Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 377
Filtrar
1.
Regul Toxicol Pharmacol ; 126: 105042, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34506881

RESUMEN

Genotoxicity assessment of chemicals has a crucial role in most regulations. Due to labor, time, cost, and animal welfare issues, attention is being given to (Q)SAR methods. A strategic application of alternative methods is to first use a sequence of conservative (very sensitive) (Q)SARs and/or in vitro models to arrive at the conclusion that no further testing is necessary for negatives, and to use mechanistically based, Weight-Of-Evidence approach to evaluate the chemicals showing positive results. The ICH M7 guideline to detect DNA-reactive impurities in drugs follows these lines (recommending solely (Q)SAR in step 1). However, ICH M7 focuses only on Ames test. Here a large database of more than 6000 chemicals positive in at least one endpoint (in vitro gene mutations or chromosomal aberrations, in vivo micronucleus, aneugenicity) were analyzed with structural alerts implemented in the OECD QSAR Toolbox, resulting in maximum 3% false negatives. These promising results indicate that it may be possible to extend the approach to the whole range of genotoxicity endpoints required by regulations. Since structural alerts may generate false positives, cautious follow-up of positives is recommended (with e.g., statistically based QSARs, read across of similar chemicals, expert judgement, and experimentation when necessary).


Asunto(s)
Química Computacional/métodos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/diagnóstico , Pruebas de Mutagenicidad/normas , Preparaciones Farmacéuticas/química , Relación Estructura-Actividad Cuantitativa , Bienestar del Animal , Química Computacional/normas , Análisis Costo-Beneficio , Bases de Datos Factuales , Reacciones Falso Negativas , Factores de Tiempo
2.
Sci Rep ; 11(1): 2535, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33510380

RESUMEN

To provide a comprehensive analysis of small molecule genotoxic potential we have developed and validated an automated, high-content, high throughput, image-based in vitro Micronucleus (IVM) assay. This assay simultaneously assesses micronuclei and multiple additional cellular markers associated with genotoxicity. Acoustic dosing (≤ 2 mg) of compound is followed by a 24-h treatment and a 24-h recovery period. Confocal images are captured [Cell Voyager CV7000 (Yokogawa, Japan)] and analysed using Columbus software (PerkinElmer). As standard the assay detects micronuclei (MN), cytotoxicity and cell-cycle profiles from Hoechst phenotypes. Mode of action information is primarily determined by kinetochore labelling in MN (aneugencity) and γH2AX foci analysis (a marker of DNA damage). Applying computational approaches and implementing machine learning models alongside Bayesian classifiers allows the identification of, with 95% accuracy, the aneugenic, clastogenic and negative compounds within the data set (Matthews correlation coefficient: 0.9), reducing analysis time by 80% whilst concurrently minimising human bias. Combining high throughput screening, multiparametric image analysis and machine learning approaches has provided the opportunity to revolutionise early Genetic Toxicology assessment within AstraZeneca. By multiplexing assay endpoints and minimising data generation and analysis time this assay enables complex genotoxicity safety assessments to be made sooner aiding the development of safer drug candidates.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Pruebas de Micronúcleos/métodos , Pruebas de Mutagenicidad , Ensayos Analíticos de Alto Rendimiento/métodos , Ensayos Analíticos de Alto Rendimiento/normas , Humanos , Aprendizaje Automático , Pruebas de Micronúcleos/normas , Modelos Estadísticos , Pruebas de Mutagenicidad/métodos , Pruebas de Mutagenicidad/normas , Reproducibilidad de los Resultados
3.
Int J Toxicol ; 40(2): 108-124, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33327828

RESUMEN

There has been an increased interest in and activity for the use of peptide therapeutics to treat a variety of human diseases. The number of peptide drugs entering clinical development and the market has increased significantly over the past decade despite inherent challenges of peptide therapeutic discovery, development, and patient-friendly delivery. Disparities in interpretation and application of existing regulatory guidances to innovative synthetic and conjugated peptide assets have resulted in challenges for both regulators and sponsors. The Symposium on Development and Regulatory Challenges for Peptide Therapeutics at the 40th Annual Meeting of the American College of Toxicology held in November of 2019 focused on the following specific topics: (1) peptide therapeutic progress and future directions, and approaches to discover, optimize, assess, and deliver combination peptide therapeutics for treatment of diseases; (2) toxicological considerations to advance peptide drug-device combination products for efficient development and optimal patient benefit and adherence; (3) industry and regulatory perspectives on the regulation of synthetic and conjugated peptide products, including exploration of regulatory classifications, interpretations, and application of the existing guidances International Council for Harmonisation (ICH) M3(R2) and ICH S6(R1) in determining nonclinical study recommendations; and (4) presentation of the 2016 Health and Environmental Sciences Institute's Genetic Toxicology Technical Committee working group assessment of genotoxicity testing requirements. Perspectives were shared from industry and regulatory scientists working in the peptide therapeutics field followed by an open forum panel discussion to discuss questions drafted for the peptide therapeutics scientific community, which will be discussed in more detail.


Asunto(s)
Aprobación de Drogas/legislación & jurisprudencia , Desarrollo de Medicamentos/normas , Enfermedades Metabólicas/tratamiento farmacológico , Pruebas de Mutagenicidad/normas , Péptidos/farmacología , Péptidos/toxicidad , Péptidos/uso terapéutico , Aprobación de Drogas/métodos , Desarrollo de Medicamentos/métodos , Guías como Asunto , Humanos , Pruebas de Mutagenicidad/métodos , Estados Unidos , United States Food and Drug Administration/normas
4.
Artículo en Inglés | MEDLINE | ID: mdl-32660827

RESUMEN

The bacterial reverse mutation test (Ames test) is the most commonly used genotoxicity test; it is a primary component of the chemical safety assessment data required by regulatory agencies worldwide. Within the current accepted in vitro genotoxicity test battery, it is considered capable of revealing DNA reactivity, and identifying substances that can produce gene mutations via different mechanisms. The previously published consolidated EURL ECVAM Genotoxicity and Carcinogenicity Database, which includes substances that elicited a positive response in the Ames test, constitutes a collection of data that serves as a reference for a number of regulatory activities in the area of genotoxicity testing. Consequently, we considered it important to expand the database to include substances that fail to elicit a positive response in the Ames test, i.e., Ames negative substances. Here, we describe a curated collection of 211 Ames negative substances, with a summary of complementary data available for other genotoxicity endpoints in vitro and in vivo, plus available carcinogenicity data. A descriptive analysis of the data is presented. This includes a representation of the chemical space formed by the Ames-negative database with respect to other substances (e.g. REACH registered substances, approved drugs, pesticides, etc.) and a description of the organic functional groups found in the database. We also provide some suggestions on further analyses that could be made.


Asunto(s)
Pruebas de Carcinogenicidad/normas , Carcinógenos/toxicidad , Bases de Datos Factuales/normas , Pruebas de Mutagenicidad/normas , Mutágenos/toxicidad , Resultados Negativos/normas , Animales , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , Manejo de Datos/normas , Humanos
5.
Artículo en Inglés | MEDLINE | ID: mdl-32522346

RESUMEN

The tests used and the general principles behind test strategies are now often over 30 years old. It may be time by now, given that our knowledge of genetic toxicology has improved and that we also technically are better able to investigate DNA damage making use of modern molecular biological techniques, to start thinking on a new test strategy. In the present paper, it is discussed that the time is there to consider a new approach for genotoxicity assessment of substances. A fit for all test strategy was discussed making use of the most recent technological methods and techniques. It was also indicated that in silico tools should be more accepted by regulatory institutes/bodies as supporting information to better conclude which tests should be required for each separate substance to demonstrate its genotoxic potency. Next to that there should be a good rationale for performing in vivo studies. Finally, the need for germ cell genotoxicity testing, essential when classification and labeling of substances is mandatory, was discussed. It was suggested to change the GHS for genotoxicity classification and labelling from in vivo tests in germ cells into in vivo tests in somatic cells. Quantitative genotoxicology was also discussed. It appeared that we are currently at a transition, where the science developing to justify carrying out human health risk assessments based on genetic toxicology data sets supported by mechanistic data and exposure data. However, implementation will take time, and acceptance will be supported through the development of numerous case studies. Major remaining questions are: is genetic damage a relevant endpoint in itself, or should the risk assessment be carried out on the apical endpoint of cancer and which genotoxic endpoint should be used to derive the point of departure (PoD) for the human exposure limit?


Asunto(s)
Pruebas de Mutagenicidad/métodos , Pruebas de Mutagenicidad/normas , Animales , Daño del ADN/efectos de los fármacos , Células Germinativas/efectos de los fármacos , Humanos , Industrias/métodos , Industrias/normas , Mutágenos/toxicidad , Neoplasias/inducido químicamente , Medición de Riesgo/métodos , Medición de Riesgo/normas
8.
Artículo en Inglés | MEDLINE | ID: mdl-32087850

RESUMEN

In vitro genetic toxicology assays are used to assess the genotoxic potential of chemicals or mixtures. They measure chromosome damage (e.g., micronucleus [MN] formation) or gene mutation, and different combinations of data generated from such assays are evaluated in concert in order to identify genotoxic hazards. Mode-of-action (MoA) information is also fundamental to understanding any apparent genotoxic response. In view of the importance of these types of data for full characterization of genotoxic potential, we leveraged relevant endpoints already established in the human TK6 cell line to develop a single integrated assay that measures MN formation, gene mutation (at the thymidine kinase locus), and MoA (DNA damage response biomarkers). Several prototypical direct-acting genotoxins (methyl methanesulfonate, mitomycin C, and 4-nitroquinoline 1-oxide), pro-genotoxins (benzo[a]pyrene and cyclophosphamide monohydrate), and one non-DNA reactive genotoxin (vinblastine sulfate) were assessed in the approach and found to elicit genotoxic profiles that were generally consistent with their MoA. In contrast, the non-genotoxic agents D-mannitol and (2-chloroethyl) trimethyl-ammonium chloride induced negligible effects on all endpoints up to a top concentration of 10 mM. Sodium diclofenac, presumed to be non-genotoxic, provoked an induction in the phosphoserine10-H3-positive cell population within a small window of concentrations (0.157-0.314 mM), as well as increases in γH2AX, nuclear p53, and MN at higher concentrations, although it had no effect on the mutation frequency endpoint. G2M cell cycle arrest was also largely observed in cells that exhibited genotoxicity in the in vitro MN assay. The TK6 cell-based integrated assay represents an in vitro approach that permits comprehensive genotoxicity analysis in a human-relevant test system. Moreover, its vis-à-vis nature may facilitate further comprehension of the range of effects that can manifest in human cells in response to DNA-damaging agents.


Asunto(s)
Linfocitos/efectos de los fármacos , Mutagénesis , Pruebas de Mutagenicidad/normas , Mutación , Timidina Quinasa/genética , 4-Nitroquinolina-1-Óxido/toxicidad , Benzo(a)pireno/toxicidad , Línea Celular Tumoral , Ciclofosfamida/toxicidad , ADN/genética , ADN/metabolismo , Daño del ADN , Diclofenaco/toxicidad , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/genética , Regulación de la Expresión Génica , Humanos , Linfocitos/citología , Linfocitos/metabolismo , Metilmetanosulfonato/toxicidad , Micronúcleos con Defecto Cromosómico/efectos de los fármacos , Mitomicina/toxicidad , Timidina Quinasa/metabolismo , Vinblastina/toxicidad
9.
Artículo en Inglés | MEDLINE | ID: mdl-32087853

RESUMEN

The International Workshop on Genotoxicity Testing (IWGT) meets every four years to obtain consensus on unresolved issues associated with genotoxicity testing. At the 2017 IWGT meeting in Tokyo, four sub-groups addressed issues associated with the Organization for Economic Cooperation and Development (OECD) Test Guideline TG471, which describes the use of bacterial reverse-mutation tests. The strains sub-group analyzed test data from >10,000 chemicals, tested additional chemicals, and concluded that some strains listed in TG471 are unnecessary because they detected fewer mutagens than other strains that the guideline describes as equivalent. Thus, they concluded that a smaller panel of strains would suffice to detect most mutagens. The laboratory proficiency sub-group recommended (a) establishing strain cell banks, (b) developing bacterial growth protocols that optimize assay sensitivity, and (c) testing "proficiency compounds" to gain assay experience and establish historical positive and control databases. The sub-group on criteria for assay evaluation recommended that laboratories (a) track positive and negative control data; (b) develop acceptability criteria for positive and negative controls; (c) optimize dose-spacing and the number of analyzable doses when there is evidence of toxicity; (d) use a combination of three criteria to evaluate results: a dose-related increase in revertants, a clear increase in revertants in at least one dose relative to the concurrent negative control, and at least one dose that produced an increase in revertants above control limits established by the laboratory from historical negative controls; and (e) establish experimental designs to resolve unclear results. The in silico sub-group summarized in silico utility as a tool in genotoxicity assessment but made no specific recommendations for TG471. Thus, the workgroup identified issues that could be addressed if TG471 is revised. The companion papers (a) provide evidence-based approaches, (b) recommend priorities, and (c) give examples of clearly defined terms to support revision of TG471.


Asunto(s)
Escherichia coli/efectos de los fármacos , Mutagénesis , Pruebas de Mutagenicidad/normas , Mutágenos/toxicidad , Salmonella typhimurium/efectos de los fármacos , Animales , Bancos de Muestras Biológicas/organización & administración , Bases de Datos de Compuestos Químicos/provisión & distribución , Escherichia coli/genética , Guías como Asunto , Humanos , Cooperación Internacional , Mutágenos/clasificación , Salmonella typhimurium/genética , Tokio
10.
Artículo en Inglés | MEDLINE | ID: mdl-31708075

RESUMEN

The International Workshop on Genotoxicity Testing (IWGT) meets every four years to seek consensus on difficult or conflicting approaches to genotoxicity testing based upon experience, available data, and analysis techniques. At the 2017 IWGT meeting in Tokyo, one working group addressed the sensitivity and selectivity of the bacterial strains specified in the Organization for Economic Cooperation and Development (OECD) Test Guideline TG471 to recommend possible modification of the test guideline. Three questions were posed: (1) Although TA100 is derived from TA1535, does TA1535 detect any mutagens that are not detected by TA100? (2) Among the options of Salmonella TA1537, TA97 or TA97a, are these strains truly equivalent? (3) Because there is a choice to use one of either E. coli WP2 uvrA, E. coli WP2 uvrA pKM101, or Salmonella TA102, are these strains truly equivalent? To answer these questions, we analyzed published bacterial mutation data in multiple strains from large (>10,000 compound) databases from Leadscope and Lhasa Limited and anonymized data for 53 compounds tested in TA1535 and TA100 provided by a pharmaceutical company. Our analysis involved (1) defining criteria for determining selective responses when using different strains; (2) identifying compounds producing selective responses based upon author calls; (3) confirming selective responses by visually examining dose-response data and considering experimental conditions; (4) using statistical methods to quantify the responses; (5) performing limited additional direct-comparison testing; and (6) determining the chemical classes producing selective responses. We found that few mutagens would fail to be detected if the test battery did not include Salmonella strains TA1535 (8/1167), TA1537 (2/247), TA102 (4/46), and E. coli WP2 uvrA (2/21). Of the mutagens detected by the full TG471 strain battery, 93% were detected using only strains TA98 and TA100; consideration of results from in vitro genotoxicity assays that detect clastogenicity increased this to 99%.


Asunto(s)
Guías como Asunto , Pruebas de Mutagenicidad/normas , Escherichia coli/genética , Salmonella/genética
11.
Artículo en Inglés | MEDLINE | ID: mdl-31699340

RESUMEN

The working group reached complete or majority agreement on many issues. Results from TGR and in vivo comet assays for 91 chemicals showed they have similar ability to detect in vivo genotoxicity per se with bacterial mutagens and Ames-positive carcinogens. TGR and comet assay results were not significantly different when compared with IARC Group 1, 2 A, and unclassified carcinogens. There were significantly more comet assay positive responses for Group 2B chemicals, and for IARC classified and unclassified carcinogens combined, which may be expected since mutation is a sub-set of genotoxicity. A liver comet assay combined with the bone marrow/blood micronucleus (MNviv) test would detect in vivo genotoxins that do not exhibit tissue-specific or site-of-contact effects, and is appropriate for routine in vivo genotoxicity testing. Generally for orally administered substances, a comet assay at only one site-of-contact GI tract tissue (stomach or duodenum/jejunum) is required. In MNviv tests, evidence of target tissue exposure can be obtained in a number of different ways, as recommended by ICH S2(R1) and EFSA (Hardy et al., 2017). Except for special cases the i.p. route is inappropriate for in vivo testing; for risk evaluations more weight should be given to data from a physiologically relevant administration route. The liver MN test is sufficiently validated for the development of an OECD guideline. However, the impact of dosing animals >6 weeks of age needs to be evaluated. The GI tract MN test shows promise but needs more validation for an OECD guideline. The Pig-a assay detects systemically available mutagens and is a valuable follow-up to in vitro positive results. A new freeze-thaw protocol provides more flexibility. Mutant reticulocyte and erythrocyte frequencies should both be determined. Preliminary data are available for the Pig-a assay in male rat germ cells which require validation including germ cell DNA mutation origin.


Asunto(s)
Pruebas de Mutagenicidad/métodos , Animales , Animales Modificados Genéticamente , Biotransformación , Daño del ADN , Genes Reporteros , Vectores Genéticos/genética , Guías como Asunto , Ratones , Ratones Endogámicos , Pruebas de Mutagenicidad/instrumentación , Pruebas de Mutagenicidad/normas , Mutágenos/farmacocinética , Mutágenos/toxicidad , Mutación , Ratas , Ratas Endogámicas F344 , Estándares de Referencia , Reproducibilidad de los Resultados , Proyectos de Investigación , Transgenes , Estudios de Validación como Asunto
12.
Artículo en Inglés | MEDLINE | ID: mdl-31699343

RESUMEN

We live in an era of 'big data', where the volume, velocity, and variety of the data being generated is increasingly influencing the way toxicological sciences are practiced. With this in mind, a workgroup was formed for the 2017 International Workshops on Genotoxicity Testing (IWGT) to consider the use of high information content data in genetic toxicology assessments. Presentations were given on adductomics, global transcriptional profiling, error-reduced single-molecule sequencing, and cellular phenotype-based assays, which were identified as methodologies that are relevant to present-day genetic toxicology assessments. Presenters and workgroup members discussed the state of the science for these methodologies, their potential use in genetic toxicology, current limitations, and the future work necessary to advance their utility and application. The session culminated with audience-assisted SWOT (strength, weakness, opportunities, and threats) analyses. The summary report described herein is structured similarly. A major conclusion of the workgroup is that while conventional regulatory genetic toxicology testing has served the public well over the last several decades, it does not provide the throughput that has become necessary in modern times, and it does not generate the mechanistic information that risk assessments ideally take into consideration. The high information content assay platforms that were discussed in this session, as well as others under development, have the potential to address aspect(s) of these issues and to meet new expectations in the field of genetic toxicology.


Asunto(s)
Pruebas de Mutagenicidad/métodos , Animales , Macrodatos , Línea Celular , Aductos de ADN/análisis , Código de Barras del ADN Taxonómico/métodos , Daño del ADN , Minería de Datos , Evaluación Preclínica de Medicamentos , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Procesamiento de Imagen Asistido por Computador , Espectrometría de Masas/métodos , Metaanálisis como Asunto , Ratones , Pruebas de Mutagenicidad/normas , Fenotipo , Imagen Individual de Molécula , Toxicología/métodos , Transcriptoma
13.
Artículo en Inglés | MEDLINE | ID: mdl-31699346

RESUMEN

An aneuploidy workgroup was established as part of the 7th International Workshops on Genotoxicity Testing. The workgroup conducted a review of the scientific literature on the biological mechanisms of aneuploidy in mammalian cells and methods used to detect chemical aneugens. In addition, the current regulatory framework was discussed, with the objective to arrive at consensus statements on the ramifications of exposure to chemical aneugens for human health risk assessment. As part of these efforts, the workgroup explored the use of adverse outcome pathways (AOPs) to document mechanisms of chemically induced aneuploidy in mammalian somatic cells. The group worked on two molecular initiating events (MIEs), tubulin binding and binding to the catalytic domain of aurora kinase B, which result in several adverse outcomes, including aneuploidy. The workgroup agreed that the AOP framework provides a useful approach to link evidence for MIEs with aneuploidy on a cellular level. The evidence linking chemically induced aneuploidy with carcinogenicity and hereditary disease was also reviewed and is presented in two companion papers. In addition, the group came to the consensus that the current regulatory test batteries, while not ideal, are sufficient for the identification of aneugens and human risk assessment. While it is obvious that there are many different MIEs that could lead to the induction of aneuploidy, the most commonly observed mechanisms involving chemical aneugens are related to tubulin binding and, to a lesser extent, inhibition of mitotic kinases. The comprehensive review presented here should help with the identification and risk management of aneugenic agents.


Asunto(s)
Rutas de Resultados Adversos , Aneuploidia , Enfermedades Genéticas Congénitas/inducido químicamente , Mitosis/efectos de los fármacos , Pruebas de Mutagenicidad/métodos , Mutágenos/toxicidad , Neoplasias/inducido químicamente , Animales , Aurora Quinasa B/antagonistas & inhibidores , Aurora Quinasa B/fisiología , Carcinógenos/toxicidad , Aberraciones Cromosómicas/inducido químicamente , Segregación Cromosómica/efectos de los fármacos , Cromosomas/efectos de los fármacos , Genes Reporteros , Enfermedades Genéticas Congénitas/genética , Células Germinativas/efectos de los fármacos , Células Germinativas/ultraestructura , Humanos , Ratones , Pruebas de Micronúcleos , Microtúbulos/efectos de los fármacos , Mitosis/fisiología , Pruebas de Mutagenicidad/normas , Mutágenos/análisis , Neoplasias/genética , No Disyunción Genética/efectos de los fármacos , Gestión de Riesgos/legislación & jurisprudencia , Moduladores de Tubulina/toxicidad
14.
Artículo en Inglés | MEDLINE | ID: mdl-31699349

RESUMEN

Aneuploidy is regarded as a hallmark of cancer, however, its role is complex with both pro- and anti-carcinogenic effects evident. In this IWGT review, we consider the role of aneuploidy in cancer biology; cancer risk associated with constitutive aneuploidy; rodent carcinogenesis with known chemical aneugens; and chemotherapy-related malignant neoplasms. Aneuploidy is seen at various stages in carcinogenesis. However, the relationship between induced aneuploidy occurring after exposure and clonal aneuploidy present in tumours is not clear. Recent evidence indicates that the induction of chromosomal instability (CIN), may be more important than aneuploidy per se, in the carcinogenic process. Down Syndrome, trisomy 21, is associated with altered hematopoiesis in utero which, in combination with subsequent mutations, results in an increased risk for acute megakaryoblastic and lymphoblastic leukemias. In contrast, there is reduced cancer risk for most solid tumours in Down Syndrome. Mouse models with high levels of aneuploidy are also associated with increased cancer risk for particular tumours with long latencies, but paradoxically other types of tumour often show decreased incidence. The aneugens reviewed that induce cancer in humans and animals all possess other carcinogenic properties, such as mutagenicity, clastogenicity, cytotoxicity, organ toxicities, hormonal and epigenetic changes which likely account for, or interact with aneuploidy, to cause carcinogenesis. Although the role that aneuploidy plays in carcinogenesis has not been fully established, in many cases, it may not play a primary causative role. Tubulin-disrupting aneugens that do not possess other properties linked to carcinogenesis, were not carcinogenic in rodents. Similarly, in humans, for the tubulin-disrupting aneugens colchicine and albendazole, there is no reported association with increased cancer risk. There is a need for further mechanistic studies on agents that induce aneuploidy, particularly by mechanisms other than tubulin disruption and to determine the role of aneuploidy in pre-neoplastic events and in early and late stage neoplasia.


Asunto(s)
Aneuploidia , Carcinogénesis/genética , Carcinógenos/toxicidad , Inestabilidad Cromosómica , Pruebas de Mutagenicidad/métodos , Neoplasias/inducido químicamente , Animales , Centrosoma , Trastornos de los Cromosomas/genética , Cromosomas/efectos de los fármacos , Síndrome de Down/complicaciones , Síndrome de Down/genética , Predisposición Genética a la Enfermedad , Humanos , Ratones , Modelos Animales , Pruebas de Mutagenicidad/normas , Mutágenos/toxicidad , Neoplasias/genética , Neoplasias Primarias Secundarias/inducido químicamente , Neoplasias Primarias Secundarias/genética , Huso Acromático/efectos de los fármacos , Moduladores de Tubulina/toxicidad
15.
Artículo en Inglés | MEDLINE | ID: mdl-31699348

RESUMEN

Pig-a gene mutation assays enumerate cells with the glycosylphosphatidylinositol (GPI) anchor-deficient phenotype as a reporter of mutation in the endogenous Pig-a gene. Methods for measuring mutation in this gene are quite well established for in vivo systems. This approach to mutagenicity assessment has now been extended to in vitro mammalian cell-based systems. An expert workgroup from the 7th International Workshop on Genotoxicity Testing tasked with assessing the status of in vitro mammalian cell mutation assays has investigated the merits and limitations of in vitro Pig-a gene mutation assays. A review of the current status of these developing methodologies and the formation of consensus statements on the utility and application of these assays were performed to provide guidance for their potential use in genotoxicity hazard identification and risk assessment.


Asunto(s)
Proteínas de la Membrana/genética , Pruebas de Mutagenicidad/métodos , Animales , Línea Celular , Femenino , Predicción , Genes Ligados a X , Glicosilfosfatidilinositoles/metabolismo , Humanos , Técnicas In Vitro , Mutación con Pérdida de Función , Masculino , Proteínas de la Membrana/deficiencia , Pruebas de Mutagenicidad/normas , Mutágenos/toxicidad , Mutación , Fenotipo , Roedores , Timidina Quinasa/genética
16.
Cytotherapy ; 21(11): 1095-1111, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31711733

RESUMEN

Pluripotent stem cells offer the potential for an unlimited source for cell therapy products. However, there is concern regarding the tumorigenicity of these products in humans, mainly due to the possible unintended contamination of undifferentiated cells or transformed cells. Because of the complex nature of these new therapies and the lack of a globally accepted consensus on the strategy for tumorigenicity evaluation, a case-by-case approach is recommended for the risk assessment of each cell therapy product. In general, therapeutic products need to be qualified using available technologies, which ideally should be fully validated. In such circumstances, the developers of cell therapy products may have conducted various tumorigenicity tests and consulted with regulators in respective countries. Here, we critically review currently available in vivo and in vitro testing methods for tumorigenicity evaluation against expectations in international regulatory guidelines. We discuss the value of those approaches, in particular the limitations of in vivo methods, and comment on challenges and future directions. In addition, we note the need for an internationally harmonized procedure for tumorigenicity assessment of cell therapy products from both regulatory and technological perspectives.


Asunto(s)
Carcinogénesis/patología , Tratamiento Basado en Trasplante de Células y Tejidos/efectos adversos , Tratamiento Basado en Trasplante de Células y Tejidos/normas , Guías de Práctica Clínica como Asunto , Animales , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Consenso , Necesidades y Demandas de Servicios de Salud , Humanos , Técnicas In Vitro , Pruebas de Mutagenicidad/métodos , Pruebas de Mutagenicidad/normas , Células Madre Pluripotentes/fisiología , Guías de Práctica Clínica como Asunto/normas
17.
Regul Toxicol Pharmacol ; 109: 104488, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31586682

RESUMEN

The International Council on Harmonisation (ICH) M7(R1) guideline describes the use of complementary (quantitative) structure-activity relationship ((Q)SAR) models to assess the mutagenic potential of drug impurities in new and generic drugs. Historically, the CASE Ultra and Leadscope software platforms used two different statistical-based models to predict mutations at G-C (guanine-cytosine) and A-T (adenine-thymine) sites, to comprehensively assess bacterial mutagenesis. In the present study, composite bacterial mutagenicity models covering multiple mutation types were developed. These new models contain more than double the number of chemicals (n = 9,254 and n = 13,514) than the corresponding non-composite models and show better toxicophore coverage. Additionally, the use of a single composite bacterial mutagenicity model simplifies impurity analysis in an ICH M7 (Q)SAR workflow by reducing the number of model outputs requiring review. An external validation set of 388 drug impurities representing proprietary pharmaceutical chemical space showed performance statistics ranging from of 66-82% in sensitivity, 91-95% in negative predictivity and 96% in coverage. This effort represents a major enhancement to these (Q)SAR models and their use under ICH M7(R1), leading to improved patient safety through greater predictive accuracy, applicability, and efficiency when assessing the bacterial mutagenic potential of drug impurities.


Asunto(s)
Contaminación de Medicamentos/prevención & control , Mutagénesis/efectos de los fármacos , Pruebas de Mutagenicidad/normas , Mutágenos/toxicidad , Relación Estructura-Actividad Cuantitativa , Bacterias/efectos de los fármacos , Bacterias/genética , Simulación por Computador/normas , Exactitud de los Datos , Análisis de Datos , Bases de Datos Factuales , Conjuntos de Datos como Asunto , Humanos , Pruebas de Mutagenicidad/métodos , Mutágenos/química , Seguridad del Paciente , Proyectos de Investigación , Toxicología/métodos , Toxicología/normas , Flujo de Trabajo
18.
Environ Mol Mutagen ; 59(9): 829-841, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30357906

RESUMEN

The forward gene mutation mouse lymphoma assay (MLA) is widely used, as part of a regulatory test battery, to identify the genotoxic potential of chemicals. It identifies mutagens capable of inducing a variety of genetic events. During the 1980s and early 1990s, the U.S. National Toxicology Program (NTP) developed a publicly available database (https://tools.niehs.nih.gov/cebs3/ui/) of MLA results. This database is used to define the mutagenic potential of chemicals, to develop structure-activity relationships (SAR), and to draw correlations to animal carcinogenicity findings. New criteria for MLA conduct and data interpretation were subsequently developed by the International Workshop for Genotoxicity Testing (IWGT) and the Organization of Economic Cooperation and Development (OECD). These recommendations are included in a new OECD Test Guideline (TG490). It is essential that early experimental data be re-examined and classified according to the current criteria to build a curated database to better inform chemical-specific evaluations and SAR models. We re-evaluated more than 1900 experiments representing 342 chemicals against the newly defined acceptance criteria for background mutant frequency (MF), cloning efficiency (CE), positive control values (modified for this evaluation due to lack of colony sizing), appropriate dose selection, and data consistency. Only 17% of the evaluated experiments met all acceptance criteria used in this re-evaluation. Results from 211 chemicals were determined to be uninterpretable, 92 were positive, and 39 equivocal. The authors could not classify any responses as negative because colony sizing was not performed for any of these experiments and it is clear, based on many experiment with unacceptably low background and positive control MFs, that mutant colony recovery was often suboptimal. This re-evaluation provides a curated database for the MLA. A similar curation should be done for other widely used genetic toxicology assays, but will be more difficult for certain assays (e.g., in vitro chromosomal aberrations) because important parameters such as level of cytotoxicity were often not evaluated/reported. Environ. Mol. Mutagen. 59:829-841, 2018. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Linfoma/genética , Pruebas de Mutagenicidad , Mutación , Animales , Bases de Datos Genéticas , Modelos Animales de Enfermedad , Ratones , Pruebas de Mutagenicidad/métodos , Pruebas de Mutagenicidad/normas , Organización para la Cooperación y el Desarrollo Económico , Estados Unidos
19.
Mutat Res Genet Toxicol Environ Mutagen ; 832-833: 19-28, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30057017

RESUMEN

The Organisation for Economic Co-operation and Development Test Guideline (TG) 488 for the transgenic rodent (TGR) mutation assay recommends two sampling times for assessing germ cell mutagenicity following the required 28-day exposure period: 28 + > 49 days for mouse sperm and 28 + >70 days for rat sperm from the cauda epididymis, or three days (i.e., 28 + 3d) for germ cells from seminiferous tubules (hereafter, tubule germ cells) plus caudal sperm for mouse and rat. Although the latter protocol is commonly used for mutagenicity testing in somatic tissues, it has several shortcomings for germ cell testing because it provides limited exposure of the proliferating phase of spermatogenesis when mutations are fixed in the transgene. Indeed, analysis of sperm at 28 + 3d has generated negative results with established germ cell mutagens, while the analysis of tubule germ cells has generated both positive and either negative or equivocal results. The Germ Cell workgroup of the Genetic Toxicology Technical Committee of the Health and Environmental Sciences Institute modelled mouse and rat spermatogenesis to better define the exposure history of the cell population collected from seminiferous tubules. The modelling showed that mouse tubule germ cells at 28 + 3d receive, as a whole, 42% of the total exposure during the proliferating phase. This percentage increases to 99% at 28 + 28d and reaches 100% at 28 + 30d. In the rat, these percentages are 22% and 80% at 28 + 3d and 28 + 28d, reaching 100% at 28 + 44d. These results show that analysis of tubule germ cells at 28 + 28d may be an effective protocol for assessing germ cell mutagenicity in mice and rats using TG 488. Since TG 488 recommends the 28 + 28d protocol for slow dividing somatic tissues, this appears to be a better compromise than 28 + 3d when slow dividing somatic tissues or germ cells are the critical tissues of interest.


Asunto(s)
Simulación por Computador , Pruebas de Mutagenicidad/normas , Mutágenos/toxicidad , Mutación , Organización para la Cooperación y el Desarrollo Económico/normas , Espermatogénesis , Testículo/patología , Animales , Animales Modificados Genéticamente , Daño del ADN , Genes Reporteros , Guías como Asunto , Masculino , Ratones , Ratas , Testículo/efectos de los fármacos , Testículo/metabolismo
20.
Artículo en Inglés | MEDLINE | ID: mdl-30057023

RESUMEN

The Organisation for Economic Co-operation and Development Test Guideline 488 (TG 488) provides recommendations for assessing germ cell and somatic cell mutagenicity using transgenic rodent (TGR) models. However, important data gaps exist for selecting an optimal approach for simultaneously evaluating mutagenicity in both cell types. It is uncertain whether analysis of germ cells from seminiferous tubules (hereafter, tubule germ cells) or caudal sperm within the recommended design for somatic tissues (i.e., 28 days of exposure plus three days of fixation time, 28 + 3d) has enough sensitivity to detect an effect as compared with the analysis of sperm within the recommended design for germ cells (i.e., 28 + 49d and 28 + 70d for mouse and rat, respectively). To address these data gaps, the Germ Cell workgroup of the Genetic Toxicology Technical Committee of the Health and Environmental Sciences Institute reviewed the available TGR mutagenicity data in male germ cells, and, characterized the exposure history of tubule germ cells for different sampling times to evaluate its impact on germ cell mutagenicity testing using TG 488. Our analyses suggest that evaluating mutant frequencies in: i) sperm from the cauda epididymis at 28 + 3d does not provide meaningful mutagenicity data; ii), tubule germ cells at 28 + 3d provides reliable mutagenicity data only if the results are positive; and iii) tubule germ cells at 28 + 28d produces reliable positive and negative results in both mice and rats. Thus, the 28 + 28d regimen may provide an approach for simultaneously assessing mutagenicity in somatic tissues and germ cells from the same animals. Further work is required to support the 28 + 28d protocol for tissues other than slowly proliferating tissues as per current TG 488. Finally, recommendations are provided to guide the experimental design for germ cell mutagenicity data for regulatory submission, as well as other possible approaches to increase the reliability of the TGR assay.


Asunto(s)
Daño del ADN , Genes Reporteros , Células Germinativas/patología , Pruebas de Mutagenicidad/normas , Mutágenos/toxicidad , Mutación , Organización para la Cooperación y el Desarrollo Económico/normas , Animales , Animales Modificados Genéticamente , Células Germinativas/efectos de los fármacos , Células Germinativas/metabolismo , Masculino , Ratones , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA