Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45.266
Filtrar
1.
Sci Rep ; 14(1): 10669, 2024 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724577

RESUMEN

Anaesthetics are used daily in human and veterinary medicine as well as in scientific research. Anaesthetics have an impact on cell homeostasis especially through modulation of protein post-translational modifications. O-GlcNAcylation, a ubiquitous post-translational modification, plays a role in many biological processes. The aims of this study were to evaluate whether (1) anaesthesia influences O-GlcNAcylation and (2) its stimulation affects physiological parameters. Male Wistar rats (n = 38) were anaesthetized with ketamine-xylazine or isoflurane. They randomly received either an intravenous injection of Ringer's lactate or NButGT (10mg/kg) in order to increase O-GlcNAcylation levels. One hour after induction of anaesthesia, haemodynamic parameters and plasmatic markers were evaluated. Heart, brain and lungs were harvested and O-GlcNAcylation levels and O-GlcNAc-related enzymes were evaluated by western blot. Cardiac and pulmonary O-GlcNAcylation levels and cardiac, cerebral and pulmonary O-GlcNAc associated enzyme expression were not impacted with anaesthesia. Compared with ketamine-xylazine, isoflurane had a lower impact on blood pressure, heart rate and glycaemia. Pharmacological stimulation of O-GlcNAcylation by NButGT did not affect the physiological parameters. This study offers unprecedented insights into the regulation of O-GlcNAcylation and O-GlcNAc related enzymes during anaesthesia. Pharmacological stimulation of O-GlcNAcylation over a 1-h period did not disrupt the physiological balance in healthy anaesthetized rats.


Asunto(s)
Isoflurano , Ketamina , Ratas Wistar , Xilazina , Animales , Masculino , Ratas , Isoflurano/farmacología , Ketamina/farmacología , Xilazina/farmacología , Anestesia , Acetilglucosamina/metabolismo , Procesamiento Proteico-Postraduccional , Encéfalo/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Frecuencia Cardíaca/efectos de los fármacos , Pulmón/metabolismo , Anestésicos/farmacología , Presión Sanguínea/efectos de los fármacos , Hemodinámica
2.
Sci Rep ; 14(1): 10595, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719908

RESUMEN

Delayed diagnosis in patients with pulmonary tuberculosis (PTB) often leads to serious public health problems. High throughput sequencing was used to determine the expression levels of lncRNAs, mRNAs, and miRNAs in the lesions and adjacent health lung tissues of patients with PTB. Their differential expression profiles between the two groups were compared, and 146 DElncRs, 447 DEmRs, and 29 DEmiRs were obtained between lesions and adjacent health tissues in patients with PTB. Enrichment analysis for mRNAs showed that they were mainly involved in Th1, Th2, and Th17 cell differentiation. The lncRNAs, mRNAs with target relationship with miRNAs were predicted respectively, and correlation analysis was performed. The ceRNA regulatory network was obtained by comparing with the differentially expressed transcripts (DElncRs, DEmRs, DEmiRs), then 2 lncRNAs mediated ceRNA networks were established. The expression of genes within the network was verified by quantitative real-time PCR (qRT-PCR). Flow cytometric analysis revealed that the proportion of Th1 cells and Th17 cells was lower in PTB than in controls, while the proportion of Th2 cells increased. Our results provide rich transcriptome data for a deeper investigation of PTB. The ceRNA regulatory network we obtained may be instructive for the diagnosis and treatment of PTB.


Asunto(s)
Redes Reguladoras de Genes , MicroARNs , ARN Largo no Codificante , ARN Mensajero , Tuberculosis Pulmonar , Humanos , Tuberculosis Pulmonar/genética , ARN Largo no Codificante/genética , MicroARNs/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Perfilación de la Expresión Génica , Transcriptoma , Células Th17/inmunología , Células Th17/metabolismo , Femenino , Masculino , Adulto , Persona de Mediana Edad , Regulación de la Expresión Génica , Pulmón/patología , Pulmón/metabolismo , ARN Endógeno Competitivo
3.
Physiol Rep ; 12(9): e16032, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38720166

RESUMEN

INPP4A has been shown to be involved in the regulation of cell proliferation and apoptosis of multiple cell types including fibroblasts. Previous reports from our group have demonstrated the role of inositol polyphosphate 4-phosphatase Type I A (INPP4A) in these functions. Though existing evidences suggest a critical role for INPP4A in the maintenance of lung homeostasis, its role in chronic lung diseases is relatively under explored. In the current study, we made an attempt to understand the regulation of INPP4A in idiopathic pulmonary fibrosis (IPF). Through integration of relevant INPP4A gene expression data from public repositories with our results from in vitro experiments and mouse models, we show that INPP4A is altered in IPF. Interestingly, the direction of the change is dependent both on the disease stage and the region of the lung used. INPP4A was found to be upregulated when analyzed in lung sample representative of the whole lung, but was downregulated in the fibrotic regions of the lung. Similarly, INPP4A was found to be high, compared to controls, only in the early stage of the disease. Though the observed increase in INPP4A was found to be negatively correlated to physiological indices, FVC, and DLCO, of lung function, treatment with anti-INPP4A antibody worsened the condition in bleomycin treated mice. These contrasting results taken together are suggestive of a nuanced regulation of INPP4A in IPF which is dependent on the disease stage, cellular state and extent of fibrosis in the lung region being analyzed.


Asunto(s)
Fibrosis Pulmonar Idiopática , Monoéster Fosfórico Hidrolasas , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/genética , Animales , Humanos , Monoéster Fosfórico Hidrolasas/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Ratones , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones Endogámicos C57BL , Fibroblastos/metabolismo , Femenino
4.
AAPS PharmSciTech ; 25(5): 109, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730125

RESUMEN

Although inhalation therapy represents a promising drug delivery route for the treatment of respiratory diseases, the real-time evaluation of lung drug deposition remains an area yet to be fully explored. To evaluate the utility of the photo reflection method (PRM) as a real-time non-invasive monitoring of pulmonary drug delivery, the relationship between particle emission signals measured by the PRM and in vitro inhalation performance was evaluated in this study. Symbicort® Turbuhaler® was used as a model dry powder inhaler. In vitro aerodynamic particle deposition was evaluated using a twin-stage liquid impinger (TSLI). Four different inhalation patterns were defined based on the slope of increased flow rate (4.9-9.8 L/s2) and peak flow rate (30 L/min and 60 L/min). The inhalation flow rate and particle emission profile were measured using an inhalation flow meter and a PRM drug release detector, respectively. The inhalation performance was characterized by output efficiency (OE, %) and stage 2 deposition of TSLI (an index of the deagglomerating efficiency, St2, %). The OE × St2 is defined as the amount delivered to the lungs. The particle emissions generated by four different inhalation patterns were completed within 0.4 s after the start of inhalation, and were observed as a sharper and larger peak under conditions of a higher flow increase rate. These were significantly correlated between the OE or OE × St2 and the photo reflection signal (p < 0.001). The particle emission signal by PRM could be a useful non-invasive real-time monitoring tool for dry powder inhalers.


Asunto(s)
Inhaladores de Polvo Seco , Pulmón , Tamaño de la Partícula , Inhaladores de Polvo Seco/métodos , Pulmón/metabolismo , Administración por Inhalación , Sistemas de Liberación de Medicamentos/métodos , Aerosoles , Polvos , Liberación de Fármacos
5.
Elife ; 132024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722677

RESUMEN

Environmental air irritants including nanosized carbon black (nCB) can drive systemic inflammation, promoting chronic obstructive pulmonary disease (COPD) and emphysema development. The let-7 microRNA (Mirlet7 miRNA) family is associated with IL-17-driven T cell inflammation, a canonical signature of lung inflammation. Recent evidence suggests the Mirlet7 family is downregulated in patients with COPD, however, whether this repression conveys a functional consequence on emphysema pathology has not been elucidated. Here, we show that overall expression of the Mirlet7 clusters, Mirlet7b/Mirlet7c2 and Mirlet7a1/Mirlet7f1/Mirlet7d, are reduced in the lungs and T cells of smokers with emphysema as well as in mice with cigarette smoke (CS)- or nCB-elicited emphysema. We demonstrate that loss of the Mirlet7b/Mirlet7c2 cluster in T cells predisposed mice to exaggerated CS- or nCB-elicited emphysema. Furthermore, ablation of the Mirlet7b/Mirlet7c2 cluster enhanced CD8+IL17a+ T cells (Tc17) formation in emphysema development in mice. Additionally, transgenic mice overexpressing Mirlet7g in T cells are resistant to Tc17 and CD4+IL17a+ T cells (Th17) development when exposed to nCB. Mechanistically, our findings reveal the master regulator of Tc17/Th17 differentiation, RAR-related orphan receptor gamma t (RORγt), as a direct target of Mirlet7 in T cells. Overall, our findings shed light on the Mirlet7/RORγt axis with Mirlet7 acting as a molecular brake in the generation of Tc17 cells and suggest a novel therapeutic approach for tempering the augmented IL-17-mediated response in emphysema.


Asunto(s)
Diferenciación Celular , Regulación hacia Abajo , MicroARNs , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , MicroARNs/genética , MicroARNs/metabolismo , Animales , Ratones , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Humanos , Células Th17/inmunología , Células Th17/metabolismo , Enfisema Pulmonar/genética , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patología , Enfisema/genética , Enfisema/metabolismo , Ratones Endogámicos C57BL , Pulmón/patología , Pulmón/metabolismo , Masculino , Interleucina-17/metabolismo , Interleucina-17/genética , Femenino
6.
Med Sci Monit ; 30: e943089, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38725228

RESUMEN

BACKGROUND One-lung ventilation is the separation of the lungs by mechanical methods to allow ventilation of only one lung, particularly when there is pathology in the other lung. This retrospective study from a single center aimed to compare 49 patients undergoing thoracoscopic cardiac surgery using one-lung ventilation with 48 patients undergoing thoracoscopic cardiac surgery with median thoracotomy. MATERIAL AND METHODS This single-center retrospective study analyzed patients who underwent thoracoscopic cardiac surgery based on one-lung ventilation (experimental group, n=49). Other patients undergoing a median thoracotomy cardiac operation were defined as the comparison group (n=48). The oxygenation index and the mechanical ventilation time were also recorded. RESULTS There was no significant difference in the immediate oxygenation index between the experimental group and comparison group (P>0.05). There was no significant difference for the oxygenation index between men and women in both groups (P>0.05). The cardiopulmonary bypass time significantly affected the oxygenation index (F=7.200, P=0.009). Operation methods (one-lung ventilation thoracoscopy or median thoracotomy) affected postoperative ventilator use time (F=8.337, P=0.005). Cardiopulmonary bypass time (F=16.002, P<0.001) and age (F=4.384, P=0.039) had significant effects on ventilator use time. There was no significant effect of sex (F=0.75, P=0.389) on ventilator use time. CONCLUSIONS Our results indicated that one-lung ventilation thoracoscopic cardiac surgery did not affect the immediate postoperative oxygenation index; however, cardiopulmonary bypass time did significantly affect the immediate postoperative oxygenation index. Also, one-lung ventilation thoracoscopic cardiac surgery had a shorter postoperative mechanical ventilation use time than did traditional median thoracotomy cardiac surgery.


Asunto(s)
Procedimientos Quirúrgicos Cardíacos , Ventilación Unipulmonar , Toracoscopía , Toracotomía , Humanos , Masculino , Femenino , Toracotomía/métodos , Ventilación Unipulmonar/métodos , Persona de Mediana Edad , Toracoscopía/métodos , Estudios Retrospectivos , Procedimientos Quirúrgicos Cardíacos/métodos , Anciano , Oxígeno/metabolismo , Respiración Artificial/métodos , Adulto , Puente Cardiopulmonar/métodos , Pulmón/cirugía , Pulmón/metabolismo
7.
Part Fibre Toxicol ; 21(1): 24, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760761

RESUMEN

BACKGROUND: Significant variations exist in the forms of ZnO, making it impossible to test all forms in in vivo inhalation studies. Hence, grouping and read-across is a common approach under REACH to evaluate the toxicological profile of familiar substances. The objective of this paper is to investigate the potential role of dissolution, size, or coating in grouping ZnO (nano)forms for the purpose of hazard assessment. We performed a 90-day inhalation study (OECD test guideline no. (TG) 413) in rats combined with a reproduction/developmental (neuro)toxicity screening test (TG 421/424/426) with coated and uncoated ZnO nanoforms in comparison with microscale ZnO particles and soluble zinc sulfate. In addition, genotoxicity in the nasal cavity, lungs, liver, and bone marrow was examined via comet assay (TG 489) after 14-day inhalation exposure. RESULTS: ZnO nanoparticles caused local toxicity in the respiratory tract. Systemic effects that were not related to the local irritation were not observed. There was no indication of impaired fertility, developmental toxicity, or developmental neurotoxicity. No indication for genotoxicity of any of the test substances was observed. Local effects were similar across the different ZnO test substances and were reversible after the end of the exposure. CONCLUSION: With exception of local toxicity, this study could not confirm the occasional findings in some of the previous studies regarding the above-mentioned toxicological endpoints. The two representative ZnO nanoforms and the microscale particles showed similar local effects. The ZnO nanoforms most likely exhibit their effects by zinc ions as no particles could be detected after the end of the exposure, and exposure to rapidly soluble zinc sulfate had similar effects. Obviously, material differences between the ZnO particles do not substantially alter their toxicokinetics and toxicodynamics. The grouping of ZnO nanoforms into a set of similar nanoforms is justified by these observations.


Asunto(s)
Exposición por Inhalación , Óxido de Zinc , Animales , Óxido de Zinc/toxicidad , Óxido de Zinc/química , Masculino , Femenino , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Tamaño de la Partícula , Administración por Inhalación , Daño del ADN , Ratas , Ensayo Cometa , Ratas Wistar , Reproducción/efectos de los fármacos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo
8.
Nat Commun ; 15(1): 3816, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769293

RESUMEN

SARS-CoV-2 infection causes severe pulmonary manifestations, with poorly understood mechanisms and limited treatment options. Hyperferritinemia and disrupted lung iron homeostasis in COVID-19 patients imply that ferroptosis, an iron-dependent cell death, may occur. Immunostaining and lipidomic analysis in COVID-19 lung autopsies reveal increases in ferroptosis markers, including transferrin receptor 1 and malondialdehyde accumulation in fatal cases. COVID-19 lungs display dysregulation of lipids involved in metabolism and ferroptosis. We find increased ferritin light chain associated with severe COVID-19 lung pathology. Iron overload promotes ferroptosis in both primary cells and cancerous lung epithelial cells. In addition, ferroptosis markers strongly correlate with lung injury severity in a COVID-19 lung disease model using male Syrian hamsters. These results reveal a role for ferroptosis in COVID-19 pulmonary disease; pharmacological ferroptosis inhibition may serve as an adjuvant therapy to prevent lung damage during SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Ferroptosis , Pulmón , Mesocricetus , SARS-CoV-2 , COVID-19/virología , COVID-19/metabolismo , COVID-19/patología , Animales , Humanos , Masculino , Pulmón/patología , Pulmón/virología , Pulmón/metabolismo , SARS-CoV-2/fisiología , Femenino , Hierro/metabolismo , Persona de Mediana Edad , Modelos Animales de Enfermedad , Anciano , Lesión Pulmonar/virología , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Sobrecarga de Hierro/metabolismo , Adulto , Cricetinae
9.
PLoS One ; 19(5): e0289854, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38771750

RESUMEN

INTRODUCTION: Recent research suggests that endothelial activation plays a role in coronavirus disease 2019 (COVID-19) pathogenesis by promoting a pro-inflammatory state. However, the mechanism by which the endothelium is activated in COVID-19 remains unclear. OBJECTIVE: To investigate the mechanism by which COVID-19 activates the pulmonary endothelium and drives pro-inflammatory phenotypes. HYPOTHESIS: The "inflammatory load or burden" (cytokine storm) of the systemic circulation activates endothelial NADPH oxidase 2 (NOX2) which leads to the production of reactive oxygen species (ROS) by the pulmonary endothelium. Endothelial ROS subsequently activates pro-inflammatory pathways. METHODS: The inflammatory burden of COVID-19 on the endothelial network, was recreated in vitro, by exposing human pulmonary microvascular endothelial cells (HPMVEC) to media supplemented with serum from COVID-19 affected individuals (sera were acquired from patients with COVID-19 infection that eventually died. Sera was isolated from blood collected at admission to the Intensive Care Unit of the Hospital of the University of Pennsylvania). Endothelial activation, inflammation and cell death were assessed in HPMVEC treated with serum either from patients with COVID-19 or from healthy individuals. Activation was monitored by measuring NOX2 activation (Rac1 translocation) and ROS production; inflammation (or appearance of a pro-inflammatory phenotype) was monitored by measuring the induction of moieties such as intercellular adhesion molecule (ICAM-1), P-selectin and the NLRP3 inflammasome; cell death was measured via SYTOX™ Green assays. RESULTS: Endothelial activation (i.e., NOX2 activation and subsequent ROS production) and cell death were significantly higher in the COVID-19 model than in healthy samples. When HPMVEC were pre-treated with the novel peptide PIP-2, which blocks NOX2 activation (via inhibition of Ca2+-independent phospholipase A2, aiPLA2), significant abrogation of ROS was observed. Endothelial inflammation and cell death were also significantly blunted. CONCLUSIONS: The endothelium is activated during COVID-19 via cytokine storm-driven NOX2-ROS activation, which causes a pro-inflammatory phenotype. The concept of endothelial NOX2-ROS production as a unifying pathophysiological axis in COVID-19 raises the possibility of using PIP-2 to maintain vascular health.


Asunto(s)
COVID-19 , Células Endoteliales , NADPH Oxidasa 2 , Especies Reactivas de Oxígeno , SARS-CoV-2 , Transducción de Señal , Humanos , COVID-19/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Células Endoteliales/metabolismo , SARS-CoV-2/fisiología , NADPH Oxidasa 2/metabolismo , Endotelio Vascular/metabolismo , Pulmón/patología , Pulmón/metabolismo , Pulmón/virología , Pulmón/irrigación sanguínea , Péptidos/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo
10.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732159

RESUMEN

The receptor for advanced glycation end-products (RAGE) has a central function in orchestrating inflammatory responses in multiple disease states including chronic obstructive pulmonary disease (COPD). RAGE is a transmembrane pattern recognition receptor with particular interest in lung disease due to its naturally abundant pulmonary expression. Our previous research demonstrated an inflammatory role for RAGE following acute exposure to secondhand smoke (SHS). However, chronic inflammatory mechanisms associated with RAGE remain ambiguous. In this study, we assessed transcriptional outcomes in mice exposed to chronic SHS in the context of RAGE expression. RAGE knockout (RKO) and wild-type (WT) mice were delivered nose-only SHS via an exposure system for six months and compared to control mice exposed to room air (RA). We specifically compared WT + RA, WT + SHS, RKO + RA, and RKO + SHS. Analysis of gene expression data from WT + RA vs. WT + SHS showed FEZ1, Slpi, and Msln as significant at the three-month time point; while RKO + SHS vs. WT + SHS identified cytochrome p450 1a1 and Slc26a4 as significant at multiple time points; and the RKO + SHS vs. WT + RA revealed Tmem151A as significant at the three-month time point as well as Gprc5a and Dynlt1b as significant at the three- and six-month time points. Notable gene clusters were functionally analyzed and discovered to be specific to cytoskeletal elements, inflammatory signaling, lipogenesis, and ciliogenesis. We found gene ontologies (GO) demonstrated significant biological pathways differentially impacted by the presence of RAGE. We also observed evidence that the PI3K-Akt and NF-κB signaling pathways were significantly enriched in DEGs across multiple comparisons. These data collectively identify several opportunities to further dissect RAGE signaling in the context of SHS exposure and foreshadow possible therapeutic modalities.


Asunto(s)
Pulmón , Ratones Noqueados , Receptor para Productos Finales de Glicación Avanzada , Contaminación por Humo de Tabaco , Transcriptoma , Animales , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Receptor para Productos Finales de Glicación Avanzada/genética , Ratones , Pulmón/metabolismo , Pulmón/patología , Pulmón/efectos de los fármacos , Contaminación por Humo de Tabaco/efectos adversos , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Perfilación de la Expresión Génica
11.
Int J Mol Sci ; 25(9)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38732246

RESUMEN

Nanoparticles (NPs) have shown significant potential for pulmonary administration of therapeutics for the treatment of chronic lung diseases in a localized and sustained manner. Nebulization is a suitable method of NP delivery, particularly in patients whose ability to breathe is impaired due to lung diseases. However, there are limited studies evaluating the physicochemical properties of NPs after they are passed through a nebulizer. High shear stress generated during nebulization could potentially affect the surface properties of NPs, resulting in the loss of encapsulated drugs and alteration in the release kinetics. Herein, we thoroughly examined the physicochemical properties as well as the therapeutic effectiveness of Infasurf lung surfactant (IFS)-coated PLGA NPs previously developed by us after passing through a commercial Aeroneb® vibrating-mesh nebulizer. Nebulization did not alter the size, surface charge, IFS coating and bi-phasic release pattern exhibited by the NPs. However, there was a temporary reduction in the initial release of encapsulated therapeutics in the nebulized compared to non-nebulized NPs. This underscores the importance of evaluating the drug release kinetics of NPs using the inhalation method of choice to ensure suitability for the intended medical application. The cellular uptake studies demonstrated that both nebulized and non-nebulized NPs were less readily taken up by alveolar macrophages compared to lung cancer cells, confirming the IFS coating retention. Overall, nebulization did not significantly compromise the physicochemical properties as well as therapeutic efficacy of the prepared nanotherapeutics.


Asunto(s)
Nanopartículas , Nebulizadores y Vaporizadores , Nanopartículas/química , Humanos , Administración por Inhalación , Sistemas de Liberación de Medicamentos/métodos , Lípidos/química , Liberación de Fármacos , Pulmón/metabolismo , Polímeros/química , Surfactantes Pulmonares/química , Portadores de Fármacos/química , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/efectos de los fármacos , Tamaño de la Partícula , Células A549 , Animales , Propiedades de Superficie
12.
Int J Mol Sci ; 25(9)2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38732251

RESUMEN

Asthma is a chronic respiratory disease with one of the largest numbers of cases in the world; thus, constant investigation and technical development are needed to unravel the underlying biochemical mechanisms. In this study, we aimed to develop a nano-DESI MS method for the in vivo characterization of the cellular metabolome. Using air-liquid interface (ALI) cell layers, we studied the role of Interleukin-13 (IL-13) on differentiated lung epithelial cells acting as a lung tissue model. We demonstrate the feasibility of nano-DESI MS for the in vivo monitoring of basal-apical molecular transport, and the subsequent endogenous metabolic response, for the first time. Conserving the integrity of the ALI lung-cell layer enabled us to perform temporally resolved metabolomic characterization followed by "bottom-up" proteomics on the same population of cells. Metabolic remodeling was observed upon histamine and corticosteroid treatment of the IL-13-exposed lung cell monolayers, in correlation with alterations in the proteomic profile. This proof of principle study demonstrates the utility of in vivo nano-DESI MS for characterizing ALI tissue layers, and the new markers identified in our study provide a good starting point for future, larger-scale studies.


Asunto(s)
Interleucina-13 , Pulmón , Metaboloma , Metabolómica , Proteoma , Proteómica , Interleucina-13/metabolismo , Pulmón/metabolismo , Proteómica/métodos , Metabolómica/métodos , Humanos , Metaboloma/efectos de los fármacos , Proteoma/metabolismo , Espectrometría de Masas/métodos , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Asma/metabolismo , Asma/tratamiento farmacológico
13.
Int J Mol Sci ; 25(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38732272

RESUMEN

Lung branching morphogenesis relies on intricate epithelial-mesenchymal interactions and signaling networks. Still, the interplay between signaling and energy metabolism in shaping embryonic lung development remains unexplored. Retinoic acid (RA) signaling influences lung proximal-distal patterning and branching morphogenesis, but its role as a metabolic modulator is unknown. Hence, this study investigates how RA signaling affects the metabolic profile of lung branching. We performed ex vivo lung explant culture of embryonic chicken lungs treated with DMSO, 1 µM RA, or 10 µM BMS493. Extracellular metabolite consumption/production was evaluated by using 1H-NMR spectroscopy. Mitochondrial respiration and biogenesis were also analyzed. Proliferation was assessed using an EdU-based assay. The expression of crucial metabolic/signaling components was examined through Western blot, qPCR, and in situ hybridization. RA signaling stimulation redirects glucose towards pyruvate and succinate production rather than to alanine or lactate. Inhibition of RA signaling reduces lung branching, resulting in a cystic-like phenotype while promoting mitochondrial function. Here, RA signaling emerges as a regulator of tissue proliferation and lactate dehydrogenase expression. Furthermore, RA governs fatty acid metabolism through an AMPK-dependent mechanism. These findings underscore RA's pivotal role in shaping lung metabolism during branching morphogenesis, contributing to our understanding of lung development and cystic-related lung disorders.


Asunto(s)
Metabolismo Energético , Pulmón , Morfogénesis , Transducción de Señal , Tretinoina , Animales , Tretinoina/metabolismo , Tretinoina/farmacología , Pulmón/metabolismo , Pulmón/efectos de los fármacos , Pulmón/embriología , Metabolismo Energético/efectos de los fármacos , Morfogénesis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Embrión de Pollo , Proliferación Celular/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Pollos
14.
Nutrients ; 16(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732622

RESUMEN

Acute lung injury, a fatal condition characterized by a high mortality rate, necessitates urgent exploration of treatment modalities. Utilizing UHPLS-Q-Exactive Orbitrap/MS, our study scrutinized the active constituents present in Rosa roxburghii-fermented juice (RRFJ) while also assessing its protective efficacy against LPS-induced ALI in mice through lung histopathological analysis, cytokine profiling, and oxidative stress assessment. The protective mechanism of RRFJ against ALI in mice was elucidated utilizing metabolomics, network pharmacology, and molecular docking methodologies. Our experimental findings demonstrate that RRFJ markedly ameliorates pathological injuries in ALI-afflicted mice, mitigates systemic inflammation and oxidative stress, enhances energy metabolism, and restores dysregulated amino acid and arachidonic acid metabolic pathways. This study indicates that RRFJ can serve as a functional food for adjuvant treatment of ALI.


Asunto(s)
Lesión Pulmonar Aguda , Jugos de Frutas y Vegetales , Lipopolisacáridos , Metabolómica , Estrés Oxidativo , Rosa , Animales , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/prevención & control , Rosa/química , Metabolómica/métodos , Ratones , Masculino , Estrés Oxidativo/efectos de los fármacos , Farmacología en Red , Fermentación , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Modelos Animales de Enfermedad , Simulación del Acoplamiento Molecular , Extractos Vegetales/farmacología , Citocinas/metabolismo , Metabolismo Energético/efectos de los fármacos
15.
J Physiol Pharmacol ; 75(2): 137-144, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38736261

RESUMEN

In this study, we examined the changes in the fibrinolytic system in a rabbit model of two acute pulmonary thromboembolisms (PTE). Fourteen healthy adult New Zealand white rabbits were divided into three groups: the single PTE group (five rabbits), the double PTE group (five rabbits), and the control group (four rabbits). A rabbit model of acute pulmonary embolism was established, and immunohistochemistry and polymerase chain reaction (PCR) were performed on tissue plasminogen activator (t-PA), plasminogen activator inhibitor-1 (PAI-1) in plasma, and pulmonary embolism tissue. Plasma results: 1) t-PA levels: one hour following the initial modeling, the levels of t-PA in the modeling groups were significantly lower than those in the control group (P<0.05). In addition, the t-PA levels in the double PTE group were found to be lower after the modeling, as compared to the pre-modeling period (P<0.05). One hour after the second modeling, the double PTE group had lower t-PA levels compared to the control group (P<0.05). However, t-PA rebounded two hours after modeling in the double PTE group. One week after the second modeling, the double PTE group had higher t-PA levels compared to the other two groups (P<0.05). 2) PAI-1 results: one hour after the initial modeling, PAI-1 levels in the two modeling groups were lower compared to the pre-modeling period and control groups (P<0.05). Two hours following modeling, PAI-1 levels in both modeling groups were lower compared to the control group (P<0.05). PAI-1 levels were lower in the double PTE group one and two hours after the second modeling compared to the other two groups and pre-modeling period (P<0.05). 3) The immunohistochemistry results: the expression of PAI-1 decreased in the two modeling groups, while t-PA expression increased compared to the control group. 4) PCR results: t-PA mRNA expression did not differ among the three groups. The PAI-1 mRNA expression was lower in the two PTE groups compared to the control group. We conclude that in the early stages of PTE, the local fibrinolytic activity of the thrombus is increased, which is favorable for thrombolysis. However, as the thrombus persists, the activity of the fibrinolytic system is inhibited, contributing to the development of chronic thromboembolic pulmonary hypertension.


Asunto(s)
Modelos Animales de Enfermedad , Fibrinólisis , Inhibidor 1 de Activador Plasminogénico , Embolia Pulmonar , Activador de Tejido Plasminógeno , Animales , Conejos , Embolia Pulmonar/metabolismo , Embolia Pulmonar/sangre , Embolia Pulmonar/patología , Inhibidor 1 de Activador Plasminogénico/metabolismo , Inhibidor 1 de Activador Plasminogénico/genética , Activador de Tejido Plasminógeno/metabolismo , Activador de Tejido Plasminógeno/genética , Masculino , ARN Mensajero/metabolismo , ARN Mensajero/genética , Pulmón/metabolismo
16.
Development ; 151(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38738653

RESUMEN

During alveologenesis, multiple mesenchymal cell types play crucial roles in maximising the lung surface area. In their study, David Ornitz and colleagues define the repertoire of lung fibroblasts, with a particular focus on alveolar myofibroblasts. To know more about their work, we spoke to the first author, Yongjun Yin, and the corresponding author, David Ornitz, Alumni Endowed Professor at the Department of Developmental Biology, Washington University School of Medicine, St. Louis.


Asunto(s)
Biología Evolutiva , Humanos , Historia del Siglo XXI , Biología Evolutiva/historia , Historia del Siglo XX , Pulmón/embriología , Pulmón/metabolismo , Pulmón/citología , Animales
17.
Biomed Environ Sci ; 37(4): 367-376, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38727159

RESUMEN

Objective: This study aimed to clarify the intervention effect of salidroside (SAL) on lung injury caused by PM 2.5 in mice and illuminate the function of SIRT1-PGC-1ɑ axis. Methods: Specific pathogen-free (SPF) grade male C57BL/6 mice were randomly assigned to the following groups: control group, SAL group, PM 2.5 group, SAL+PM 2.5 group. On the first day, SAL was given by gavage, and on the second day, PM 2.5 suspension was given by intratracheal instillation. The whole experiment consist of a total of 10 cycles, lasting 20 days. At the end of treatment, blood samples and lung tissues were collected and analyzed. Observation of pathological changes in lung tissue using inverted microscopy and transmission electron microscopy. The expression of inflammatory, antioxidants, apoptosis, and SIRT1-PGC-1ɑ proteins were detected by Western blotting. Results: Exposure to PM 2.5 leads to obvious morphological and pathologica changes in the lung of mice. PM 2.5 caused a decline in levels of antioxidant-related enzymes and protein expressions of HO-1, Nrf2, SOD2, SIRT1 and PGC-1ɑ, and an increase in the protein expressions of IL-6, IL-1ß, Bax, caspase-9 and cleaved caspase-3. However, SAL reversed the aforementioned changes caused by PM 2.5 by activating the SIRT1-PGC-1α pathway. Conclusion: SAL can activate SIRT1-PGC-1ɑ to ameliorate PM 2.5-induced lung injury.


Asunto(s)
Glucósidos , Lesión Pulmonar , Ratones Endogámicos C57BL , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Fenoles , Sirtuina 1 , Animales , Glucósidos/farmacología , Glucósidos/uso terapéutico , Sirtuina 1/metabolismo , Sirtuina 1/genética , Masculino , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Ratones , Lesión Pulmonar/tratamiento farmacológico , Material Particulado/toxicidad , Material Particulado/efectos adversos , Tamaño de la Partícula , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo
18.
Int J Rheum Dis ; 27(5): e15174, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38720423

RESUMEN

OBJECTIVES: This study investigates the role of TNF-induced protein 3 (TNFAIP3) and CCAAT/enhancer-binding protein ß (C/EBPß) in alveolar macrophages (AMs) of patients with systemic sclerosis-associated interstitial lung disease (SSc-ILD) and their influence on pulmonary fibrosis. METHODS: Transfection of HEK293T cells and AMs with plasmids carrying TNFAIP3 and C/EBPß was performed, followed by co-culturing AMs with pulmonary fibroblasts. Immunoblotting analysis was then utilized to assess the expression of TNFAIP3, C/EBPß, and collagen type 1 (Col1). Quantitative PCR analysis was conducted to quantify the mRNA levels of C/EBPß, IL-10, and TGF-ß1. STRING database analysis, and immunoprecipitation assays were employed to investigate the interactions between TNFAIP3 and C/EBPß. RESULTS: TNFAIP3 expression was significantly reduced in SSc-ILD AMs, correlating with increased Col1 production in fibroblasts. Overexpression of TNFAIP3 inhibited this pro-fibrotic activity. Conversely, C/EBPß expression was elevated in SSc-ILD AMs, and its reduction through TNFAIP3 restoration decreased pro-fibrotic cytokines IL-10 and TGFß1 levels. Protein-protein interaction studies confirmed the regulatory relationship between TNFAIP3 and C/EBPß. CONCLUSIONS: This study highlights the important role of TNFAIP3 in regulating pulmonary fibrosis in SSc-ILD by modulating C/EBPß expression in AMs. These findings suggest that targeting TNFAIP3 could be a potential therapeutic strategy for managing SSc-ILD patients.


Asunto(s)
Proteína beta Potenciadora de Unión a CCAAT , Técnicas de Cocultivo , Fibroblastos , Enfermedades Pulmonares Intersticiales , Macrófagos Alveolares , Esclerodermia Sistémica , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Proteína beta Potenciadora de Unión a CCAAT/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Fibroblastos/metabolismo , Células HEK293 , Interleucina-10/metabolismo , Interleucina-10/genética , Pulmón/metabolismo , Pulmón/patología , Enfermedades Pulmonares Intersticiales/metabolismo , Enfermedades Pulmonares Intersticiales/etiología , Macrófagos Alveolares/metabolismo , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/etiología , Esclerodermia Sistémica/metabolismo , Esclerodermia Sistémica/complicaciones , Transducción de Señal , Factor de Crecimiento Transformador beta1/metabolismo , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/metabolismo , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/genética , Adulto , Anciano
19.
Respir Res ; 25(1): 205, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730297

RESUMEN

BACKGROUND: Obesity is the main risk factor leading to the development of various respiratory diseases, such as asthma and pulmonary hypertension. Pulmonary microvascular endothelial cells (PMVECs) play a significant role in the development of lung diseases. Aconitate decarboxylase 1 (Acod1) mediates the production of itaconate, and Acod1/itaconate axis has been reported to play a protective role in multiple diseases. However, the roles of Acod1/itaconate axis in the PMVECs of obese mice are still unclear. METHODS: mRNA-seq was performed to identify the differentially expressed genes (DEGs) between high-fat diet (HFD)-induced PMVECs and chow-fed PMVECs in mice (|log2 fold change| ≥ 1, p ≤ 0.05). Free fatty acid (FFA) was used to induce cell injury, inflammation and mitochondrial oxidative stress in mouse PMVECs after transfection with the Acod1 overexpressed plasmid or 4-Octyl Itaconate (4-OI) administration. In addition, we investigated whether the nuclear factor erythroid 2-like 2 (Nrf2) pathway was involved in the effects of Acod1/itaconate in FFA-induced PMVECs. RESULTS: Down-regulated Acod1 was identified in HFD mouse PMVECs by mRNA-seq. Acod1 expression was also reduced in FFA-treated PMVECs. Acod1 overexpression inhibited cell injury, inflammation and mitochondrial oxidative stress induced by FFA in mouse PMVECs. 4-OI administration showed the consistent results in FFA-treated mouse PMVECs. Moreover, silencing Nrf2 reversed the effects of Acod1 overexpression and 4-OI administration in FFA-treated PMVECs, indicating that Nrf2 activation was required for the protective effects of Acod1/itaconate. CONCLUSION: Our results demonstrated that Acod1/Itaconate axis might protect mouse PMVECs from FFA-induced injury, inflammation and mitochondrial oxidative stress via activating Nrf2 pathway. It was meaningful for the treatment of obesity-caused pulmonary microvascular endotheliopathy.


Asunto(s)
Carboxiliasas , Células Endoteliales , Pulmón , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2 , Obesidad , Succinatos , Animales , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Ratones , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Carboxiliasas/metabolismo , Carboxiliasas/genética , Obesidad/metabolismo , Obesidad/complicaciones , Masculino , Succinatos/farmacología , Pulmón/metabolismo , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/irrigación sanguínea , Células Cultivadas , Microvasos/metabolismo , Microvasos/efectos de los fármacos , Microvasos/patología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Dieta Alta en Grasa/efectos adversos , Endotelio Vascular/metabolismo , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/patología , Hidroliasas
20.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731891

RESUMEN

The past five decades have witnessed remarkable advancements in the field of inhaled medicines targeting the lungs for respiratory disease treatment. As a non-invasive drug delivery route, inhalation therapy offers numerous benefits to respiratory patients, including rapid and targeted exposure at specific sites, quick onset of action, bypassing first-pass metabolism, and beyond. Understanding the characteristics of pulmonary drug transporters and metabolizing enzymes is crucial for comprehending efficient drug exposure and clearance processes within the lungs. These processes are intricately linked to both local and systemic pharmacokinetics and pharmacodynamics of drugs. This review aims to provide a comprehensive overview of the literature on lung transporters and metabolizing enzymes while exploring their roles in exogenous and endogenous substance disposition. Additionally, we identify and discuss the principal challenges in this area of research, providing a foundation for future investigations aimed at optimizing inhaled drug administration. Moving forward, it is imperative that future research endeavors to focus on refining and validating in vitro and ex vivo models to more accurately mimic the human respiratory system. Such advancements will enhance our understanding of drug processing in different pathological states and facilitate the discovery of novel approaches for investigating lung-specific drug transporters and metabolizing enzymes. This deeper insight will be crucial in developing more effective and targeted therapies for respiratory diseases, ultimately leading to improved patient outcomes.


Asunto(s)
Pulmón , Proteínas de Transporte de Membrana , Humanos , Administración por Inhalación , Pulmón/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Animales , Preparaciones Farmacéuticas/metabolismo , Preparaciones Farmacéuticas/administración & dosificación , Transporte Biológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA