Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 273
Filtrar
1.
Anal Chim Acta ; 1320: 343000, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39142780

RESUMEN

BACKGROUND: As cyanide (CN-) is a significant hazard to the environment and human health, it is essential to monitor cyanide levels in water and food samples. Moreover, real-time visualization of CN-could provide an additional understanding of its critical physiological and toxicological roles in living cells. The fluorescence approach based on small organic probes is an effective way for the detection of CN-. In this approach, a triphenylamine-xhantane conjugate was applied to detect in many samples such as sewage water, soil, sprouted potato, apricot seed, and living cells. RESULTS: We report a new ratiometric near-infrared fluorescent probe based on a triphenylamine-xhantane derivative for CN-sensing in many samples. The probe displays high selectivity for only CN- ions among a series of analytes. The addition of cyanide to the dicyanovinyl moiety of the probe disrupts π-conjugation followed by the interruption of internal charge transfer. Consequently, the emission peak of the probe shifts hypsochromically from 655 to 495 nm. There is a linear correlation between the emission intensity (I495) and cyanide level, with a detection limit of 0.036 µM. The probe has many advantages over many probes, such as NIR fluorescence, ratiometric response, low cytotoxicity (85.0 % cell viability up to 50.0 µM of the probe), good membrane permeability, fast response time (4.0 min), high selectivity, good photostability, and anti-interference capability. SIGNIFICANCE: Although various probes have been reported in the literature, the use of triphenylamine-xhantane unit as CN- probe has yet to be explored. The probe can detect trace levels of cyanide in many samples such as sewage water, soil, sprouted potatoes, and apricot seeds. Furthermore, it is successfully utilized for the ratiometric fluorescent bioimaging of cyanide in living cells.


Asunto(s)
Cianuros , Colorantes Fluorescentes , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Cianuros/análisis , Humanos , Solanum tuberosum/química , Compuestos de Anilina/química , Contaminación de Alimentos/análisis , Espectrometría de Fluorescencia , Límite de Detección , Prunus armeniaca/química , Aguas del Alcantarillado/análisis , Aguas del Alcantarillado/química , Estructura Molecular , Células HeLa
2.
Food Res Int ; 192: 114752, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147533

RESUMEN

Japanese pickled apricot, called "umeboshi", is a traditional food that has experientially been consumed as a folk medicine. The main variation of umeboshi is called "shiso-zuke umeboshi", meaning pickled with red perilla leaves to add a colorful appearance. This study investigated changes in phenolics and antioxidant potential of shiso-zuke umeboshi during pickling processes and simulated digestion. Results showed that the red perilla pickling (PP; 1338.12) had 13 times higher phenolics than salt pickling (SP; 101.99) in µg/g DW, and the formation of rosmarinic acid was enhanced. The simulated digestion showed a gradual increase in antioxidant content and activity from the stomach to small intestine, with TPC and TFC being rapidly released in the intestinal environment. The study concluded that shiso-zuke umeboshi provides higher health benefits due to the excellent antioxidant compounds produced through the perilla pickling process.


Asunto(s)
Antioxidantes , Cinamatos , Depsidos , Digestión , Manipulación de Alimentos , Perilla , Hojas de la Planta , Polifenoles , Ácido Rosmarínico , Antioxidantes/análisis , Hojas de la Planta/química , Perilla/química , Polifenoles/análisis , Depsidos/análisis , Cinamatos/análisis , Manipulación de Alimentos/métodos , Prunus armeniaca/química , Pueblos del Este de Asia
3.
J Food Sci ; 89(8): 4688-4703, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39013017

RESUMEN

Pestil, also known as fruit leather, has emerged as a promising non-dairy carrier for probiotics, utilizing apricots and incorporating probiotics into its formulation. This study aimed to develop a healthy snack bar by incorporating three distinct strains of probiotic bacteria, both in free and encapsulated forms, into the recipe of apricot leather. The physicochemical, bioactive, microbiological, and textural attributes of the resulting apricot pestils were evaluated over a 120-day storage period. Fluctuations in pH (4.74-4.97) were observed during storage, whereas water activity (0.31-0.45) and moisture content (8.05%-13.40%) exhibited a decreasing trend over time. Incorporating free or encapsulated bacteria resulted in a darker surface, attributed to the intermolecular interactions between probiotics and the pestil matrix. The initial total phenolic content was highest and declined significantly during storage (52.13-291.73 mg gallic acid equivalent/100 g) (p < 0.05). Viability was found to be higher in the encapsulated forms of bacteria at the conclusion of the storage period. Overall, apricot pestil emerged as a promising matrix for viable probiotics, facilitating their delivery and hosting in both free and encapsulated forms during storage.


Asunto(s)
Almacenamiento de Alimentos , Frutas , Probióticos , Prunus armeniaca , Prunus armeniaca/química , Almacenamiento de Alimentos/métodos , Frutas/microbiología , Frutas/química , Concentración de Iones de Hidrógeno , Fenoles/análisis , Microbiología de Alimentos , Viabilidad Microbiana , Bocadillos
4.
Int J Biol Macromol ; 277(Pt 2): 134164, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39079567

RESUMEN

Solar energy interfacial evaporation represents a promising and sustainable approach with considerable potential for seawater desalination and wastewater treatment. Nonetheless, creating durable evaporators for continuous operation presents a challenge. Motivated by natural self-healing mechanisms, this study developed a novel 3D hybrid aero-hydrogel, which exhibited a self-healing efficiency of 89.4 % and an elongation at break post-healing of 637.7 %, featuring self-healing capabilities and continuous operation potential. Especially, the incorporation of hyperbranched water-soluble polymers (peach gum polysaccharide) endow the final solar water evaporators with a lower evaporation enthalpy of water, resulting in that the refined SVG3, with a notable water surface architecture and an expanded evaporation area, achieved a steam generation rate of 2.13 kg m-2 h-1 under 1 Sun. Notably, SVG2 achieved a high evaporation rate of 2.43 kg m-2 h-1 with the combined energy input of 1 Sun and 6 V, significantly surpassing the rate of 1.96 kg m-2 h-1 without voltage input. The results indicate that electrical energy significantly enhances and synergizes with SVG, facilitating continuous operation both day and night through the combined use of solar energy and electrical input. This study offers insightful perspectives for the strategic design of multifunctional hydrogels for solar water evaporation.


Asunto(s)
Hidrogeles , Gomas de Plantas , Polisacáridos , Energía Solar , Gomas de Plantas/química , Hidrogeles/química , Polisacáridos/química , Vapor , Prunus armeniaca/química , Agua/química
5.
Int J Biol Macromol ; 273(Pt 2): 133154, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38878922

RESUMEN

To enhance the stability of anthocyanins under conditions such as light, temperature, and pH, an apricot polysaccharide hydrogel for anthocyanins encapsulation was prepared in this study. Apricot polysaccharides with different DEs were prepared by an alkaline de-esterification method. A gel was prepared by mixing the apricot polysaccharides with CaCl2 to encapsulate the anthocyanins; the encapsulation efficiency reached 69.52 ± 0.31 %. Additionally, the gel exhibited favorable hardness (144.17 ± 2.33 g) and chewiness (64.13 ± 1.53 g). Fourier transform infrared (FTIR) and X-ray diffractometer (XRD) spectra confirmed that the formation of the hydrogel primarily relied on electrostatic interactions and hydrogen bonding. Compared with free anthocyanins, it was also found that the gel-encapsulated anthocyanins had a higher retention rate (RR) under different temperatures and light.


Asunto(s)
Antocianinas , Arándanos Azules (Planta) , Polisacáridos , Prunus armeniaca , Antocianinas/química , Polisacáridos/química , Esterificación , Prunus armeniaca/química , Arándanos Azules (Planta)/química , Temperatura , Concentración de Iones de Hidrógeno , Espectroscopía Infrarroja por Transformada de Fourier , Geles/química , Hidrogeles/química
6.
Front Biosci (Landmark Ed) ; 29(6): 235, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38940029

RESUMEN

BACKGROUND: Apricot kernels containing amygdalin (AMG) as the major cyanogenic glycoside are potentially useful as a complementary therapy for the management of several ailments including cancer. Nevertheless, little is known regarding the toxic and therapeutic doses of AMG, particularly in terms of male reproduction. Hence, this study evaluates selected qualitative characteristics of rabbit testicular tissue following in vivo administration of AMG or apricot kernels for 28 days. METHODS: The rabbits were randomly divided into five groups (Control, P1, P2, P3, P4). The Control received no AMG/apricot kernels while the experimental groups P1 and P2 received a daily intramuscular injection of amygdalin at a dose of 0.6 and 3.0 mg/kg of body weight (b.w.) for 28 days, respectively. P3 and P4 received a daily dose of 60 and 300 mg/kg b.w. of crushed apricot kernels mixed with feed for 28 days, respectively. Changes to the testicular structure were quantified morphometrically, while tissue lysates were subjected to the evaluation of reactive oxygen species (ROS) production, total antioxidant capacity, activities of antioxidant enzymes, and glutathione concentration. The extent of damage to the proteins and lipids was quantified as well. Levels of selected cytokines were determined by the enzyme-linked immunosorbent assay while a luminometric approach was used to assess the activity of caspases. RESULTS: Rabbits treated with 3.0 mg/kg b.w. AMG presented a significantly increased protein oxidation (p = 0.0118) accompanied by a depletion of superoxide dismutase (p = 0.0464), catalase (p = 0.0317), and glutathione peroxidase (p = 0.0002). Significantly increased levels of interleukin-1 beta (p = 0.0012), tumor necrosis factors alpha (p = 0.0159), caspase-3/7 (p = 0.0014), and caspase-9 (p = 0.0243) were also recorded in the experimental group P2 when compared to the Control. No effects were observed in the rabbits treated with apricot kernels at the oxidative, inflammatory, and histopathological levels. CONCLUSIONS: Apricot kernels did not induce toxicity in the testicular tissues of male rabbits, unlike pure AMG, which had a negative effect on male reproductive structures carried out through oxidative, inflammatory, and pro-apoptotic mechanisms.


Asunto(s)
Amigdalina , Estrés Oxidativo , Prunus armeniaca , Testículo , Animales , Masculino , Conejos , Testículo/efectos de los fármacos , Testículo/metabolismo , Testículo/patología , Amigdalina/farmacología , Prunus armeniaca/química , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes/farmacología , Inflamación
7.
An Acad Bras Cienc ; 96(2): e20220448, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38775552

RESUMEN

The present study investigated mushroom by-products as a substitute for emulsifiers in the microencapsulation of apricot kernel oil. Mushroom by-product emulsions were more viscous and had higher centrifugal (85.88±1.19 %) and kinetic (90.52±0.98 %) stability than control emulsions (Tween 20 was used as emulsifier). Additionally, spray-drying mushroom by-product emulsions yielded a high product yield (62.56±1.11 %). Furthermore, the oxidative stability of powder products containing mushroom by-products was observed to be higher than that of the control samples. For an accelerated oxidation test, the samples were kept at various temperatures (20, 37, and 60 °C). TOTOX values were assessed as indicators of oxidation, with values exceeding 30 indicating oxidation of the samples. Of the samples stored at 60 °C, the non-microencapsulated apricot kernel oil oxidized by the fifth day (41.12±0.13 TOTOX value), whereas the powder samples containing the mushroom by-products remained unoxidized until the end of the tenth day (37.05±0.08 TOTOX value). This study revealed that mushroom by-products could be a viable alternative for synthetic emulsifiers in the microencapsulation of apricot kernel oil. It has been observed that using mushroom by-products instead of synthetic emulsifiers in oil microencapsulation can also delay oxidative degradation in microencapsulated powders.


Asunto(s)
Emulsionantes , Emulsiones , Aceites de Plantas , Prunus armeniaca , Emulsiones/química , Emulsionantes/química , Aceites de Plantas/química , Prunus armeniaca/química , Composición de Medicamentos , Agaricales/química , Oxidación-Reducción , Agua/química
8.
Toxicon ; 245: 107764, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38802050

RESUMEN

Cyanide is one of the most rapidly acting, lethal poisons in human and veterinary medicine. This case report discusses a novel case of cyanide toxicity from apricot (Prunus armeniaca) kernel ingestion in a canine and alternative treatment modalities. A 9.5-year-old female spayed Golden Retriever presented for vomiting and collapse after ingestion of apricot kernel meal. Laboratory findings, including a high anion gap metabolic acidosis with severe hyperlactatemia, clinical signs, and known ingestion of apricot kernels, were suggestive of cyanide toxicity. The dog was treated with crystalloid and synthetic colloids for stabilization and antidote therapy with hydroxocobalamin. The dog's metabolic acidosis and hyperlactemia worsened despite antidote therapy, and the dog progressed to CPA during gastric decontamination efforts. The dog did not respond to CPR efforts. This report will review the mechanism of cyanide toxicity, treatment options, and considerations for future cases.


Asunto(s)
Cianuros , Enfermedades de los Perros , Prunus armeniaca , Animales , Femenino , Perros , Cianuros/envenenamiento , Enfermedades de los Perros/inducido químicamente , Semillas , Antídotos/uso terapéutico
9.
Chem Biol Drug Des ; 103(4): e14487, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38670559

RESUMEN

This study investigates the molecular mechanism of Ma Huang-Ku Xing Ren, a traditional Chinese medicine formula, in treating pediatric pneumonia. The focus is on the regulation of caspase-3 activation and reduction of alveolar macrophage necrosis through network pharmacology and bioinformatics analyses of Ephedra and bitter almond components. Active compounds and targets from ephedrine and bitter almond were obtained using TCMSP, TCMID, and GeneCards databases, identifying pediatric pneumonia-related genes. A protein-protein interaction (PPI) network was constructed, and core targets were screened. GO and KEGG pathway enrichment analyses identified relevant genes and pathways. An acute pneumonia mouse model was created using the lipopolysaccharide (LPS) inhalation method, with caspase-3 overexpression induced by a lentivirus. The mice were treated with Ephedra and bitter almond through gastric lavage. Lung tissue damage, inflammatory markers (IL-18 and IL-1ß), and cell death-related gene activation were assessed through H&E staining, ELISA, western blot, flow cytometry, and immunofluorescence. The study identified 128 active compounds and 121 gene targets from Ephedra and bitter almond. The PPI network revealed 13 core proteins, and pathway analysis indicated involvement in inflammation, apoptosis, and cell necrosis, particularly the caspase-3 pathway. In vivo results showed that Ephedra and bitter almond treatment significantly mitigated LPS-induced lung injury in mice, reducing lung injury scores and inflammatory marker levels. It also decreased caspase-3 activity and cell death in alveolar macrophages. In conclusion, the active ingredients of Ma Huang-Ku Xing Ren, particularly targeting caspase-3, may effectively treat pediatric pneumonia by reducing apoptosis in alveolar macrophages, as demonstrated by both network pharmacology, bioinformatics analyses, and experimental data.


Asunto(s)
Caspasa 3 , Biología Computacional , Medicamentos Herbarios Chinos , Ephedra , Macrófagos Alveolares , Neumonía , Piroptosis , Animales , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/efectos de los fármacos , Caspasa 3/metabolismo , Ratones , Neumonía/tratamiento farmacológico , Neumonía/metabolismo , Ephedra/química , Ephedra/metabolismo , Piroptosis/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/uso terapéutico , Farmacología en Red , Mapas de Interacción de Proteínas/efectos de los fármacos , Humanos , Prunus armeniaca/química , Prunus armeniaca/metabolismo , Lipopolisacáridos , Masculino , Modelos Animales de Enfermedad
10.
Environ Pollut ; 350: 123970, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38636839

RESUMEN

This study presents the synthesis of a novel composite catalyst, ZIF-67, doped on sodium bicarbonate-modified biochar derived from kumquat peels (ZIF-67@KSB3), for the enhanced activation of peracetic acid (PAA) in the degradation of acetaminophen (APAP) in aqueous solutions. The composite demonstrated a high degradation efficiency, achieving 94.3% elimination of APAP at an optimal condition of 200 mg L-1 catalyst dosage and 0.4 mM PAA concentration at pH 7. The degradation mechanism was elucidated, revealing that superoxide anion (O2•-) played a dominant role, while singlet oxygen (1O2) and alkoxyl radicals (R-O•) also contributed significantly. The degradation pathways of APAP were proposed based on LC-MS analyses and molecular electrostatic potential calculations, identifying three primary routes of transformation. Stability tests confirmed that the ZIF-67@KSB3 catalyst retained an 86% efficiency in APAP removal after five successive cycles, underscoring its durability and potential for application in pharmaceutical wastewater treatment.


Asunto(s)
Acetaminofén , Carbón Orgánico , Ácido Peracético , Contaminantes Químicos del Agua , Zeolitas , Acetaminofén/química , Carbón Orgánico/química , Contaminantes Químicos del Agua/química , Zeolitas/química , Ácido Peracético/química , Prunus armeniaca/química , Imidazoles/química , Aguas Residuales/química , Catálisis , Eliminación de Residuos Líquidos/métodos
11.
Sci Rep ; 14(1): 6532, 2024 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-38503788

RESUMEN

The increasing antimicrobial resistance requires continuous investigation of new antimicrobial agents preferably derived from natural sources. New powerful antibacterial agents can be produced by simply combining oils that are known for their antibacterial activities. In this study, apricot seed oil (ASO), date seed oil (DSO), grape seed oil (GSO), and black seed oil (BSO) alone and in binary mixtures were assessed. Fatty acid profiles of individual oils and oil mixtures showed linoleic acid, oleic acid, palmitic acid, stearic acid, and linolenic acid contents. Linoleic acid was the most abundant fatty acid in all samples except for ASO, where oleic acid was the dominant one. GSO showed the highest total phenolic content while ASO showed the lowest one. Antibacterial screening was performed against Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, and Staphylococcus aureus. Results showed antibacterial activity in all oils against tested strains except for ASO against S. aureus. Highest antibacterial activity recorded was for ASO against P. mirabilis. ASO-GSO mixture (AG) was the best mixture where it showed synergistic interactions against all strains except P. aeruginosa. In conclusion, seed oil mixtures are likely to show promising antibacterial activities against specific strains.


Asunto(s)
Prunus armeniaca , Vitis , Ácido Linoleico , Staphylococcus aureus , Ácidos Grasos/farmacología , Aceites de Plantas/farmacología , Ácido Oléico/farmacología , Antibacterianos/farmacología , Semillas
12.
World J Microbiol Biotechnol ; 40(4): 125, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441800

RESUMEN

Black heart rot is a serious disease of apricot and it has been reported to be caused by Alternaria solani, around the world. The present research was designed to control this disastrous disease using zinc oxide nanoparticles (b-ZnO NPs). These NPs were synthesized in the filtrate of a useful bacterium (Bacillus safensis) and applied to control black heart rot of apricot. After synthesis, the reduction of b-ZnO NPs was confirmed by UV-visible spectroscopy, at 330 nm. Fourier transform infrared (FTIR) spectra ensured the presence of multiple functional groups (alcohols, phenols, carboxylic acids, nitro compounds and amines) on the surface of b-ZnO NPs. X-Ray diffraction (XRD) analysis elucidated their average size (18 nm) while scanning electron microscopy (SEM) micrograph described the spherical shape of b-ZnO NPs. The synthesized b-ZnO NPs were applied in four different concentrations (0.25 mg/ml, 0.50 mg/ml, 0.75 mg/ml, 1.0 mg/ml) under both in vitro and in vivo conditions. These NPs were very efficient in inhibiting mycelial growth (85.1%) of A. solani at 0.75 mg/ml concentration of NPs, in vitro. Same concentration also performed best, in vivo, and significantly reduced disease incidence (by 67%) on self-inoculated apricot fruit. Apart from this, application of b-ZnO NPs helped apricot fruit to maintain its quality under fungal-stress conditions. The decay of apricot fruit was reduced and they maintained greater firmness and higher weight. Moreover, b-ZnO NPs treated fruits controlled black heart rot disease by maintaining higher contents of ascorbic acid, soluble sugars and carotenoids. These b-ZnO NPs were produced in powder form for their easy carriage to the farmers' fields.


Asunto(s)
Bacillus , Prunus armeniaca , Óxido de Zinc , Óxido de Zinc/farmacología , Frutas , Carotenoides
13.
J Pediatr Hematol Oncol ; 46(3): 165-171, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38447107

RESUMEN

OBJECTIVE: Bone marrow aspiration and lumbar puncture are procedures frequently performed in pediatric oncology. We aimed at assessing the incidence and risk factors of perioperative complications in children undergoing these procedures under sedation or general anesthesia. METHODS: Based on the APRICOT study, we performed a secondary analysis, including 893 children undergoing bone marrow aspiration and lumbar puncture. The primary outcome was the incidence of perioperative complications. Secondary outcomes were their risk factors. RESULTS: We analyzed data of 893 children who underwent 915 procedures. The incidence of severe adverse events was 1.7% and of respiratory complications was 1.1%. Prematurity (RR 4.976; 95% CI 1.097-22.568; P = 0.038), intubation (RR: 6.80, 95% CI 1.66-27.7; P =0.008), and emergency situations (RR 3.99; 95% CI 1.14-13.96; P = 0.030) increased the risk for respiratory complications. The incidence of cardiovascular instability was 0.4%, with premedication as risk factor (RR 6.678; 95% CI 1.325-33.644; P =0.021). CONCLUSION: A low incidence of perioperative adverse events was observed in children undergoing bone marrow aspiration or lumbar puncture under sedation and/or general anesthesia, with respiratory complications being the most frequent. Careful preoperative assessment should be undertaken to identify risk factors associated with an increased risk, allowing for appropriate adjustment of anesthesia management.


Asunto(s)
Médula Ósea , Prunus armeniaca , Niño , Humanos , Anestesia Pediátrica , Incidencia , Complicaciones Posoperatorias/epidemiología , Complicaciones Posoperatorias/etiología , Punción Espinal/efectos adversos , Punción Espinal/métodos
14.
Int J Biol Macromol ; 266(Pt 1): 131103, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522683

RESUMEN

Dielectric barrier discharge (DBD) was a commonly used non-thermal plasma (CP) technology. This paper aimed to enhance the biological activity of apricot polysaccharides (AP) by using dielectric barrier discharge (DBD-CP) assisted H2O2-VC Fenton reaction for degradation. The degradation conditions were optimized through response surface methodology. The molecular weight (Mw) of degraded apricot polysaccharides (DAP) was 19.71 kDa, which was 7.25 % of AP. The inhibition rate of DAP (2 mg/mL) was 82.8 ± 3.27 %, which was 106.87 % higher than that of AP. DBD-CP/H2O2-VC degradation changed the monosaccharide composition of AP and improved the linearity of polysaccharide chains. In addition, a novel apricot polysaccharide DAP-2 with a Mw of only 6.60 kDa was isolated from DAP. The repeating units of the main chain of DAP-2 were →4)-α-D-GalpA-(1 →, the branch chain was mainly composed of α-D-GalpA-(1 â†’ 2)-α-L-Rhap-(1→ connected to O-3 position →3,4)-α-D-GalpA-(1→. The complex structure formed by the combination of DAP-2 and α-glucosidase was stable. DAP-2 had a higher α-glucosidase binding ability than the acarbose. These results suggested that DAP-2 had the potential to be developed as a potential hypoglycemic functional food and drug.


Asunto(s)
Inhibidores de Glicósido Hidrolasas , Peróxido de Hidrógeno , Gases em Plasma , Polisacáridos , Prunus armeniaca , alfa-Glucosidasas , Polisacáridos/química , Polisacáridos/farmacología , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/farmacología , Peróxido de Hidrógeno/química , alfa-Glucosidasas/metabolismo , alfa-Glucosidasas/química , Prunus armeniaca/química , Gases em Plasma/química , Peso Molecular , Hierro/química , Monosacáridos/química , Monosacáridos/análisis
15.
Food Environ Virol ; 16(2): 180-187, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38466479

RESUMEN

In March 2019, the Finnish Institute for Health and Welfare and Finnish Food Authority started an outbreak investigation after a notification of food business operators' recall of frozen bilberries due to a norovirus finding. A retrospective search was conducted in the food and waterborne outbreak notification system to identify the notifications linked to norovirus and consumption of bilberries in January-March 2019. Five outbreaks were found in which norovirus GII or GII.17 had been detected in patient samples. A pooled retrospective cohort study was performed for those four in which a questionnaire study had been done. A case was defined as a person with diarrhoea or vomiting within 2 days after consuming a meal studied at one of the outbreak locations. Of 79 participants, 45 (57%) cases were identified. Persons that had consumed foods containing unheated bilberries were three times more likely to get ill than those who had not consumed them (RR 3.1, CI 95% 1.2-8.1, p = 0.02). Norovirus GII.17 was found in 16/17 patient samples sent for further typing. Identical norovirus GII.17 was detected in frozen Finnish bilberries and patient samples. At the berry packaging premises, signs of norovirus GII contamination were found in packaging lines. A new procedure for extracting viral nucleic acid from food and environmental samples was used during the outbreak investigation. Consumption of industrially packed frozen berries as heated would be one of the means to prevent norovirus infections.


Asunto(s)
Infecciones por Caliciviridae , Brotes de Enfermedades , Contaminación de Alimentos , Gastroenteritis , Norovirus , Norovirus/genética , Norovirus/aislamiento & purificación , Norovirus/clasificación , Humanos , Finlandia/epidemiología , Infecciones por Caliciviridae/virología , Infecciones por Caliciviridae/epidemiología , Femenino , Adulto , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Contaminación de Alimentos/análisis , Gastroenteritis/virología , Gastroenteritis/epidemiología , Frutas/virología , Anciano , Adulto Joven , Alimentos Congelados/virología , Prunus armeniaca/virología , Enfermedades Transmitidas por los Alimentos/virología , Enfermedades Transmitidas por los Alimentos/epidemiología , Adolescente , Genotipo
16.
Int J Biol Macromol ; 263(Pt 2): 130358, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38412939

RESUMEN

The present study aims to develop and characterize biodegradable packaging films from lemon peel-derived pectin and chitosan incorporated with a bioactive extract from neem leaves. The films (PCNE) contained varying concentrations of neem leaf extract and were comprehensively assessed for their physical, optical, mechanical, and antimicrobial attributes. The thickness, moisture content, water solubility, and water vapor permeability of the biodegradable packaging films increased with the increasing concentration of neem leaf extract. Comparatively, the tensile strength of the films decreased by 42.05 % compared to the control film. The Scanning Electron Microscopy (SEM) confirmed that the resultant blended pectin-chitosan films showed a uniform structure without cracks. Furthermore, the analysis targeting Staphylococcus aureus and Aspergillus niger indicated that the films had potent antimicrobial activity. Based on these results, the optimum films were selected and subsequently applied on apricot fruits to increase their shelf life at ambient temperature. The findings, after examining factors such as colour, firmness, total soluble solids, shrinkage, weight loss, and appearance, concluded that the apricots coated by PCNE-5 had the most delayed signs of spoilage and increased their shelf life by 50 %. The results showed the potential applicability of lemon peel pectin-chitosan-neem leaf extract blend films in biodegradable food packaging.


Asunto(s)
Antiinfecciosos , Quitosano , Prunus armeniaca , Embalaje de Alimentos , Quitosano/química , Pectinas/química , Frutas/química , Antiinfecciosos/química , Permeabilidad
17.
Sci Rep ; 14(1): 3430, 2024 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341481

RESUMEN

Chitosan is a natural biodegradable biopolymer that has drawbacks in mechanical and antibacterial properties, limiting its usage in biological and medicinal fields. Chitosan is combined with other naturally occurring substances possessing biological antibacterial qualities in order to broaden its application. Ethanolic apricot kernel seed extract was prepared, analyzed, and incorporated into chitosan film with different concentrations (0.25, 0.5, and 0.75 wt%). Furthermore, the effect of AKSE and γ-radiation (20 Gy and 20 kGy) on the physical properties of the film was studied. The prepared films were characterized by Fourier transform infrared spectroscopy (FTIR), which revealed that AKSE did not cause any change in the molecular structure, whereas the γ-irradiation dose caused a decrease in the peak intensity of all concentrations except 0.75 wt%, which was the most resistant. In addition, their dielectric, optical, and antimicrobial properties were studied. Also, AKSE-enhanced optical qualities, allowed them to fully block light transmission at wavelengths of 450-600 nm. The dielectric properties, i.e., permittivity (ε'), dielectric loss (ε''), and electrical conductivity (σ), increased with increasing AKSE concentration and film irradiation. The antimicrobial studies revealed that the antimicrobial activity against Escherichia coli and Canodida albicans increased with AKSE incorporation.


Asunto(s)
Antiinfecciosos , Quitosano , Prunus armeniaca , Quitosano/farmacología , Quitosano/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antibacterianos/farmacología , Antibacterianos/química , Espectroscopía Infrarroja por Transformada de Fourier , Embalaje de Alimentos/métodos , Extractos Vegetales/farmacología , Extractos Vegetales/química
18.
Plant Physiol ; 195(1): 566-579, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38345864

RESUMEN

The formation of multi-pistil flowers reduces the yield and quality in Japanese apricot (Prunus mume). However, the molecular mechanism underlying the formation of multi-pistil flowers remains unknown. In the current study, overexpression of PmKNAT2/6-a, a class I KNOTTED1-like homeobox (KNOX) member, in Arabidopsis (Arabidopsis thaliana) resulted in a multi-pistil phenotype. Analysis of the upstream regulators of PmKNAT2/6-a showed that AGAMOUS-like 24 (PmAGL24) could directly bind to the PmKNAT2/6-a promoter and regulate its expression. PmAGL24 also interacted with Like Heterochromatin Protein 1 (PmLHP1) to recruit lysine trimethylation at position 27 on histone H3 (H3K27me3) to regulate PmKNAT2/6-a expression, which is indirectly involved in multiple pistils formation in Japanese apricot flowers. Our study reveals that the PmAGL24 transcription factor, an upstream regulator of PmKNAT2/6-a, regulates PmKNAT2/6-a expression via direct and indirect pathways and is involved in the formation of multiple pistils in Japanese apricot.


Asunto(s)
Arabidopsis , Flores , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Flores/genética , Flores/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Plantas Modificadas Genéticamente , Prunus/genética , Prunus/metabolismo , Prunus armeniaca/genética , Prunus armeniaca/metabolismo , Regiones Promotoras Genéticas/genética
19.
J Food Sci ; 89(2): 881-899, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38193203

RESUMEN

Apricot polysaccharides (APs) as new types of natural carriers for encapsulating and delivering active pharmaceutical ingredients can achieve high-value utilization of apricot pulp and improve the solubility, the stability, and the antibacterial activity of insoluble compounds simultaneously. In this research, the purified APs reacted with bovine serum albumin (BSA) by the Maillard reaction, and with d-α-tocopheryl succinate (TOS) and pheophorbide A (PheoA) by grafting to fabricate two materials for the preparation of curcumin (Cur)-encapsulated AP-BSA nanoparticles (CABNs) and Cur-embedded TOS-AP-PheoA micelles (CTAPMs), respectively. The biological activities of two Cur nano-delivery systems were evaluated. APs consisted of arabinose (22.36%), galactose (7.88%), glucose (34.46%), and galacturonic acid (31.32%) after the optimized extraction. Transmission electron microscopy characterization of CABNs and CTAPMs displayed a discrete and non-aggregated morphology with a spherical shape. Compared to the unencapsulated Cur, the release rates of CABNs and CTAPMs decreased from 87% to 70% at 3 h and from 92% to 25% at 48 h, respectively. The antioxidant capacities of CABNs and CTAPMs were significantly improved. The CTAPMs exhibited a better antibacterial effect against Escherichia coli than CABNs due to the synergistic photosensitive effect between Cur and PheoA.


Asunto(s)
Curcumina , Nanopartículas , Prunus armeniaca , Curcumina/farmacología , Portadores de Fármacos , Polisacáridos/farmacología , Tamaño de la Partícula
20.
Bioresour Technol ; 395: 130339, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38244936

RESUMEN

Using edible lipids for biodiesel production has been criticized, causing biodiesel production from inedible food resources to be desirable. Lipid extraction must be prioritized to produce biodiesel using an acid/base-catalyzed transesterification process, but this conversion process suffers from technical reliability. Therefore, this study introduced non-catalytic conversion of oil-bearing biomass into biodiesel. Apricot seeds were used as a model compound (oil content 44.3 wt%). The non-catalytic transesterification of apricot seed oil recovered 98.28 wt% biodiesel at 360 °C for 1 min, while alkali-catalysis of apricot seed oil recovered 91.84 wt% at 63 °C for 60 min. The direct conversion of apricot seeds into biodiesel was attempted. The trends in the yields of biodiesel from apricot seeds and seed oil obtained by non-catalytic transesterification as a function of reaction temperature were similar. The yield of biodiesel from apricot seed was 43.06 wt%, suggesting that 97.20 wt% of lipids were converted into biodiesel.


Asunto(s)
Prunus armeniaca , Biocombustibles , Reproducibilidad de los Resultados , Esterificación , Ácidos Grasos , Semillas , Aceites de Plantas , Catálisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA