Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.555
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38940814

RESUMEN

A Gram-negative, strictly aerobic bacterial strain was isolated from asymptomatic leaf tissue of a wild yam plant. Optimal growth was observed at 28 °C and pH 7, and catalase and oxidase activities were detected. Polyphasic taxonomic and comparative genomics revealed that strain LMG 33091T represents a novel species of Pseudomonas. The nearest phylogenetic neighbours of strain LMG 33091T were Pseudomonas putida NBRC 14164T (with 99.79 % 16S rRNA sequence identity), Pseudomonas alkylphenolica KL28T (99.28 %) and Pseudomonas asplenii (99.07 %) ATCC 23835T. MALDI-TOF MS analysis yielded distinct profiles for strain LMG 33091T and the nearest phylogenetic neighbours. Average nucleotide identity analyses between the whole genome sequence of strain LMG 33091T and of the type strains of its nearest-neighbour taxa yielded values below the species delineation threshold and thus confirmed that the strain represented a novel Pseudomonas species, for which we propose the name Pseudomonas fortuita sp. nov., with strain LMG 33091T (=GMI12077T= CFBP 9143T) as the type strain.


Asunto(s)
Técnicas de Tipificación Bacteriana , ADN Bacteriano , Dioscorea , Filogenia , Hojas de la Planta , Pseudomonas , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Secuenciación Completa del Genoma , Pseudomonas/aislamiento & purificación , Pseudomonas/genética , Pseudomonas/clasificación , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Hojas de la Planta/microbiología , Dioscorea/microbiología , Composición de Base , Ácidos Grasos/análisis , Genoma Bacteriano
2.
Arch Microbiol ; 206(7): 316, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904699

RESUMEN

Cotinine, the primary metabolite of nicotine in the human body, is an emerging pollutant in aquatic environments. It causes environmental problems and is harmful to the health of humans and other mammals; however, the mechanisms of its biodegradation have been elucidated incompletely. In this study, a novel Gram-negative strain that could degrade and utilize cotinine as a sole carbon source was isolated from municipal wastewater samples, and its cotinine degradation characteristics and kinetics were determined. Pseudomonas sp. JH-2 was able to degrade 100 mg/L (0.56 mM) of cotinine with high efficiency within 5 days at 30 ℃, pH 7.0, and 1% NaCl. Two intermediates, 6-hydroxycotinine and 6-hydroxy-3-succinoylpyridine (HSP), were identified by high-performance liquid chromatography and liquid chromatograph mass spectrometer. The draft whole genome sequence of strain JH-2 was obtained and analyzed to determine genomic structure and function. No homologs of proteins predicted in Nocardioides sp. JQ2195 and reported in nicotine degradation Pyrrolidine pathway were found in strain JH-2, suggesting new enzymes that responsible for cotinine catabolism. These findings provide meaningful insights into the biodegradation of cotinine by Gram-negative bacteria.


Asunto(s)
Biodegradación Ambiental , Cotinina , Pseudomonas , Aguas Residuales , Pseudomonas/metabolismo , Pseudomonas/genética , Pseudomonas/aislamiento & purificación , Pseudomonas/clasificación , Cotinina/metabolismo , Cotinina/análogos & derivados , Aguas Residuales/microbiología , Nicotina/metabolismo , Nicotina/análogos & derivados , Piridinas/metabolismo , Genoma Bacteriano , Filogenia , Succinatos
3.
Food Chem ; 450: 139342, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38631198

RESUMEN

Numerous Pseudomonas species can infect aquatic animals, such as farmed rainbow trout, sea trout, sea bass, and sea bream, by causing disease or stress reactions. In aquaculture facilities, a number of Pseudomonas species have been isolated and identified as the main pathogens. The present study describes the characterization of 18 Pseudomonas strains, isolated from fish products using shotgun proteomics. The bacterial proteomes obtained were further analyzed to identify the main functional pathway proteins involved. In addition, this study revealed the presence of 1015 non-redundant peptides related to virulence factors. An additional 25 species-specific peptides were identified as putative Pseudomonas spp. biomarkers. The results constitute the largest dataset, described thus far for the rapid identification and characterization of Pseudomonas species present in edible fish; furthermore, these data can provide the basis for further research into the development of new therapies against these harmful pathogens.


Asunto(s)
Productos Pesqueros , Proteómica , Pseudomonas , Animales , Pseudomonas/aislamiento & purificación , Pseudomonas/metabolismo , Pseudomonas/clasificación , Pseudomonas/química , Productos Pesqueros/análisis , Productos Pesqueros/microbiología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/análisis , Enfermedades de los Peces/microbiología , Proteoma/análisis , Proteoma/metabolismo , Factores de Virulencia/metabolismo , Peces/microbiología
4.
Curr Microbiol ; 80(8): 255, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37356021

RESUMEN

Unlike environmental P. koreensis isolated from soil, which has been studied extensively for its role in promoting plant growth, pathogenic P. koreensis isolated from fish has been rarely reported. Therefore, we investigated and isolated the possible pathogen that is responsible for the diseased state of Tor tambroides. Herein, we reported the morphological and biochemical characteristics, as well as whole-genome sequences of a newly identified P. koreensis strain. We assembled a high-quality draft genome of P. koreensis CM-01 with a contig N50 value of 233,601 bp and 99.5% BUSCO completeness. The genome assembly of P. koreensis CM-01 is consists of 6,171,880 bp with a G+C content of 60.5%. Annotation of the genome identified 5538 protein-coding genes, 3 rRNA genes, 54 tRNAs, and no plasmids were found. Besides these, 39 interspersed repeat and 141 tandem repeat sequences, 6 prophages, 51 genomic islands, 94 insertion sequences, 4 clustered regularly interspaced short palindromic repeats, 5 antibiotic-resistant genes, and 150 virulence genes were also predicted in the P. koreensis CM-01 genome. Culture-based approach showed that CM-01 strain exhibited resistance against ampicillin, aztreonam, clindamycin, and cefoxitin with a calculated multiple antibiotic resistance (MAR) index value of 0.4. In addition, the assembled CM-01 genome was successfully annotated against the Cluster of Orthologous Groups of proteins database, Gene Ontology database, and Kyoto Encyclopedia of Genes and Genome pathway database. A comparative analysis of CM-01 with three representative strains of P. koreensis revealed that 92% of orthologous clusters were conserved among these four genomes, and only the CM-01 strain possesses unique elements related to pathogenicity and virulence. This study provides fundamental phenotypic and genomic information for the newly identified P. koreensis strain.


Asunto(s)
Peces , Pseudomonas , Secuenciación Completa del Genoma , Animales , Farmacorresistencia Microbiana/genética , Enfermedades de los Peces/microbiología , Peces/microbiología , Malasia , Filogenia , Profagos/genética , Secuencias Repetidas en Tándem/genética , Virulencia/genética , Pseudomonas/clasificación , Pseudomonas/efectos de los fármacos , Pseudomonas/genética , Pseudomonas/aislamiento & purificación , Genoma Bacteriano , Genotipo , Fenotipo
5.
Metab Eng ; 77: 219-230, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37031949

RESUMEN

Malonyl-CoA is a central precursor for biosynthesis of a wide range of complex secondary metabolites. The development of platform strains with increased malonyl-CoA supply can contribute to the efficient production of secondary metabolites, especially if such strains exhibit high tolerance towards these chemicals. In this study, Pseudomonas taiwanensis VLB120 was engineered for increased malonyl-CoA availability to produce bacterial and plant-derived polyketides. A multi-target metabolic engineering strategy focusing on decreasing the malonyl-CoA drain and increasing malonyl-CoA precursor availability, led to an increased production of various malonyl-CoA-derived products, including pinosylvin, resveratrol and flaviolin. The production of flaviolin, a molecule deriving from five malonyl-CoA molecules, was doubled compared to the parental strain by this malonyl-CoA increasing strategy. Additionally, the engineered platform strain enabled production of up to 84 mg L-1 resveratrol from supplemented p-coumarate. One key finding of this study was that acetyl-CoA carboxylase overexpression majorly contributed to an increased malonyl-CoA availability for polyketide production in dependence on the used strain-background and whether downstream fatty acid synthesis was impaired, reflecting its complexity in metabolism. Hence, malonyl-CoA availability is primarily determined by competition of the production pathway with downstream fatty acid synthesis, while supply reactions are of secondary importance for compounds that derive directly from malonyl-CoA in Pseudomonas.


Asunto(s)
Malonil Coenzima A , Policétidos , Pseudomonas , Ácidos Grasos/metabolismo , Malonil Coenzima A/metabolismo , Policétidos/metabolismo , Pseudomonas/clasificación , Pseudomonas/genética , Pseudomonas/metabolismo , Resveratrol/metabolismo , Metabolismo Secundario , Estilbenos/metabolismo , Ácidos Cumáricos/metabolismo , Fenilalanina/metabolismo , Genoma Bacteriano/genética , Eliminación de Secuencia , Acetilcoenzima A/metabolismo , Citrato (si)-Sintasa/metabolismo , Ácido Pirúvico/metabolismo , Fitoalexinas/metabolismo , Naftoquinonas/metabolismo
6.
Curr Microbiol ; 79(9): 252, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35834125

RESUMEN

An active microbial community of nitrifying and denitrifying bacteria is needed for efficient utilization of nitrogenous compounds from wastewater. In this study, we explored the bacterial community diversity and structure within rivers, treated and untreated wastewater treatment plants (WWTPs) discharging into Lake Victoria. Water samples were collected from rivers and WWTPs that drain into Lake Victoria. Physicochemical analysis was done to determine the level of nutrients or pollutant loading in the samples. Total community DNA was extracted, followed by Illumina high throughput sequencing to determine the total microbial community and abundance. Enrichment and isolation were then done to recover potential nitrifiers and denitrifiers. Physicochemical analysis pointed to high levels total nitrogen and ammonia in both treated and untreated WWTPs as compared to the samples from the lake and rivers. A total of 1,763 operational taxonomic units (OTUs) spread across 26 bacterial phyla were observed with the most dominant phylum being Proteobacteria. We observed a decreasing trend in diversity from the lake, rivers to WWTPs. The genus Planktothrix constituted 19% of the sequence reads in sample J2 collected from the lagoon. All the isolates recovered in this study were affiliated to three genera: Pseudomonas, Klebsiella and Enterobacter in the phylum Proteobacteria. A combination of metagenomic analysis and a culture-dependent approach helped us understand the relative abundance as well as potential nitrifiers and denitrifiers present in different samples. The recovered isolates could be used for in situ removal of nitrogenous compounds from contaminated wastewater.


Asunto(s)
Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Lagos , Aguas Residuales/microbiología , Purificación del Agua , Bacterias/clasificación , Bacterias/aislamiento & purificación , Desnitrificación , Enterobacter/clasificación , Enterobacter/crecimiento & desarrollo , Enterobacter/metabolismo , Kenia , Klebsiella/clasificación , Klebsiella/crecimiento & desarrollo , Klebsiella/aislamiento & purificación , Klebsiella/metabolismo , Lagos/química , Lagos/microbiología , Nitrificación , Proteobacteria/clasificación , Proteobacteria/crecimiento & desarrollo , Proteobacteria/aislamiento & purificación , Proteobacteria/metabolismo , Pseudomonas/clasificación , Pseudomonas/crecimiento & desarrollo , Pseudomonas/aislamiento & purificación , Pseudomonas/metabolismo , Ríos/microbiología , Aguas Residuales/química
7.
Methods Mol Biol ; 2536: 263-272, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35819610

RESUMEN

Pseudomonas savastanoi is a phytopathogenic bacterium causing severe disease on olive, oleander, ash, and other Oleaceae. Three main pathovars belong to this species: P. savastanoi pv. savastanoi, pv. nerii, and pv. fraxini. Detection methods are mostly based on the visual inspection of the typical symptoms (i.e., knots and galls). However, this bacterium can survive on the host plant also as an epiphyte without giving any symptom. To avoid the spread of P. savastanoi to areas where it is absent, it is necessary to develop efficient and sensitive detection methods. Here, we reported three different PCR-based techniques, able to discriminate the three P. savastanoi pathovars attacking woody plants.


Asunto(s)
Oleaceae , Enfermedades de las Plantas , Pseudomonas , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN , Olea/microbiología , Oleaceae/microbiología , Enfermedades de las Plantas/microbiología , Pseudomonas/clasificación , Pseudomonas/genética , Pseudomonas/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Análisis de Secuencia de ADN/métodos
8.
Microbiol Spectr ; 10(1): e0034521, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35196785

RESUMEN

Polyphosphate (polyP) accumulation is an important trait of microorganisms. Implication of polyP accumulating bacteria (PAB) in enhanced biological phosphate removal, heavy metal sequestration, and dissolution of dental enamel is well studied. Phosphorous (P) accumulated within microbial biomass also regulates labile P in soil; however, abundance and diversity of the PAB in soil is still unexplored. Present study investigated the genetic and functional diversity of PAB in rhizosphere soil. Here, we report the abundance of Pseudomonas spp. as high PAB in soil, suggesting their contribution to global P cycling. Additional subset analysis of functional genes i.e., polyphosphate kinase (ppk) and exopolyphosphatase (ppx) in all PAB, indicates their significance in bacterial growth and metabolism. Distribution of functional genes in phylogenetic tree represent a more biologically realistic discrimination for the two genes. Distribution of ppx gene disclosed its phylogenetic conservation at species level, however, clustering of ppk gene of similar species in different clades illustrated its environmental condition mediated modifications. Selected PAB showed tolerance to abiotic stress and strong correlation with plant growth promotary (PGP) traits viz. phosphate solubilization, auxin and siderophore production. Interaction of PAB with A. thaliana enhanced the growth and phosphate status of the plant under salinity stress, suggestive of their importance in P cycling and stress alleviation. IMPORTANCE Study discovered the abundance of Pseudomonas genera as a high phosphate accumulator in soil. The presence of functional genes (polyphosphate kinase [ppk] and exopolyphosphatase [ppx]) in all PAB depicts their importance in polyphosphate metabolism in bacteria. Genetic and functional diversity reveals conservation of the ppx gene at species level. Furthermore, we found a positive correlation between PAB and plant growth promotary traits, stress tolerance, and salinity stress alleviation in A. thaliana.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Polifosfatos/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Microbiología del Suelo , Ácido Anhídrido Hidrolasas/genética , Ácido Anhídrido Hidrolasas/metabolismo , Arabidopsis/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Variación Genética , Ácidos Indolacéticos/metabolismo , Fósforo/metabolismo , Fosfotransferasas (Aceptor del Grupo Fosfato)/genética , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Filogenia , Pseudomonas/clasificación , Pseudomonas/enzimología , Rizosfera , Sideróforos/biosíntesis , Suelo/química
9.
Artículo en Inglés | MEDLINE | ID: mdl-35072599

RESUMEN

A novel canavanine-degrading bacterium, strain HB002T, was isolated from rhizosphere soil of a catch crop field collected from the island of Reichenau in Konstanz, Germany, and characterized by using polyphasic taxonomy. The facultative aerobe, rod-shaped, Gram-stain-negative bacterium was oxidase- and catalase-positive. The isolate was able to grow on canavanine as a sole carbon and nitrogen source. Results of phylogenetic analysis based on 16S rRNA gene sequences revealed highest similarities to Pseudomonas bijieensis (L22-9T, 99.93 %), Pseudomonas brassicacearum subsp. neoaurantiaca (ATCC 49054T, 99.76 %), Pseudomonas brassicacearum subsp. brassicacearum (DBK 11T, 99.63 %), Pseudomonas thivervalensis (DSM 13194T, 99.51 %), Pseudomonas kilonensis (DSM 13647T, 99.39 %) and Pseudomonas corrugata (ATCC29736T, 99.39 %). Marker gene analysis placed the strain in the intrageneric group of Pseudomonas fluorescens, subgroup P. corrugata. In silico DNA-DNA hybridization and average nucleotide identity values were both under the recommended thresholds for species delineation. The predominant fatty acids of strain HB002T were C16 : 0, C17 : 0 cyclo ω7c and C18 : 1 ω7c. The major respiratory quinone was Q9, followed by Q8 and minor components of Q7 and Q10. Results from the phenotypic characterization showd the strain's inability to hydrolyse gelatin and to assimilate N-acetyl glucosamide and a positive enzymatic activity of acid phosphatase and naphthol-AS-BI phosphohydrolase that distinguish this strain from closely related type strains. Taken together, these results show that strain HB002T represents a novel species in the genus Pseudomonas, for which the name Pseudomonas canavaninivorans sp. nov. is proposed. The type strain is HB002T (=DSM 112525T=LMG 32336T).


Asunto(s)
Filogenia , Pseudomonas/clasificación , Rizosfera , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Alemania , Fosfolípidos/química , Pseudomonas/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
10.
PLoS One ; 17(1): e0261178, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35073328

RESUMEN

Microorganisms inhabiting the supraglacial ice are biotechnologically significant as they are equipped with unique adaptive features in response to extreme environmental conditions of high ultraviolet radiations and frequent freeze-thaw. In the current study, we obtained eleven strains of Pseudomonas from the East Rathong supraglacial site in Sikkim Himalaya that showed taxonomic ambiguity in terms of species affiliation. Being one of the most complex and diverse genera, deciphering the correct taxonomy of Pseudomonas species has always been challenging. So, we conducted multilocus sequence analysis (MLSA) using five housekeeping genes, which concluded the taxonomic assignment of these strains to Pseudomonas antarctica. This was further supported by the lesser mean genetic distances with P. antarctica (0.73%) compared to P. fluorescens (3.65%), and highest ANI value of ~99 and dDDH value of 91.2 of the representative strains with P. antarctica PAMC 27494. We examined the multi-tolerance abilities of these eleven Pseudomonas strains. Indeed the studied strains displayed significant tolerance to freezing for 96 hours compared to the mesophilic control strain, while except for four strains, seven strains exhibited noteworthy tolerance to UV-C radiations. The genome-based findings revealed many cold and radiation resistance-associated genes that supported the physiological findings. Further, the bacterial strains produced two or more cold-active enzymes in plate-based assays. Owing to the polyadaptational attributes, the strains ERGC3:01 and ERGC3:05 could be most promising for bioprospection.


Asunto(s)
Genes Esenciales , Tipificación de Secuencias Multilocus/métodos , Pseudomonas/clasificación , Adaptación Biológica , Proteínas Bacterianas/genética , Técnicas de Tipificación Bacteriana , Filogenia , Pseudomonas/genética , Pseudomonas/aislamiento & purificación , Análisis de Secuencia de ADN , Sikkim
11.
Microbiol Res ; 254: 126919, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34808515

RESUMEN

The growth of sequenced bacterial genomes has revolutionized the assessment of microbial diversity. Pseudomonas is a widely diverse genus, containing more than 254 species. Although type strains have been employed to estimate Pseudomonas diversity, they represent a small fraction of the genomic diversity at a genus level. We used 10,035 available Pseudomonas genomes, including 210 type strains, to build a genomic distance network to estimate the number of species through community identification. We identified taxonomic inconsistencies with several type strains and found that 25.65 % of the Pseudomonas genomes deposited on Genbank are misclassified. The phylogenetic tree using single-copy genes from representative genomes in each species cluster in the distance network revealed at least 14 Pseudomonas groups, including the P. alcaligenes group proposed here. We show that Pseudomonas is likely an admixture of different genera and should be further divided. This study provides an overview of Pseudomonas diversity from a network and phylogenomic perspective that may help reduce the propagation of mislabeled Pseudomonas genomes.


Asunto(s)
Variación Genética , Genoma Bacteriano , Pseudomonas , Genoma Bacteriano/genética , Genómica , Filogenia , Pseudomonas/clasificación , Pseudomonas/genética
12.
Infect Genet Evol ; 97: 105183, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34920102

RESUMEN

Pseudomonas spp. exhibit considerable differences in host specificity and virulence. Most Pseudomonas species were isolated exclusively from environmental sources, ranging from soil to plants, but some Pseudomonas species have been detected from versatile sources, including both human host and environmental sources. Understanding genome variations that generate the tremendous diversity in Pseudomonas biology is important in controlling the incidence of infections. With a data set of 704 Pseudomonas complete whole genome sequences representing 186 species, Pseudomonas intrageneric structure was investigated by hierarchical clustering based on average nucleotide identity, and by phylogeny analysis based on concatenated core-gene alignment. Further comparative functional analyses indicated that Pseudomonas species only living in natural habitats lack multiple functions that are important in the regulation of bacterial pathogenesis, indicating the possession of these functions might be characteristic of Pseudomonas human pathogens. Moreover, we have performed pan-genome based homogeneity analyses, and detected genes with conserved structures but diversified functions across the Pseudomonas genomes, suggesting these genes play a role in driving diversity. In summary, this study provided insights into the dynamics of genome diversity and pathogen-related genetic determinants in Pseudomonas, which might help the development of more targeted antibiotics for the treatment of Pseudomonas infections.


Asunto(s)
Genoma Bacteriano , Pseudomonas/genética , Secuenciación Completa del Genoma , Variación Genética , Especificidad del Huésped , Filogenia , Enfermedades de las Plantas/microbiología , Plantas , Pseudomonas/clasificación , Especificidad de la Especie , Virulencia
13.
Int J Mol Sci ; 22(23)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34884433

RESUMEN

Pseudomonas is characterized by its great capacity to colonize different ecological niches, but also by its antimicrobial resistance and pathogenicity, causing human, animal, or plant diseases. Raw and undercooked food is a potential carrier of foodborne disease. The aim of this study was to determine the occurrence of Pseudomonas spp. among raw vegetables, analysing their antimicrobial resistance, virulence, and molecular typing. A total of 163 Pseudomonas spp. isolates (12 different species) were recovered from 77 of the 145 analysed samples (53.1%) and were classified into 139 different pulsed-field gel electrophoresis patterns. Low antimicrobial resistance levels, but one multidrug-resistant isolate, were found. Among the 37 recovered P. aeruginosa strains, 28 sequence-types and nine serotypes were detected. Eleven OprD patterns and an insertion sequence (ISPa1635) truncating the oprD gene of one imipenem-resistant strain were found. Ten virulotypes were observed, including four exoU-positive and thirty-one exoS-positive strains. The lasR gene was absent in three ST155 strains and was truncated by different insertion sequences (ISPre2, IS1411, and ISPst7) in other three strains. High biofilm, motility, pigment, elastase, and rhamnolipid production were detected. Our study demonstrated a low occurrence of P. aeruginosa (18%) and low antimicrobial resistance, but a high number of virulence-related traits in these P. aeruginosa strains, highlighting their pathological importance.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Pseudomonas/clasificación , Verduras/microbiología , Factores de Virulencia/genética , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Microbiología de Alimentos , Pruebas de Sensibilidad Microbiana , Tipificación Molecular , Fenotipo , Filogenia , Pseudomonas/efectos de los fármacos , Pseudomonas/genética , Pseudomonas/patogenicidad
14.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34762579

RESUMEN

Strain TUM18999T was isolated from the skin of a patient with burn wounds in Japan. The strain was successfully cultured at 20-42 °C (optimum, 30-35 °C) in 1.0-4.0% NaCl (w/v) and at pH 5.5-9.5, optimum pH 5.5-8.5. The phylogenetic tree reconstructed using 16S rRNA, gyrB, rpoB and rpoD gene sequences indicated that strain TUM18999T is closely related to Pseudomonas otitidis MCC10330T. Although the partial 16S rRNA gene sequence (1412 bp) of TUM18999T exhibits high similarity to those of Pseudomonas alcaligenes NBRC 14159T (99.08 %) and Pseudomonas otitidis MCC10330T (98.51 %), multi-locus sequence analysis using 16S rRNA, gyrB, rpoB and rpoD genes reveals a clear distinction between TUM18999T and other Pseudomonas species. In addition, an average nucleotide identity >90 % was not observed in the P. aeruginosa group. Moreover, TUM18999T and P. otitidis can be distinguished based on the minimum inhibitory concentration for carbapenem. Meanwhile, the cellular fatty acids are enriched with C18 : 1 ω7c/C18 : 1 ω6c (34.35 %), C16 : 1 ω7c/C16 : 1 ω6c (24.22 %), C16 : 0 (19.79 %) and C12 : 0 (8.25 %). Based on this evidence, strain TUM18999T can be defined as representing a novel Pseudomonas species, with the proposed name Pseudomonas tohonis sp. nov. The type strain is TUM18999T (GTC 22698T=NCTC 14580T).


Asunto(s)
Quemaduras , Filogenia , Pseudomonas/clasificación , Piel/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , Quemaduras/microbiología , ADN Bacteriano/genética , Ácidos Grasos/química , Genes Bacterianos , Humanos , Japón , Pseudomonas/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
15.
PLoS One ; 16(11): e0259725, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34807918

RESUMEN

The bacterium Pseudomonas anguilliseptica has in recent years emerged as a serious threat to production of lumpfish in Norway. Little is known about the population structure of this bacterium despite its association with disease in a wide range of different fish species throughout the world. The phylogenetic relationships between 53 isolates, primarily derived from diseased lumpfish, but including a number of reference strains from diverse geographical origins and fish species, were reconstructed by Multi-Locus Sequence Analysis (MLSA) using nine housekeeping genes (rpoB, atpD, gyrB, rpoD, ileS, aroE, carA, glnS and recA). MLSA revealed a high degree of relatedness between the studied isolates, altough the seven genotypes identified formed three main phylogenetic lineages. While four genotypes were identified amongst Norwegian lumpfish isolates, a single genotype dominated, irrespective of geographic origin. This suggests the existence of a dominant genotype associated with disease in production of lumpfish in Norwegian aquaculture. Elucidation of the population structure of the bacterium has provided valuable information for potential future vaccine development.


Asunto(s)
Perciformes/microbiología , Pseudomonas/genética , Pseudomonas/patogenicidad , Animales , Genotipo , Tipificación de Secuencias Multilocus/métodos , Filogenia , Pseudomonas/clasificación
16.
Int J Syst Evol Microbiol ; 71(11)2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34767499

RESUMEN

Two Gram-staining-negative, aerobic, rod-shaped bacteria designated strains SR9T and UL070T, were isolated from soil and subjected to taxonomic characterization. Strain SR9T grew at 10-37 °C (optimum 30 °C), at pH 4.0-10.0 (optimum pH 8.0) and in the presence of 0-1 % NaCl (optimum 0 %), and UL070T at 4-33 °C (optimum 30 °C), at pH 4.0-10.0 (optimum pH 7.0) and in the presence of 0-2 % NaCl (optimum 0 %), respectively. Strain UL070T was motile with flagella. Analysis of 16S rRNA gene sequences indicated that the two strains fell into phylogenetic clusters belonging to the genus Pseudomonas. Both strains SR9T and UL070T were mostly related to Pseudomonas campi S1-A32-2T with 99.70 and 99.01% sequence similarities, and the similarity between the two isolates was 98.90 %. The genome-based in silico analyses indicated that each of the strains SR9T and UL070T was clearly separated from other species of Pseudomonas, as the orthologous average nucleotide identity (OrthoANI) and the digital DNA-DNA hybridization (dDDH) values were no higher than 93.09 and 50.03% respectively with any related species, which were clearly below the cutoff for species distinction. The fatty acid profiles of the two strains mainly consisting of unsaturated components, the presence of ubiquinone 9 (Q-9) as the major respiratory quinone, and phosphatidylethanolamine (PE) and diphosphatidylglycerol (DPG) as the diagnostic polar lipids were consistent with their classification into Pseudomonas. The DNA G+C contents of strains SR9T and UL070T were 63.2 mol% and 63.6 mol% respectively. On the basis of both phenotypic and phylogenetic evidences, each of the isolated strains should be classified as a novel species, for which the names Pseudomonas guryensis sp. nov. (type strain=SR9T=KCTC 82228T=JCM 34509T) and Pseudomonas ullengensis sp. nov. (type strain=UL070T=KCTC 82229T=JCM 34510T) are proposed.


Asunto(s)
Filogenia , Pseudomonas , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Fosfolípidos/química , Pseudomonas/clasificación , Pseudomonas/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/química
17.
Int J Syst Evol Microbiol ; 71(10)2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34705625

RESUMEN

During an investigation of microbes associated with arthropods living in decaying coconut trees, a Pseudomonas isolate, Milli4T, was cultured from the digestive tract of the common Asian millipede, Trigoniulus corallinus. Sequence analysis of 16S rRNA and rpoB genes found that Milli4T was closely related but not identical to Pseudomonas panipatensis Esp-1T, Pseudomonas knackmussi B13T and Pseudomonas humi CCA1T. Whole genome sequencing suggested that this isolate represents a new species, with average nucleotide identity (OrthoANIu) values of around 83.9-87.7% with its closest relatives. Genome-to-genome distance calculations between Milli4T and its closest relatives also suggested they are distinct species. The genomic DNA G+C content of Milli4T was approximately 65.0 mol%. Phenotypic and chemotaxonomic characterization and fatty acid methyl ester analysis was performed on Milli4T and its related type strains. Based on these data, the new species Pseudomonas schmalbachii sp. nov. is proposed, and the type strain is Milli4T (=BCRC 81294T=JCM 34414T=CIP 111980T).


Asunto(s)
Artrópodos , Filogenia , Pseudomonas/clasificación , Animales , Artrópodos/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , Cocos , ADN Bacteriano/genética , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Pseudomonas/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
18.
Artículo en Inglés | MEDLINE | ID: mdl-34424837

RESUMEN

Three phytopathogenic bacterial strains (Pc19-1T, Pc19-2 and Pc19-3) were isolated from seedlings displaying water-soaked, dark brown-to-black, necrotic lesions on pepper (Capsicum annuum) leaves in Georgia, USA. Upon isolation on King's medium B, light cream-coloured colonies were observed and a diffusible fluorescent pigment was visible under ultraviolet light. Analysis of their 16S rRNA gene sequences showed that they belonged to the genus Pseudomonas, with the highest similarity to Pseudomonas cichorii ATCC 10857T (99.7 %). The fatty acid analysis revealed that the majority of the fatty acids were summed feature 3 (C16  :  1 ω7c/C16  :  1 ω6c), C16  :  0 and summed feature 8 (C18  :  1 ω7c/C18  :  1 ω6c). Phylogenomic analyses based on whole genome sequences demonstrated that the pepper strains belonged to the Pseudomonas syringae complex with P. cichorii as their closest neighbour, and formed a separate monophyletic clade from other species. Between the pepper strains and P. cichorii, the average nucleotide identity values were 91.3 %. Furthermore, the digital DNA-DNA hybridization values of the pepper strains when compared to their closest relatives, including P. cichorii, were 45.2 % or less. In addition, biochemical and physiological features were examined in this study and the results indicate that the pepper strains represent a novel Pseudomonas species. Therefore, we propose a new species Pseudomonas capsici sp. nov., with Pc19-1T (=CFBP 8884T=LMG 32209T) as the type strain. The DNA G+C content of the strain Pc19-1T is 58.4 mol%.


Asunto(s)
Capsicum/microbiología , Filogenia , Pseudomonas , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Georgia , Hibridación de Ácido Nucleico , Hojas de la Planta/microbiología , Pseudomonas/clasificación , Pseudomonas/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
19.
Artículo en Inglés | MEDLINE | ID: mdl-34242155

RESUMEN

Cells of strains P66T, V1 and W15Feb18 are Gram-stain-negative short rods and motile by one polar flagellum. Strain P66T was isolated from rainbow trout (Oncorhynchus mykiss) cultivated at a fish farm in Turkey. Strain V1 was isolated from sand of an intertidal shore on the Galicia coast in Spain and strain W15Feb18 was isolated from water collected at the Woluwe River in Belgium. Based on 16S rRNA sequence similarity values, the strains were grouped under the genus Pseudomonas and the Pseudomonas putida phylogenetic group of species. The DNA G+C content ranged from 58.5 to 58.9 mol%. The strains were characterized phenotypically by the API 20NE and Biolog GEN III tests, and chemotaxonomically by their whole-cell MALDI-TOF MS protein profiles and fatty acid contents. The absence of the hydrolysis of gelatin and the assimilation of arabinose, mannose and mannitol differentiated these strains from the closest species, Pseudomonas alkylphenolica. The major fatty acid components were C16:0 (29.91-31.68 %) and summed feature 3 (36.44-37.55 %). Multilocus sequence analysis with four and 83 housekeeping gene sequences and a core proteome analysis showed that these strains formed a phylogenetic cluster in the P. putida group of species. Genome comparisons by the average nucleotide identity based on blast and the Genome-to-Genome Distance Calculator demonstrated that the three strains belonged to the same genomic species and were distant from any known species, with similarity values lower than the thresholds established for species in the genus Pseudomonas. These data permitted us to conclude that strains P66T, V1 and W15Feb18 belong to a novel species in the genus Pseudomonas, for which the name Pseudomonas arcuscaelestis sp. nov. is proposed. The type strain is P66T (=CECT 30176T=CCUG 74872T). The other strains have been deposited in the CECT with the corresponding collection numbers: V1 (=CECT 30356) and W15Feb18 (=CECT 30355).


Asunto(s)
Oncorhynchus mykiss/microbiología , Filogenia , Pseudomonas/clasificación , Ríos/microbiología , Microbiología del Agua , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , Bélgica , ADN Bacteriano/genética , Ácidos Grasos/química , Genes Bacterianos , Tipificación de Secuencias Multilocus , Hibridación de Ácido Nucleico , Pseudomonas/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , España , Turquía
20.
Artículo en Inglés | MEDLINE | ID: mdl-34309505

RESUMEN

Two phytopathogenic bacteria, MAFF 301380T and MAFF 301381, isolated from rot lesions of lettuce (Lactuca sativa L. var. capitata L.) in Japan, were characterized using a polyphasic approach. The cells were Gram-reaction-negative, aerobic, non-spore-forming, rod-shaped and motile with one to three polar flagella. Analysis of the 16S rRNA gene sequences showed that the strains belong to the genus Pseudomonas and are closely related to Pseudomonas cedrina subsp. cedrina CFML 96-198T (99.72 %), Pseudomonas cedrina subsp. fulgida P515/12T (99.65 %), Pseudomonas gessardii DSM 17152T (99.51 %), Pseudomonas synxantha DSM 18928T (99.44 %), Pseudomonas libanensis CIP 105460T (99.44 %) and Pseudomonas lactis DSM 29167T (99.44 %). The genomic DNA G+C content was 60.4 mol% and the major fatty acids consisted of summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c), C16 : 0 and summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c). Phylogenetic analysis using the rpoD gene sequences and phylogenomic analyses based on the whole genome sequences demonstrated that the strains are members of the Pseudomonas fluorescens subgroup but formed a monophyletic and robust clade separated from their closest relatives. The average nucleotide identity and digital DNA-DNA hybridization values between the strains and their closely related species were 88.65 % or less and 36.3 % or less, respectively. The strains could be distinguished from their closest relatives by phenotypic characteristics, pathogenicity towards lettuce and whole-cell MALDI-TOF MS profiles. The evidence presented in this study supports the classification of the strains as representing a novel Pseudomonas species, for which we propose the name Pseudomonas lactucae sp. nov., with the type strain MAFF 301380T (=ICMP 23838T).


Asunto(s)
Lactuca/microbiología , Filogenia , Enfermedades de las Plantas/microbiología , Pseudomonas/clasificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Genes Bacterianos , Japón , Hibridación de Ácido Nucleico , Pseudomonas/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA