Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 779
Filtrar
1.
Environ Microbiol ; 26(7): e16672, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39040020

RESUMEN

The Pseudoalteromonas genus comprises members that have been demonstrated to play significant ecological roles and produce enzymes, natural products, and activities that are beneficial to the environment and economy. A comprehensive evaluation of the genus revealed that the genomes of several Pseudoalteromonas species are highly similar to each other, exceeding species cutoff values. This evaluation involved determining and comparing the average nucleotide identity, in silico DNA-DNA hybridization, average amino acid identity, and the difference in G + C% between Pseudoalteromonas type strains with publicly available genomes. The genome of the Pseudoalteromonas elyakovii type strain was further assessed through additional sequencing and genomic comparisons to historical sequences. These findings suggest that six Pseudoalteromonas species, namely P. mariniglutinosa, P. donghaensis, P. maricaloris, P. elyakovii, P. profundi, and P. issachenkonii, should be reclassified as later heterotypic synonyms of the following validly published species: P. haloplanktis, P. lipolytica, P. flavipulchra, P. distincta, P. gelatinilytica, and P. tetraodonis. Furthermore, two names without valid standing, 'P. telluritireducens' and 'P. spiralis', should be associated with the validly published Pseudoalteromonas species P. agarivorans and P. tetraodonis, respectively.


Asunto(s)
Genoma Bacteriano , Filogenia , Pseudoalteromonas , Pseudoalteromonas/genética , Pseudoalteromonas/clasificación , ADN Bacteriano/genética , Composición de Base , Análisis de Secuencia de ADN/métodos , Hibridación de Ácido Nucleico
2.
Biofouling ; 40(7): 415-430, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38984682

RESUMEN

Artificial reefs represent useful tools to revitalize coastal and ocean ecosystems. Their formulation determines the biofilm formation which is the prerequisite for the colonization process by marine micro- and macroorganisms. In comparison with concrete, biobased polymers offer improved characteristics, including architecture, formulation, rugosity and recycling. This article aims to explore a new scale of artificial reef made of biocomposites reinforced with a high flax fibre (Linum utilatissimum) content (30%). Cellular adhesion and resulting biofilm formation were assessed using two marine microorganisms: Pseudoalteromonas sp. 3J6 and Cylindrotheca closterium. The influence of flax fibre leachates and plastic monomers on the growth of those marine microorganisms were also evaluated. Results indicated that the introduction of flax fibres inside the polymer matrix modified its physicochemical properties thus modulating adhesion and biofilm formation depending on the microorganism. This study gives insights for further developments of novel functionalized artificial reefs made of biocomposites.


Asunto(s)
Biopelículas , Lino , Pseudoalteromonas , Biopelículas/crecimiento & desarrollo , Lino/microbiología , Lino/química , Pseudoalteromonas/fisiología , Adhesión Bacteriana
3.
Appl Environ Microbiol ; 90(7): e0025524, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38874338

RESUMEN

Marine bacteria contribute substantially to cycle macroalgae polysaccharides in marine environments. Carrageenans are the primary cell wall polysaccharides of red macroalgae. The carrageenan catabolism mechanism and pathways are still largely unclear. Pseudoalteromonas is a representative bacterial genus that can utilize carrageenan. We previously isolated the strain Pseudoalteromonas haloplanktis LL1 that could grow on ι-carrageenan but produce no ι-carrageenase. Here, through a combination of bioinformatic, biochemical, and genetic analyses, we determined that P. haloplanktis LL1 processed a desulfurization-depolymerization sequential pathway for ι-carrageenan utilization, which was initiated by key sulfatases PhSulf1 and PhSulf2. PhSulf2 acted as an endo/exo-G4S (4-O-sulfation-ß-D-galactopyranose) sulfatase, while PhSulf1 was identified as a novel endo-DA2S sulfatase that could function extracellularly. Because of the unique activity of PhSulf1 toward ι-carrageenan rather than oligosaccharides, P. haloplanktis LL1 was considered to have a distinct ι-carrageenan catabolic pathway compared to other known ι-carrageenan-degrading bacteria, which mainly employ multifunctional G4S sulfatases and exo-DA2S (2-O-sulfation-3,6-anhydro-α-D-galactopyranose) sulfatase for sulfate removal. Furthermore, we detected widespread occurrence of PhSulf1-encoding gene homologs in the global ocean, indicating the prevalence of such endo-acting DA2S sulfatases as well as the related ι-carrageenan catabolism pathway. This research provides valuable insights into the enzymatic processes involved in carrageenan catabolism within marine ecological systems.IMPORTANCECarrageenan is a type of linear sulfated polysaccharide that plays a significant role in forming cell walls of marine algae and is found extensively distributed throughout the world's oceans. To the best of our current knowledge, the ι-carrageenan catabolism in marine bacteria either follows the depolymerization-desulfurization sequential process initiated by ι-carrageenase or starts from the desulfurization step catalyzed by exo-acting sulfatases. In this study, we found that the marine bacterium Pseudoalteromonas haloplanktis LL1 processes a distinct pathway for ι-carrageenan catabolism employing a specific endo-acting DA2S-sulfatase PhSulf1 and a multifunctional G4S sulfatase PhSulf2. The unique PhSulf1 homologs appear to be widely present on a global scale, indicating the indispensable contribution of the marine bacteria containing the distinct ι-carrageenan catabolism pathway. Therefore, this study would significantly enrich our understanding of the molecular mechanisms underlying carrageenan utilization, providing valuable insights into the intricate roles of marine bacteria in polysaccharide cycling in marine environments.


Asunto(s)
Proteínas Bacterianas , Carragenina , Pseudoalteromonas , Sulfatasas , Carragenina/metabolismo , Pseudoalteromonas/enzimología , Pseudoalteromonas/genética , Pseudoalteromonas/metabolismo , Sulfatasas/metabolismo , Sulfatasas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Agua de Mar/microbiología
4.
Curr Microbiol ; 81(8): 246, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940874

RESUMEN

Three novel bacterial strains, FE4T, FE10T, and LA51T, which are phylogenetically affiliated to the genera Pseudoalteromonas, Vibrio, or Marinobacter, respectively, isolated from fertilized eggs and juveniles of sea cucumber Apostichopus japonicus were characterized by a genome-based taxonomical approach including multilocus sequence analysis (MLSA) combined with classical phenotypic and chemotaxonomic characterizations. A molecular network reconstructed on the basis of nucleotide sequences of four phylogenetic maker protein genes revealed that the strains FE4T, FE10T, and LA51T were closely related to Pseudoalteromonas shioyasakiensis, Vibrio lentus, and Marinobacter similis, respectively. Average nucleotide identity (ANI) comparisons against phylogenetically related species to FE4T, FE10T, and LA51T demonstrated that each newly described strain could not be identified as any previously described species within each genus showing < 95% ANI: 91.3% of FE4T against P. shioyasakiensis JCM 18891 T, 92.6% of FE10T against "V. bathopelagicus" Sal10, and 92.6% of LA51T against M. similis A3d10T, in maximum, respectively. Here, we show molecular phylogenetic, genomic, phenotypic, and chemotaxonomic features of the newly described species FE4T, FE10T, and LA51T. We also propose Pseudoalteromonas apostichopi sp. nov. with FE4T (JCM 36173 T = LMG 33143 T) as the type strain, Vibrio apostichopi sp. nov. with FE10T (JCM 36174 T = LMG 33144 T) as the type strain, and Marinobacter apostichopi sp. nov. with LA51T (JCM 36175 T = LMG 33145 T) as the type strain.


Asunto(s)
Marinobacter , Filogenia , Pseudoalteromonas , Stichopus , Vibrio , Pseudoalteromonas/genética , Pseudoalteromonas/aislamiento & purificación , Pseudoalteromonas/clasificación , Animales , Vibrio/genética , Vibrio/clasificación , Vibrio/aislamiento & purificación , Stichopus/microbiología , Marinobacter/genética , Marinobacter/clasificación , Marinobacter/aislamiento & purificación , Larva/microbiología , Tipificación de Secuencias Multilocus , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , ARN Ribosómico 16S/genética , Cigoto/microbiología , Genoma Bacteriano , Ácidos Grasos/análisis , Ácidos Grasos/química
5.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 7): 142-147, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38935515

RESUMEN

Pseudoalteromonas fuliginea sp. PS47 is a recently identified marine bacterium that has extensive enzymatic machinery to metabolize polysaccharides, including a locus that targets pectin-like substrates. This locus contains a gene (locus tag EU509_03255) that encodes a pectin-degrading lyase, called PfPL1, that belongs to polysaccharide lyase family 1 (PL1). The 2.2 Šresolution X-ray crystal structure of PfPL1 reveals the compact parallel ß-helix fold of the PL1 family. The back side of the core parallel ß-helix opposite to the active site is a meandering set of five α-helices joined by lengthy loops. A comparison of the active site with those of other PL1 enzymes suggests a catalytic mechanism that is independent of metal ions, such as Ca2+, but that substrate recognition may require metal ions. Overall, this work provides the first structural insight into a pectinase of marine origin and the first structure of a PL1 enzyme in subfamily 2.


Asunto(s)
Dominio Catalítico , Modelos Moleculares , Polisacárido Liasas , Pseudoalteromonas , Pseudoalteromonas/enzimología , Pseudoalteromonas/genética , Polisacárido Liasas/química , Polisacárido Liasas/genética , Polisacárido Liasas/metabolismo , Cristalografía por Rayos X , Secuencia de Aminoácidos , Pectinas/metabolismo , Pectinas/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Especificidad por Sustrato , Conformación Proteica
6.
Mar Drugs ; 22(6)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38921549

RESUMEN

Antarctica, one of the most extreme environments on Earth, hosts diverse microbial communities. These microbes have evolved and adapted to survive in these hostile conditions, but knowledge on the molecular mechanisms underlying this process remains limited. The Italian Collection of Antarctic Bacteria (Collezione Italiana Batteri Antartici (CIBAN)), managed by the University of Messina, represents a valuable repository of cold-adapted bacterial strains isolated from various Antarctic environments. In this study, we sequenced and analyzed the genomes of 58 marine Gammaproteobacteria strains from the CIBAN collection, which were isolated during Italian expeditions from 1990 to 2005. By employing genome-scale metrics, we taxonomically characterized these strains and assigned them to four distinct genera: Pseudomonas, Pseudoalteromonas, Shewanella, and Psychrobacter. Genome annotation revealed a previously untapped functional potential, including secondary metabolite biosynthetic gene clusters and antibiotic resistance genes. Phylogenomic analyses provided evolutionary insights, while assessment of cold-shock protein presence shed light on adaptation mechanisms. Our study emphasizes the significance of CIBAN as a resource for understanding Antarctic microbial life and its biotechnological potential. The genomic data unveil new horizons for insight into bacterial existence in Antarctica.


Asunto(s)
Gammaproteobacteria , Genoma Bacteriano , Genómica , Filogenia , Regiones Antárticas , Gammaproteobacteria/genética , Gammaproteobacteria/aislamiento & purificación , Genómica/métodos , Psychrobacter/genética , Psychrobacter/aislamiento & purificación , Pseudoalteromonas/genética , Familia de Multigenes
7.
Microbiol Res ; 286: 127817, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38941922

RESUMEN

Plasmids orchestrate bacterial adaptation across diverse environments and facilitate lateral gene transfer within bacterial communities. Their presence can perturb host metabolism, creating a competitive advantage for plasmid-free cells. Plasmid stability hinges on efficient replication and partition mechanisms. While plasmids commonly encode histone-like nucleoid-structuring (H-NS) family proteins, the precise influence of plasmid-encoded H-NS proteins on stability remains elusive. In this study, we examined the conjugative plasmid pMBL6842, harboring the hns gene, and observed its positive regulation of parAB transcription, critical for plasmid segregation. Deletion of hns led to rapid plasmid loss, which was remedied by hns complementation. Further investigations unveiled adverse effects of hns overexpression on the bacterial host. Transcriptome analysis revealed hns's role in regulating numerous bacterial genes, impacting both host growth and swimming motility in the presence of the hns gene. Therefore, our study unveils the multifaceted roles of H-NS in both plasmid stability and host physiology, underscoring its biological significance and paving the way for future inquiries into the involvement of H-NS in horizontal gene transfer events.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Plásmidos , Pseudoalteromonas , Plásmidos/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pseudoalteromonas/genética , Pseudoalteromonas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Transferencia de Gen Horizontal , Conjugación Genética , Histonas/metabolismo , Histonas/genética
8.
ACS Synth Biol ; 13(6): 1956-1962, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38860508

RESUMEN

Escherichia coli, one of the most efficient expression hosts for recombinant proteins, is widely used in chemical, medical, food, and other industries. De novo engineering of gene regulation circuits and cell density-controlled E. coli cell lysis are promising directions for the release of intracellular bioproducts. Here, we developed an E. coli autolytic system, named the quorum sensing-mediated bacterial autolytic (QS-BA) system, by incorporating an acyl-homoserine lactone (AHL)-based YasI/YasR-type quorum sensing circuit from Pseudoalteromonas into E. coli cells. The results showed that the E. coli QS-BA system can release the intracellular bioproducts into the cell culture medium in terms of E. coli cell density, which offers an environmentally-friendly, economical, efficient, and flexible E. coli lysis platform for production of recombinant proteins. The QS-BA system has the potential to serve as an integrated system for the large-scale production of target products in E. coli for medical and industrial applications.


Asunto(s)
Escherichia coli , Percepción de Quorum , Proteínas Recombinantes , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Acil-Butirolactonas/metabolismo , Pseudoalteromonas/metabolismo , Pseudoalteromonas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
9.
Arch Microbiol ; 206(7): 299, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861015

RESUMEN

Chaperonins from psychrophilic bacteria have been shown to exist as single-ring complexes. This deviation from the standard double-ring structure has been thought to be a beneficial adaptation to the cold environment. Here we show that Cpn60 from the psychrophile Pseudoalteromonas haloplanktis (Ph) maintains its double-ring structure also in the cold. A strongly reduced ATPase activity keeps the chaperonin in an energy-saving dormant state, until binding of client protein activates it. Ph Cpn60 in complex with co-chaperonin Ph Cpn10 efficiently assists in protein folding up to 55 °C. Moreover, we show that recombinant expression of Ph Cpn60 can provide its host Escherichia coli with improved viability under low temperature growth conditions. These properties of the Ph chaperonin may make it a valuable tool in the folding and stabilization of psychrophilic proteins.


Asunto(s)
Proteínas Bacterianas , Frío , Escherichia coli , Pliegue de Proteína , Pseudoalteromonas , Pseudoalteromonas/genética , Pseudoalteromonas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Chaperonina 60/metabolismo , Chaperonina 60/genética , Chaperonina 60/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Chaperoninas/metabolismo , Chaperoninas/genética , Chaperoninas/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética
10.
Protein Sci ; 33(7): e5064, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38864722

RESUMEN

Due to the low temperature, the Antarctic marine environment is challenging for protein functioning. Cold-adapted organisms have evolved proteins endowed with higher flexibility and lower stability in comparison to their thermophilic homologs, resulting in enhanced reaction rates at low temperatures. The Antarctic bacterium Pseudoalteromonas haloplanktis TAC125 (PhTAC125) genome is one of the few examples of coexistence of multiple hemoglobin genes encoding, among others, two constitutively transcribed 2/2 hemoglobins (2/2Hbs), also named truncated Hbs (TrHbs), belonging to the Group II (or O), annotated as PSHAa0030 and PSHAa2217. In this work, we describe the ligand binding kinetics and their interrelationship with the dynamical properties of globin Ph-2/2HbO-2217 by combining experimental and computational approaches and implementing a new computational method to retrieve information from molecular dynamic trajectories. We show that our approach allows us to identify docking sites within the protein matrix that are potentially able to transiently accommodate ligands and migration pathways connecting them. Consistently with ligand rebinding studies, our modeling suggests that the distal heme pocket is connected to the solvent through a low energy barrier, while inner cavities play only a minor role in modulating rebinding kinetics.


Asunto(s)
Proteínas Bacterianas , Pseudoalteromonas , Hemoglobinas Truncadas , Pseudoalteromonas/metabolismo , Pseudoalteromonas/genética , Pseudoalteromonas/química , Cinética , Hemoglobinas Truncadas/química , Hemoglobinas Truncadas/metabolismo , Hemoglobinas Truncadas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Simulación de Dinámica Molecular , Regiones Antárticas , Ligandos
11.
Mol Microbiol ; 122(1): 68-80, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38845079

RESUMEN

Iron is an essential element for microbial survival and secondary metabolism. However, excess iron availability and overloaded secondary metabolites can hinder microbial growth and survival. Microorganisms must tightly control iron homeostasis and secondary metabolism. Our previous studies have found that the stringent starvation protein A (SspA) positively regulates prodiginine biosynthesis by activating iron uptake in Pseudoalteromonas sp. strain R3. It is believed that the interaction between SspA and the small nucleotide ppGpp is important for iron to exert regulation functions. However, the roles of ppGpp in iron absorption and prodiginine biosynthesis, and the underlying relationship between ppGpp and SspA in strain R3 remain unclear. In this study, we found that ppGpp accumulation in strain R3 could be induced by limiting iron. In addition, ppGpp not only positively regulated iron uptake and prodiginine biosynthesis via increasing the SspA level but also directly repressed iron uptake and prodiginine biosynthesis independent of SspA, highlighting the finding that ppGpp can stabilize both iron levels and prodiginine production. Notably, the abolishment of ppGpp significantly increased prodiginine production, thus providing a theoretical basis for manipulating prodiginine production in the future. This dynamic ppGpp-mediated interaction between iron uptake and prodiginine biosynthesis has significant implications for understanding the roles of nutrient uptake and secondary metabolism for the survival of bacteria in unfavorable environments.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Hierro , Prodigiosina , Pseudoalteromonas , Pseudoalteromonas/metabolismo , Pseudoalteromonas/genética , Hierro/metabolismo , Prodigiosina/metabolismo , Prodigiosina/biosíntesis , Prodigiosina/análogos & derivados , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Homeostasis , Metabolismo Secundario
12.
Chemosphere ; 359: 142353, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761828

RESUMEN

Microorganisms in the waterline zone can secrete pigments to avoid damage caused by ultraviolet radiation, some of which have corrosive effects. In this work, we found that the secretion of pyomelanin by P3 strain of Pseudoalteromonas lipolytica significantly increases under strong lighting conditions, accelerating the corrosion of the material. Molecular mechanisms indicate that strong light, as a stressful environmental factor, enhances the expression of melanin secretion-related genes to prevent bacteria from being damaged by ultraviolet radiation. Therefore, this work proposes a new corrosion mechanism in the waterline zone, pigment-producing microorganisms are also involved in the waterline corrosion process.


Asunto(s)
Aleaciones , Melaninas , Acero , Corrosión , Acero/química , Melaninas/metabolismo , Aleaciones/química , Pseudoalteromonas/metabolismo , Rayos Ultravioleta , Luz
13.
World J Microbiol Biotechnol ; 40(7): 216, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38802708

RESUMEN

Poor thermostability reduces the industrial application value of κ-carrageenase. In this study, the PoPMuSiC algorithm combined with site-directed mutagenesis was applied to improve the thermostability of the alkaline κ-carrageenase from Pseudoalteromonas porphyrae. The mutant E154A with improved thermal stability was successfully obtained using this strategy after screening seven rationally designed mutants. Compared with the wild-type κ-carrageenase (WT), E154A improved the activity by 29.4% and the residual activity by 51.6% after treatment at 50 °C for 30 min. The melting temperature (Tm) values determined by circular dichroism were 66.4 °C and 64.6 °C for E154A and WT, respectively. Molecular dynamics simulation analysis of κ-carrageenase showed that the flexibility decreased within the finger regions (including F1, F2, F3, F5 and F6) and the flexibility improved in the catalytic pocket area of the mutant E154A. The catalytic tunnel dynamic simulation analysis revealed that E154A led to enlarged catalytic tunnel volume and increased rigidity of the enzyme-substrate complex. The increasing rigidity within the finger regions and more flexible catalytic pocket of P. porphyrae κ-carrageenase might be a significant factor for improvement of the thermostability of the mutant κ-carrageenase E154A. The proposed rational design strategy could be applied to improve the enzyme kinetic stability of other industrial enzymes. Moreover, the hydrolysates of κ-carrageenan digested by the mutant E154A demonstrated increased scavenging activities against hydroxyl (OH) radicals and 2,2'-azinobis(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) radicals compared with the undigested κ-carrageenan.


Asunto(s)
Dominio Catalítico , Estabilidad de Enzimas , Glicósido Hidrolasas , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Pseudoalteromonas , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Pseudoalteromonas/enzimología , Pseudoalteromonas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cinética , Temperatura , Dicroismo Circular , Conformación Proteica , Carragenina/metabolismo
14.
Mar Genomics ; 75: 101106, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38735671

RESUMEN

Pseudoalteromonas sp. CuT4-3, a copper resistant bacterium, was isolated from deep-sea hydrothermal sulfides on the Southwest Indian Ridge (SWIR), is an aerobic, mesophilic and rod-shaped bacterium belonging to the family Pseudoalteromonadaceae (class Gammaproteobacteria, order Alteromonadales). In this study, we present the complete genome sequence of strain CuT4-3, which consists of a single circular chromosome comprising 3,660,538 nucleotides with 41.05% G + C content and two circular plasmids comprising 792,064 nucleotides with 40.36% G + C content and 65,436 nucleotides with 41.50% G + C content. In total, 4078 protein coding genes, 105 tRNA genes, and 25 rRNA genes were obtained. Genomic analysis of strain CuT4-3 identified numerous genes related to heavy metal resistance (especially copper) and EPS production. The genome of strain CuT4-3 will be helpful for further understanding of its adaptive strategies, particularly its ability to resist heavy metal, in the deep-sea hydrothermal vent environment.


Asunto(s)
Cobre , Respiraderos Hidrotermales , Pseudoalteromonas , Cobre/metabolismo , Cobre/toxicidad , Genoma Bacteriano , Respiraderos Hidrotermales/microbiología , Pseudoalteromonas/genética , Secuenciación Completa del Genoma
15.
Antonie Van Leeuwenhoek ; 117(1): 84, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38809302

RESUMEN

Pseudoalteromonas piscicida 2515, isolated from Litopenaeus vannamei culture water, is a potential marine probiotic with broad anti-Vibrio properties. However, genomic information on P. piscicida 2515 is scarce. In this study, the general genomic characteristics and probiotic properties of the P. piscicida 2515 strain were analysed. In addition, we determined the antibacterial mechanism of this bacterial strain by scanning electron microscopy (SEM). The results indicated that the whole-genome sequence of P. piscicida 2515 contained one chromosome and one plasmid, including a total length of 5,541,406 bp with a G + C content of 43.24%, and 4679 protein-coding genes were predicted. Various adhesion-related genes, amino acid and vitamin metabolism and biosynthesis genes, and stress-responsive genes were found with genome mining tools. The presence of genes encoding chitin, bromocyclic peptides, lantibiotics, and sactipeptides showed the strong antibacterial activity of the P. piscicida 2515 strain. Moreover, in coculture with Vibrio anguillarum, P. piscicida 2515 displayed vesicle/pilus-like structures located on its surface that possibly participated in its bactericidal activity, representing an antibacterial mechanism. Additionally, 16 haemolytic genes and 3 antibiotic resistance genes, including tetracycline, fluoroquinolone, and carbapenem were annotated, but virulence genes encoding enterotoxin FM (entFM), cereulide (ces), and cytotoxin K were not detected. Further tests should be conducted to confirm the safety characteristics of P. piscicida 2515, including long-term toxicology tests, ecotoxicological assessment, and antibiotic resistance transfer risk assessment. Our results here revealed a new understanding of the probiotic properties and antibacterial mechanism of P. piscicida 2515, in addition to theoretical information for its application in aquaculture.


Asunto(s)
Genoma Bacteriano , Probióticos , Pseudoalteromonas , Vibrio , Secuenciación Completa del Genoma , Pseudoalteromonas/genética , Vibrio/genética , Vibrio/efectos de los fármacos , Animales , Antibacterianos/farmacología , Penaeidae/microbiología , Filogenia , Composición de Base
16.
BMC Genomics ; 25(1): 364, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38615000

RESUMEN

Pseudoalteromonas viridis strain BBR56 was isolated from seawater at Dutungan Island, South Sulawesi, Indonesia. Bacterial DNA was isolated using Promega Genomic DNA TM050. DNA purity and quantity were assessed using NanoDrop spectrophotometers and Qubit fluorometers. The DNA library and sequencing were prepared using Oxford Nanopore Technology GridION MinKNOW 20.06.9 with long read, direct, and comprehensive analysis. High accuracy base calling was assessed with Guppy version 4.0.11. Filtlong and NanoPlot were used for filtering and visualizing the FASTQ data. Flye (2.8.1) was used for de novo assembly analysis. Variant calls and consensus sequences were created using Medaka. The annotation of the genome was elaborated by DFAST. The assembled genome and annotation were tested using Busco and CheckM. Herein, we found that the highest similarity of the BBR56 isolate was 98.37% with the 16 S rRNA gene sequence of P. viridis G-1387. The genome size was 5.5 Mb and included chromosome 1 (4.2 Mbp) and chromosome 2 (1.3 Mbp), which encoded 61 pseudogenes, 4 noncoding RNAs, 113 tRNAs, 31 rRNAs, 4,505 coding DNA sequences, 4 clustered regularly interspaced short palindromic repeats, 4,444 coding genes, and a GC content of 49.5%. The sequence of the whole genome of P. viridis BBR56 was uploaded to GenBank under the accession numbers CP072425-CP072426, biosample number SAMN18435505, and bioproject number PRJNA716373. The sequence read archive (SRR14179986) was successfully obtained from NCBI for BBR56 raw sequencing reads. Digital DNA-DNA hybridization results showed that the genome of BBR56 had the potential to be a new species because no other bacterial genomes were similar to the sample. Biosynthetic gene clusters (BGCs) were assessed using BAGEL4 and the antiSMASH bacterial version. The genome harbored diverse BGCs, including genes that encoded polyketide synthase, nonribosomal peptide synthase, RiPP-like, NRP-metallophore, hydrogen cyanide, betalactone, thioamide-NRP, Lant class I, sactipeptide, and prodigiosin. Thus, BBR56 has considerable potential for further exploration regarding the use of its secondary metabolite products in the human and fisheries sectors.


Asunto(s)
Pseudoalteromonas , Humanos , Pseudoalteromonas/genética , Seudogenes , Biblioteca de Genes , ADN Bacteriano
17.
J Microbiol Biotechnol ; 34(5): 1135-1145, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38533592

RESUMEN

When cells are exposed to freezing temperatures, high concentrations of cryoprotective agents (CPA) prevent ice crystal formation, thus enhancing cell survival. However, high concentrations of CPAs can also cause cell toxicity. Exopolysaccharides (EPSs) from polar marine environments exhibit lower toxicity and display effects similar to traditional CPA. In this study, we sought to address these issues by i) selecting strains that produce EPS with novel cryoprotective activity, and ii) optimizing culture conditions for EPS production. Sixty-six bacteria producing mucous substances were isolated from the Ross Sea (Antarctic Ocean) using solid marine agar plates. Among them, Pseudoalteromonas sp. RosPo-2 was ultimately selected based on the rheological properties of the produced EPS (p-CY02). Cryoprotective activity experiments demonstrated that p-CY02 exhibited significantly cryoprotective activity at a concentration of 0.8% (w/v) on mammalian cells (HaCaT). This activity was further improved when combined with various concentrations of dimethyl sulfoxide (DMSO) compared to using DMSO alone. Moreover, the survival rate of HaCaT cells treated with 5% (v/v) DMSO and 0.8% (w/v) p-CY02 was measured at 87.9 ± 2.8% after freezing treatment. This suggests that p-CY02 may be developed as a more effective, less toxic, and novel non-permeating CPA. To enhance the production of EPS with cryoprotective activity, Response Surface Methodology (RSM) was implemented, resulting in a 1.64-fold increase in production of EPS with cryoprotective activity.


Asunto(s)
Supervivencia Celular , Crioprotectores , Medios de Cultivo , Polisacáridos Bacterianos , Pseudoalteromonas , Pseudoalteromonas/metabolismo , Polisacáridos Bacterianos/farmacología , Polisacáridos Bacterianos/biosíntesis , Polisacáridos Bacterianos/metabolismo , Crioprotectores/farmacología , Crioprotectores/metabolismo , Medios de Cultivo/química , Regiones Antárticas , Humanos , Supervivencia Celular/efectos de los fármacos , Dimetilsulfóxido/farmacología , Dimetilsulfóxido/metabolismo , Células HaCaT , Línea Celular , Agua de Mar/microbiología
18.
Mar Biotechnol (NY) ; 26(2): 338-350, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38451444

RESUMEN

The sea squirt Ciona robusta (formerly Ciona intestinalis type A) has been the subject of many interdisciplinary studies. Known as a vanadium-rich ascidian, C. robusta is an ideal model for exploring microbes associated with the ascidian and the roles of these microbes in vanadium accumulation and reduction. In this study, we discovered two bacterial strains that accumulate large amounts of vanadium, CD2-88 and CD2-102, which belong to the genera Pseudoalteromonas and Vibrio, respectively. The growth medium composition impacted vanadium uptake. Furthermore, pH was also an important factor in the accumulation and localization of vanadium. Most of the vanadium(V) accumulated by these bacteria was converted to less toxic vanadium(IV). Our results provide insights into vanadium accumulation and reduction by bacteria isolated from the ascidian C. robusta to further study the relations between ascidians and microbes and their possible applications for bioremediation or biomineralization.


Asunto(s)
Ciona intestinalis , Vanadio , Animales , Vanadio/metabolismo , Ciona intestinalis/metabolismo , Ciona intestinalis/microbiología , Pseudoalteromonas/metabolismo , Vibrio/metabolismo , Concentración de Iones de Hidrógeno , Intestinos/microbiología , Medios de Cultivo/química , ARN Ribosómico 16S/genética
19.
New Microbiol ; 46(4): 354-360, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38252046

RESUMEN

To confirm the antagonistic activity characterization of the strain Pseudoalteromonas SW-1 (P. SW-1), its cell-free supernatant (CFS) was studied against a clam pathogenic strain of Vibrio Alginolyticu MP-1 (V.MP-1). The CFS of P. SW-1 exhibited evident antagonistic activities against the pathogens, and the absorbance value (600 nm) of V. MP-1 remained at a lower level at 24 h when compared with the control. The results showed that the inhibitory activities of strain P. SW-1 CFS showed differences after treatment with heat, acid and alkali, and proteinase K. The CFS of P. SW-1 inhibitory activities decreased after treatment with heat, but the inhibitory activities of strain P. SW-1 CFS were still effective after treatment with proteinase K for 24 h. The acid and alkali treatments could increase the inhibitory activities of strain P. SW-1 CFS. Therefore, the ammonium sulfate precipitation test also indicated that P. SW-1 could produce some active protein compounds to antagonize pathogenic V. MP-1.


Asunto(s)
Pseudoalteromonas , Humanos , Endopeptidasa K , Álcalis
20.
mSystems ; 9(2): e0126423, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38259104

RESUMEN

Blooms of gelatinous zooplankton, an important source of protein-rich biomass in coastal waters, often collapse rapidly, releasing large amounts of labile detrital organic matter (OM) into the surrounding water. Although these blooms have the potential to cause major perturbations in the marine ecosystem, their effects on the microbial community and hence on the biogeochemical cycles have yet to be elucidated. We conducted microcosm experiments simulating the scenario experienced by coastal bacterial communities after the decay of a ctenophore (Mnemiopsis leidyi) bloom in the northern Adriatic Sea. Within 24 h, a rapid response of bacterial communities to the M. leidyi OM was observed, characterized by elevated bacterial biomass production and respiration rates. However, compared to our previous microcosm study of jellyfish (Aurelia aurita s.l.), M. leidyi OM degradation was characterized by significantly lower bacterial growth efficiency, meaning that the carbon stored in the OM was mostly respired. Combined metagenomic and metaproteomic analysis indicated that the degradation activity was mainly performed by Pseudoalteromonas, producing a large amount of proteolytic extracellular enzymes and exhibiting high metabolic activity. Interestingly, the reconstructed metagenome-assembled genome (MAG) of Pseudoalteromonas phenolica was almost identical (average nucleotide identity >99%) to the MAG previously reconstructed in our A. aurita microcosm study, despite the fundamental genetic and biochemical differences of the two gelatinous zooplankton species. Taken together, our data suggest that blooms of different gelatinous zooplankton are likely triggering a consistent response from natural bacterial communities, with specific bacterial lineages driving the remineralization of the gelatinous OM.IMPORTANCEJellyfish blooms are increasingly becoming a recurring seasonal event in marine ecosystems, characterized by a rapid build-up of gelatinous biomass that collapses rapidly. Although these blooms have the potential to cause major perturbations, their impact on marine microbial communities is largely unknown. We conducted an incubation experiment simulating a bloom of the ctenophore Mnemiopsis leidyi in the Northern Adriatic, where we investigated the bacterial response to the gelatinous biomass. We found that the bacterial communities actively degraded the gelatinous organic matter, and overall showed a striking similarity to the dynamics previously observed after a simulated bloom of the jellyfish Aurelia aurita s.l. In both cases, we found that a single bacterial species, Pseudoalteromonas phenolica, was responsible for most of the degradation activity. This suggests that blooms of different jellyfish are likely to trigger a consistent response from natural bacterial communities, with specific bacterial species driving the remineralization of gelatinous biomass.


Asunto(s)
Ctenóforos , Microbiota , Pseudoalteromonas , Escifozoos , Animales , Ctenóforos/microbiología , Biomasa , Escifozoos/metabolismo , Zooplancton/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA