 in different cancers has been documented, and we have shown that Sulf-2 is associated with poor survival outcomes in head and neck squamous cell carcinoma (HNSCC). Despite its importance, limited information is available on direct protein-protein interactions of the Sulf-2 protein in the tumor microenvironment. In this study, we used monoclonal antibody (mAb) affinity purification and mass spectrometry to identify galectin-3-binding protein (LG3BP) as a highly specific binding partner of Sulf-2 in the conditioned media of HNSCC cell lines. We validated their direct interaction in vitro using recombinant proteins and have shown that the chondroitin sulfate (CS) covalently bound to the Sulf-2 influences the binding to LG3BP. We confirmed the importance of the CS chain for the interaction by generating a mutant Sulf-2 protein that lacks the CS. Importantly, we have shown that the LG3BP inhibits Sulf-2 activity in vitro in a concentration-dependent manner. As a consequence, the addition of LG3BP to a spheroid cell culture inhibited the invasion of the HNSCC cells into Matrigel. Thus, Sulf-2 interaction with LG3BP may regulate the physiological activity of the Sulf-2 enzyme as well as its activity in the tumor microenvironment.


Asunto(s)
Unión Proteica , Sulfotransferasas , Humanos , Línea Celular Tumoral , Sulfotransferasas/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Sulfatos de Condroitina/metabolismo , Sulfatasas/metabolismo , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Movimiento Celular/efectos de los fármacos , Microambiente Tumoral , Proteoglicanos de Heparán Sulfato/metabolismo , Antígenos de Neoplasias , Biomarcadores de Tumor
5.
Open Biol ; 14(6): 240035, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38862019

RESUMEN

Neurodegenerative diseases, particularly Alzheimer's disease (AD), pose a significant challenge in ageing populations. Our current understanding indicates that the onset of toxic amyloid and tau protein pathologies initiates disease progression. However, existing treatments targeting these hallmark symptoms offer symptomatic relief without halting disease advancement. This review offers an alternative perspective on AD, centring on impaired adult hippocampal neurogenesis (AHN) as a potential early aetiological factor. By delving into the intricate molecular events during the initial stages of AD (Braak Stages I-III), a novel hypothesis is presented, interweaving the roles of Notch signalling and heparan sulfate proteoglycans (HSPGs) in compromised AHN. While acknowledging the significance of the amyloid and tau hypotheses, it calls for further exploration beyond these paradigms, suggesting the potential of altered HS sulfation patterns in AD initiation. Future directions propose more detailed investigations into early HS aggregation, aberrant sulfation patterns and examination of their temporal relationship with tau hyperphosphorylation. In challenging the conventional 'triggers' of AD and urging their reconsideration as symptoms, this review advocates an alternative approach to understanding this disease, offering new avenues of investigation into the intricacies of AD pathogenesis.


Asunto(s)
Enfermedad de Alzheimer , Proteínas tau , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/etiología , Proteínas tau/metabolismo , Animales , Neurogénesis , Hipocampo/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Fosforilación , Transducción de Señal , Péptidos beta-Amiloides/metabolismo , Receptores Notch/metabolismo
6.
Mol Cell Neurosci ; 129: 103936, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38750678

RESUMEN

Neurological disorders impact around one billion individuals globally (15 % approx.), with significant implications for disability and mortality with their impact in Australia currently amounts to 6.8 million deaths annually. Heparan sulfate proteoglycans (HSPGs) are complex extracellular molecules implicated in promoting Tau fibril formation resulting in Tau tangles, a hallmark of Alzheimer's disease (AD). HSPG-Tau protein interactions contribute to various AD stages via aggregation, toxicity, and clearance, largely via interactions with the glypican 1 and syndecan 3 core proteins. The tunnelling nanotubes (TNTs) pathway is emerging as a facilitator of intercellular molecule transport, including Tau and Amyloid ß proteins, across extensive distances. While current TNT-associated evidence primarily stems from cancer models, their role in Tau propagation and its effects on recipient cells remain unclear. This review explores the interplay of TNTs, HSPGs, and AD-related factors and proposes that HSPGs influence TNT formation in neurodegenerative conditions such as AD.


Asunto(s)
Enfermedad de Alzheimer , Proteoglicanos de Heparán Sulfato , Proteínas tau , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Proteoglicanos de Heparán Sulfato/metabolismo , Animales , Proteínas tau/metabolismo , Nanotubos , Péptidos beta-Amiloides/metabolismo , Estructuras de la Membrana Celular
7.
J Virol ; 98(6): e0164123, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38690874

RESUMEN

Numerous viruses have been found to exploit glycoconjugates expressed on human cells as their initial attachment factor for viral entry and infection. The virus-cell glycointeractome, when characterized, may serve as a template for antiviral drug design. Heparan sulfate proteoglycans extensively decorate the human cell surface and were previously described as a primary receptor for human metapneumovirus (HMPV). After respiratory syncytial virus, HMPV is the second most prevalent respiratory pathogen causing respiratory tract infection in young children. To date, there is neither vaccine nor drug available to prevent or treat HMPV infection. Using a multidisciplinary approach, we report for the first time the glycointeractome of the HMPV fusion (F) protein, a viral surface glycoprotein that is essential for target-cell recognition, attachment, and entry. Our glycan microarray and surface plasmon resonance results suggest that Galß1-3/4GlcNAc moieties that may be sialylated or fucosylated are readily recognized by HMPV F. The bound motifs are highly similar to the N-linked and O-linked glycans primarily expressed on the human lung epithelium. We demonstrate that the identified glycans have the potential to compete with the cellular receptors used for HMPV entry and consequently block HMPV infection. We found that lacto-N-neotetraose demonstrated the strongest HMPV binding inhibition in a cell infection assay. Our current findings offer an encouraging and novel avenue for the design of anti-HMPV drug candidates using oligosaccharide templates.IMPORTANCEAll cells are decorated with a dense coat of sugars that makes a sugar code. Many respiratory viruses exploit this sugar code by binding to these sugars to cause infection. Human metapneumovirus is a leading cause for acute respiratory tract infections. Despite its medical importance, there is no vaccine or antiviral drug available to prevent or treat human metapneumovirus infection. This study investigates how human metapneumovirus binds to sugars in order to more efficiently infect the human host. We found that human metapneumovirus binds to a diverse range of sugars and demonstrated that these sugars can ultimately block viral infection. Understanding how viruses can take advantage of the sugar code on our cells could identify new intervention and treatment strategies to combat viral disease.


Asunto(s)
Metapneumovirus , Infecciones por Paramyxoviridae , Polisacáridos , Receptores Virales , Proteínas Virales de Fusión , Acoplamiento Viral , Humanos , Línea Celular , Metapneumovirus/metabolismo , Metapneumovirus/fisiología , Infecciones por Paramyxoviridae/virología , Infecciones por Paramyxoviridae/metabolismo , Polisacáridos/metabolismo , Unión Proteica , Receptores Virales/química , Receptores Virales/metabolismo , Proteínas Virales de Fusión/metabolismo , Internalización del Virus , Interacciones Microbiota-Huesped , Proteoglicanos de Heparán Sulfato/metabolismo
8.
Virology ; 596: 110120, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38805801

RESUMEN

Glycoprotein C (gC), one of ∼12 HSV-1 envelope glycoproteins, carries out several important functions during infection, including the enhancement of virion attachment by binding to host cell heparan sulfate proteoglycans (HSPG). Here we report that gC can also enhance the release of cell-free progeny virions at the end of the infectious cycle. This activity was observed in multiple cellular contexts including Vero cells and immortalized human keratinocytes. In the absence of gC, progeny virions bound more tightly to infected cells, suggesting that gC promotes the detachment of virions from the infected cell surface. Given this finding, we analyzed the biochemical interactions that tether progeny virions to cells and report evidence for two distinct modes of binding. One is consistent with a direct interaction between gC and HSPG, whereas the other is gC-independent and likely does not involve HSPG. Together, our results i) identify a novel function for a long-studied HSV-1 glycoprotein, and ii) demonstrate that the extracellular release of HSV-1 virions is a dynamic process involving multiple viral and host components.


Asunto(s)
Herpesvirus Humano 1 , Proteínas del Envoltorio Viral , Virión , Liberación del Virus , Proteínas del Envoltorio Viral/metabolismo , Proteínas del Envoltorio Viral/genética , Herpesvirus Humano 1/fisiología , Herpesvirus Humano 1/metabolismo , Humanos , Chlorocebus aethiops , Células Vero , Animales , Virión/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Queratinocitos/virología , Queratinocitos/metabolismo
9.
Sci Bull (Beijing) ; 69(14): 2260-2272, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38702277

RESUMEN

Heparan sulfate proteoglycan 2 (HSPG2) gene encodes the matrix protein Perlecan, and genetic inactivation of this gene creates mice that are embryonic lethal with severe neural tube defects (NTDs). We discovered rare genetic variants of HSPG2 in 10% cases compared to only 4% in controls among a cohort of 369 NTDs. Endorepellin, a peptide cleaved from the domain V of Perlecan, is known to promote angiogenesis and autophagy in endothelial cells. The roles of enderepellin in neurodevelopment remain unclear so far. Our study revealed that endorepellin can migrate to the neuroepithelial cells and then be recognized and bind with the neuroepithelia receptor neurexin in vivo. Through the endocytic pathway, the interaction of endorepellin and neurexin physiologically triggers autophagy and appropriately modulates the differentiation of neural stem cells into neurons as a blocker, which is necessary for normal neural tube closure. We created knock-in (KI) mouse models with human-derived HSPG2 variants, using sperm-like stem cells that had been genetically edited by CRISPR/Cas9. We realized that any HSPG2 variants that affected the function of endorepellin were considered pathogenic causal variants for human NTDs given that the severe NTD phenotypes exhibited by these KI embryos occurred in a significantly higher response frequency compared to wildtype embryos. Our study provides a paradigm for effectively confirming pathogenic mutations in other genetic diseases. Furthermore, we demonstrated that using autophagy inhibitors at a cellular level can repress neuronal differentiation. Therefore, autophagy agonists may prevent NTDs resulting from failed autophagy maintenance and neuronal over-differentiation caused by deleterious endorepellin variants.


Asunto(s)
Autofagia , Proteoglicanos de Heparán Sulfato , Defectos del Tubo Neural , Animales , Ratones , Proteoglicanos de Heparán Sulfato/metabolismo , Proteoglicanos de Heparán Sulfato/genética , Humanos , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/metabolismo , Defectos del Tubo Neural/patología , Tubo Neural/metabolismo , Tubo Neural/embriología , Tubo Neural/patología , Células-Madre Neurales/metabolismo , Células Neuroepiteliales/metabolismo , Femenino , Masculino , Modelos Animales de Enfermedad
10.
Blood ; 143(25): 2571-2587, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38639475

RESUMEN

ABSTRACT: From signaling mediators in stem cells to markers of differentiation and lineage commitment to facilitators for the entry of viruses, such as HIV-1, cell surface heparan sulfate (HS) glycans with distinct modification patterns play important roles in hematopoietic biology. In this review, we provide an overview of the importance of HS and the proteoglycans (HSPGs) to which they are attached within the major cellular subtypes of the hematopoietic system. We summarize the roles of HSPGs, HS, and HS modifications within each main hematopoietic cell lineage of both myeloid and lymphoid arms. Lastly, we discuss the biological advances in the detection of HS modifications and their potential to further discriminate cell types within hematopoietic tissue.


Asunto(s)
Hematopoyesis , Proteoglicanos de Heparán Sulfato , Heparitina Sulfato , Humanos , Proteoglicanos de Heparán Sulfato/metabolismo , Heparitina Sulfato/metabolismo , Animales , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología
11.
FASEB J ; 38(7): e23609, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38593345

RESUMEN

PTPRD, a well-established tumor suppressor gene, encodes the protein tyrosine phosphatase-type D. This protein consists of three immunoglobulin-like (Ig) domains, four to eight fibronectin type 3 (FN) domains, a single transmembrane segment, and two cytoplasmic tandem tyrosine phosphatase domains. PTPRD is known to harbor various cancer-associated point mutations. While it is assumed that PTPRD regulates cellular functions as a tumor suppressor through the tyrosine phosphatase activity in the intracellular region, the function of its extracellular domain (ECD) in cancer is not well understood. In this study, we systematically examined the impact of 92 cancer-associated point mutations within the ECD. We found that 69.6% (64 out of 92) of these mutations suppressed total protein expression and/or plasma membrane localization. Notably, almost all mutations (20 out of 21) within the region between the last FN domain and transmembrane segment affected protein expression and/or localization, highlighting the importance of this region for protein stability. We further found that some mutations within the Ig domains adjacent to the glycosaminoglycan-binding pocket enhanced PTPRD's binding ability to heparan sulfate proteoglycans (HSPGs). This interaction is proposed to suppress phosphatase activity. Our findings therefore suggest that HSPG-mediated attenuation of phosphatase activity may be involved in tumorigenic processes through PTPRD dysregulation.


Asunto(s)
Proteoglicanos de Heparán Sulfato , Neoplasias , Humanos , Proteoglicanos de Heparán Sulfato/metabolismo , Mutación Puntual , Proteínas de la Matriz Extracelular/genética , Inmunoglobulinas , Estabilidad Proteica , Tirosina/genética , Monoéster Fosfórico Hidrolasas/genética , Heparitina Sulfato , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/genética , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo
12.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38612392

RESUMEN

The glycocalyx is a proteoglycan-glycoprotein structure lining the luminal surface of the vascular endothelium and is susceptible to damage due to blast overpressure (BOP) exposure. The glycocalyx is essential in maintaining the structural and functional integrity of the vasculature and regulation of cerebral blood flow (CBF). Assessment of alterations in the density of the glycocalyx; its components (heparan sulphate proteoglycan (HSPG/syndecan-2), heparan sulphate (HS), and chondroitin sulphate (CS)); CBF; and the effect of hypercapnia on CBF was conducted at 2-3 h, 1, 3, 14, and 28 days after a high-intensity (18.9 PSI/131 kPa peak pressure, 10.95 ms duration, and 70.26 PSI·ms/484.42 kPa·ms impulse) BOP exposure in rats. A significant reduction in the density of the glycocalyx was observed 2-3 h, 1-, and 3 days after the blast exposure. The glycocalyx recovered by 28 days after exposure and was associated with an increase in HS (14 and 28 days) and in HSPG/syndecan-2 and CS (28 days) in the frontal cortex. In separate experiments, we observed significant decreases in CBF and a diminished response to hypercapnia at all time points with some recovery at 3 days. Given the role of the glycocalyx in regulating physiological function of the cerebral vasculature, damage to the glycocalyx after BOP exposure may result in the onset of pathogenesis and progression of cerebrovascular dysfunction leading to neuropathology.


Asunto(s)
Proteoglicanos de Heparán Sulfato , Sindecano-2 , Animales , Ratas , Glicocálix , Hipercapnia , Circulación Cerebrovascular , Heparitina Sulfato , Sulfatos de Condroitina
13.
Cell Mol Neurobiol ; 44(1): 30, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38546765

RESUMEN

Alzheimer's disease (AD) and traumatic brain injury (TBI) are major public health issues worldwide, with over 38 million people living with AD and approximately 48 million people (27-69 million) experiencing TBI annually. Neurodegenerative conditions are characterised by the accumulation of neurotoxic amyloid beta (Aß) and microtubule-associated protein Tau (Tau) with current treatments focused on managing symptoms rather than addressing the underlying cause. Heparan sulfate proteoglycans (HSPGs) are a diverse family of macromolecules that interact with various proteins and ligands and promote neurogenesis, a process where new neural cells are formed from stem cells. The syndecan (SDC) and glypican (GPC) HSPGs have been implicated in AD pathogenesis, acting as drivers of disease, as well as potential therapeutic targets. Human mesenchymal stem cells (hMSCs) provide an attractive therapeutic option for studying and potentially treating neurodegenerative diseases due to their relative ease of isolation and subsequent extensive in vitro expansive potential. Understanding how HSPGs regulate protein aggregation, a key feature of neurodegenerative disorders, is essential to unravelling the underlying disease processes of AD and TBI, as well as any link between these two neurological disorders. Further research may validate HSPG, specifically SDCs or GPCs, use as neurodegenerative disease targets, either via driving hMSC stem cell therapy or direct targeting.


Asunto(s)
Enfermedad de Alzheimer , Lesiones Traumáticas del Encéfalo , Células Madre Mesenquimatosas , Enfermedades Neurodegenerativas , Humanos , Proteoglicanos de Heparán Sulfato , Péptidos beta-Amiloides , Lesiones Traumáticas del Encéfalo/terapia , Neurogénesis
14.
Cells ; 13(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38474382

RESUMEN

Glypicans (Glps) are a family of heparan sulphate proteoglycans that are attached to the outer plasma membrane leaflet of the producing cell by a glycosylphosphatidylinositol anchor. Glps are involved in the regulation of many signalling pathways, including those that regulate the activities of Wnts, Hedgehog (Hh), Fibroblast Growth Factors (FGFs), and Bone Morphogenetic Proteins (BMPs), among others. In the Hh-signalling pathway, Glps have been shown to be essential for ligand transport and the formation of Hh gradients over long distances, for the maintenance of Hh levels in the extracellular matrix, and for unimpaired ligand reception in distant recipient cells. Recently, two mechanistic models have been proposed to explain how Hh can form the signalling gradient and how Glps may contribute to it. In this review, we describe the structure, biochemistry, and metabolism of Glps and their interactions with different components of the Hh-signalling pathway that are important for the release, transport, and reception of Hh.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Glipicanos/metabolismo , Proteínas de Drosophila/metabolismo , Ligandos , Proteínas Hedgehog/metabolismo , Proteoglicanos de Heparán Sulfato
15.
J Hum Genet ; 69(6): 235-244, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38424183

RESUMEN

Dyssegmental dysplasia (DD) is a severe skeletal dysplasia comprised of two subtypes: lethal Silverman-Handmaker type (DDSH) and nonlethal Rolland-Desbuquois type (DDRD). DDSH is caused by biallelic pathogenic variants in HSPG2 encoding perlecan, whereas the genetic cause of DDRD remains undetermined. Schwartz-Jampel syndrome (SJS) is also caused by biallelic pathogenic variants in HSPG2 and is an allelic disorder of DDSH. In SJS and DDSH, 44 and 8 pathogenic variants have been reported in HSPG2, respectively. Here, we report that five patients with DDRD carried four pathogenic variants in HSPG2: c.9970 G > A (p.G3324R), c.559 C > T (p.R187X), c7006 + 1 G > A, and c.11562 + 2 T > G. Two patients were homozygous for p.G3324R, and three patients were heterozygous for p.G3324R. Haplotype analysis revealed a founder haplotype spanning 85,973 bp shared in the five patients. SJS, DDRD, and DDSH are allelic disorders with pathogenic variants in HSPG2.


Asunto(s)
Haplotipos , Proteoglicanos de Heparán Sulfato , Osteocondrodisplasias , Femenino , Humanos , Masculino , Alelos , Enfermedades del Desarrollo Óseo/genética , Enfermedades del Desarrollo Óseo/patología , Efecto Fundador , Proteoglicanos de Heparán Sulfato/genética , Mutación , Osteocondrodisplasias/genética , Osteocondrodisplasias/patología , Enfermedades Fetales
16.
Matrix Biol ; 128: 39-64, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38387749

RESUMEN

Collagen type XVIII (COL18) is an abundant heparan sulfate proteoglycan in vascular basement membranes. Here, we asked (i) if the loss of COL18 would result in blood-brain barrier (BBB) breakdown, pathological alterations of small arteries and capillaries and neuroinflammation as found in cerebral small vessel disease (CSVD) and (ii) if such changes may be associated with remodeling of synapses and neural extracellular matrix (ECM). We found that 5-month-old Col18a1-/- mice had elevated BBB permeability for mouse IgG in the deep gray matter, and intravascular erythrocyte accumulations were observed brain-wide in capillaries and arterioles. BBB permeability increased with age and affected cortical regions and the hippocampus in 12-month-old Col18a1-/- mice. None of the Col18a1-/- mice displayed hallmarks of advanced CSVD, such as hemorrhages, and did not show perivascular space enlargement. Col18a1 deficiency-induced BBB leakage was accompanied by activation of microglia and astrocytes, a loss of aggrecan in the ECM of perineuronal nets associated with fast-spiking inhibitory interneurons and accumulation of the perisynaptic ECM proteoglycan brevican and the microglial complement protein C1q at excitatory synapses. As the pathway underlying these regulations, we found increased signaling through the TGF-ß1/Smad3/TIMP-3 cascade. We verified the pivotal role of COL18 for small vessel wall structure in CSVD by demonstrating the protein's involvement in vascular remodeling in autopsy brains from patients with cerebral hypertensive arteriopathy. Our study highlights an association between the alterations of perivascular ECM, extracellular proteolysis, and perineuronal/perisynaptic ECM, as a possible substrate of synaptic and cognitive alterations in CSVD.


Asunto(s)
Enfermedades de los Pequeños Vasos Cerebrales , Colágeno Tipo XVIII , Enfermedades Neuroinflamatorias , Animales , Humanos , Lactante , Ratones , Enfermedades de los Pequeños Vasos Cerebrales/genética , Enfermedades de los Pequeños Vasos Cerebrales/metabolismo , Colágeno Tipo XVIII/genética , Colágeno Tipo XVIII/metabolismo , Endostatinas , Matriz Extracelular/metabolismo , Proteoglicanos de Heparán Sulfato/metabolismo , Ratones Noqueados
17.
Viruses ; 16(2)2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38400072

RESUMEN

To identify host factors that affect Bovine Herpes Virus Type 1 (BoHV-1) infection we previously applied a genome wide CRISPR knockout screen targeting all bovine protein coding genes. By doing so we compiled a list of both pro-viral and anti-viral proteins involved in BoHV-1 replication. Here we provide further analysis of those that are potentially involved in viral entry into the host cell. We first generated single cell knockout clones deficient in some of the candidate genes for validation. We provide evidence that Polio Virus Receptor-related protein (PVRL2) serves as a receptor for BoHV-1, mediating more efficient entry than the previously identified Polio Virus Receptor (PVR). By knocking out two enzymes that catalyze HSPG chain elongation, HST2ST1 and GLCE, we further demonstrate the significance of HSPG in BoHV-1 entry. Another intriguing cluster of candidate genes, COG1, COG2 and COG4-7 encode six subunits of the Conserved Oligomeric Golgi (COG) complex. MDBK cells lacking COG6 produced fewer but bigger plaques compared to control cells, suggesting more efficient release of newly produced virions from these COG6 knockout cells, due to impaired HSPG biosynthesis. We further observed that viruses produced by the COG6 knockout cells consist of protein(s) with reduced N-glycosylation, potentially explaining their lower infectivity. To facilitate candidate validation, we also detailed a one-step multiplex CRISPR interference (CRISPRi) system, an orthogonal method to KO that enables quick and simultaneous deployment of three CRISPRs for efficient gene inactivation. Using CRISPR3i, we verified eight candidates that have been implicated in the synthesis of surface heparan sulfate proteoglycans (HSPGs). In summary, our experiments confirmed the two receptors PVR and PVRL2 for BoHV-1 entry into the host cell and other factors that affect this process, likely through the direct or indirect roles they play during HSPG synthesis and glycosylation of viral proteins.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Poliomielitis , Humanos , Proteoglicanos de Heparán Sulfato , Internalización del Virus , Receptores Virales/genética , Proteínas Portadoras
18.
In Vitro Cell Dev Biol Anim ; 60(5): 441-448, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38379096

RESUMEN

Wnt, a family of secreted signaling proteins, serves diverse functions in embryogenesis, organogenesis, cancer, and stem cell functions. In the context of development, Wnt has been considered a representative morphogen, forming concentration gradients to give positional information to cells or tissues. However, although gradients are often illustrated in schemata, the reality of concentration gradients, or in other words, actual spatial distribution of Wnt ligands, and their behaviors in the extracellular space still remain poorly known. To understand extracellular behavior of Wnt ligands, quantitative analyses such as fluorescence correlation spectroscopy (FCS) and fluorescence recovery after photobleaching (FRAP) are highly informative because Wnt dispersal involves physical and biochemical processes, such as diffusion and binding to or dissociation from cell surface molecules, including heparan sulfate proteoglycans (HSPGs). Here, I briefly discuss representative methods to quantify morphogen dynamics. In addition, I discuss molecular manipulations of morphogens, mainly focusing on use of protein binders, and synthetic biology of morphogens as indicators of current and future directions in this field.


Asunto(s)
Proteínas Wnt , Ligandos , Animales , Humanos , Proteínas Wnt/metabolismo , Espacio Extracelular/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Proteoglicanos de Heparán Sulfato/metabolismo , Vía de Señalización Wnt
19.
Proc Natl Acad Sci U S A ; 121(3): e2316733121, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38215181

RESUMEN

The epithelial-mesenchymal transition (EMT) program is crucial for transforming carcinoma cells into a partially mesenchymal state, enhancing their chemoresistance, migration, and metastasis. This shift in cell state is tightly regulated by cellular mechanisms that are not yet fully characterized. One intriguing EMT aspect is the rewiring of the proteoglycan landscape, particularly the induction of heparan sulfate proteoglycan (HSPG) biosynthesis. This proteoglycan functions as a co-receptor that accelerates cancer-associated signaling pathways through its negatively-charged residues. However, the precise mechanisms through which EMT governs HSPG biosynthesis and its role in cancer cell plasticity remain elusive. Here, we identified exostosin glycosyltransferase 1 (EXT1), a central enzyme in HSPG biosynthesis, to be selectively upregulated in aggressive tumor subtypes and cancer cell lines, and to function as a key player in breast cancer aggressiveness. Notably, ectopic expression of EXT1 in epithelial cells is sufficient to induce HSPG levels and the expression of known mesenchymal markers, subsequently enhancing EMT features, including cell migration, invasion, and tumor formation. Additionally, EXT1 loss in MDA-MB-231 cells inhibits their aggressiveness-associated traits such as migration, chemoresistance, tumor formation, and metastasis. Our findings reveal that EXT1, through its role in HSPG biosynthesis, governs signal transducer and activator of transcription 3 (STAT3) signaling, a known regulator of cancer cell aggressiveness. Collectively, we present the EXT1/HSPG/STAT3 axis as a central regulator of cancer cell plasticity that directly links proteoglycan synthesis to oncogenic signaling pathways.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Proteoglicanos de Heparán Sulfato/metabolismo , Factor de Transcripción STAT3/metabolismo , Línea Celular , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Transición Epitelial-Mesenquimal , Línea Celular Tumoral , Movimiento Celular
20.
Food Funct ; 15(4): 1948-1962, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38270052

RESUMEN

Resveratrol, renowned as an antioxidant, also exhibits significant potential in combatting severe respiratory infections, particularly the respiratory syncytial virus (RSV). Nevertheless, the specific mechanism underlying its inhibition of RSV replication remains unexplored. Heparan sulfate proteoglycans (HSPGs) play a pivotal role as attachment factors for numerous viruses, offering a promising avenue for countering viral infections. Our research has unveiled that resveratrol effectively curbs RSV infection in a dose-dependent manner. Remarkably, resveratrol disrupts the early stages of RSV infection by engaging with HSPGs, rather than interacting with RSV surface proteins like fusion (F) protein and glycoprotein (G). Resveratrol's affinity appears to be predominantly directed towards the negatively charged sites on HSPGs, thus impeding the binding of viral receptors. In an in vivo study involving RSV-infected mice, resveratrol demonstrates its potential by ameliorating pulmonary pathology. This improvement is attributed to the inhibition of pro-inflammatory cytokine expression and a reduction in viral load within the lungs. Notably, resveratrol specifically alleviates inflammation characterized by an abundance of neutrophils in RSV-infected mice. In summation, our data first shows how resveratrol combats RSV infection through interactions with HSPGs, positioning it as a promising candidate for innovative drug development targeting RSV infections. Our study provides insight into the mechanism of resveratrol antiviral infection.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitiales Respiratorios , Animales , Ratones , Virus Sincitiales Respiratorios/fisiología , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Infecciones por Virus Sincitial Respiratorio/patología , Proteoglicanos de Heparán Sulfato/farmacología , Resveratrol/farmacología , Pulmón/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA