Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 353
Filtrar
1.
ACS Nano ; 18(34): 23154-23167, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39140713

RESUMEN

Efficient delivery of nanoparticles (NPs) to plants is important for agricultural application. However, to date, we still lack knowledge about how NPs' charge matters for its translocation pathway, i.e., symplastic and apoplastic pathways, in plants. In this study, we synthesized and used negatively charged citrate sourced carbon dots (C-CDs, -37.97 ± 1.89 mV), Cy5 coated C-CDs (Cy5-C-CDs, -41.90 ± 2.55 mV), positively charged PEI coated carbon dots (P-CDs, +43.03 ± 1.71 mV), and Cy5 coated P-CDs (Cy5-P-CDs, +48.80 ± 1.21 mV) to investigate the role of surface charges and coatings on the employed translocation pathways (symplastic and apoplastic pathways) of charged NPs in plants. Our results showed that, different from the higher fluorescence intensity of P-CDs and Cy5-P-CDs in extracellular than intracellular space, the fluorescence intensity of C-CDs and Cy5-C-CDs was similar between intracellular and extracellular space in cucumber and cotton roots. It suggests that the negatively charged CDs were translocated via both symplastic and apoplastic pathways, but the positively charged CDs were mainly translocated via the apoplastic pathway. Furthermore, our results showed that root applied negatively charged C-CDs demonstrated higher leaf fluorescence than did positively charged P-CDs in both cucumber (8.09 ± 0.99 vs 3.75 ± 0.23) and cotton (7.27 ± 1.06 vs 3.23 ± 0.22), indicating that negatively charged CDs have a higher translocation efficiency from root to leaf than do positively charged CDs. It should be noted that CDs do not affect root cell activities, ROS level, and photosynthetic performance in cucumber and cotton, showing its good biocompatibility. Overall, this study not only figured out that root applied negatively charged CDs employed both symplastic and apoplastic pathways to do the transportation in roots compared with mainly the employment of apoplastic pathway for positively charge CDs, but also found that negatively charge CDs could be more efficiently translocated from root to leaf than positively charged CDs, indicating that imparting negative charge to NPs, at least CDs, matters for its efficient delivery in crops.


Asunto(s)
Carbono , Raíces de Plantas , Puntos Cuánticos , Carbono/química , Carbono/metabolismo , Puntos Cuánticos/química , Puntos Cuánticos/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/química , Cucumis sativus/metabolismo , Carbocianinas/química
2.
J Agric Food Chem ; 72(36): 19710-19720, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39190801

RESUMEN

The enormous potential of carbon dots (CDs) in agriculture has been widely reported, whereas their accurate distribution, transformation, and metabolic fate and potential soil health effects are not clearly understood. Herein, 13C-labeled CDs (13C-CDs) were sprayed on maize leaf, accumulated in all tissues, and promoted photosynthesis. Specifically, 13C-CDs were internalized to participate in the synthesis of glucose, sucrose, citric acid, glyoxylate, and chlorogenic acid, promoting tricarboxylic acid cycle (TCA) and phenylalanine metabolism. Additionally, the catabolism of 13C-CDs in vivo was mainly mediated by O2•- produced by oxidative stress. 13C-CDs did not have an obvious impact on the soil environment at the overall level. The detection of 13C signals in soil fauna suggested 13C-CDs in soil food chain transmission. This study systematically described the exact fate of CDs in plants and potential soil ecological risks and provided a more comprehensive analysis and support for the potential advantages of CDs in agricultural application.


Asunto(s)
Carbono , Hojas de la Planta , Suelo , Zea mays , Zea mays/metabolismo , Zea mays/química , Zea mays/crecimiento & desarrollo , Suelo/química , Hojas de la Planta/metabolismo , Hojas de la Planta/química , Carbono/metabolismo , Carbono/química , Fotosíntesis , Isótopos de Carbono/análisis , Isótopos de Carbono/metabolismo , Ciclo del Ácido Cítrico , Puntos Cuánticos/química , Puntos Cuánticos/metabolismo
3.
ACS Nano ; 18(37): 25893-25905, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39214619

RESUMEN

After entering host cells by endocytosis, influenza A virus (IAV) is transported along microfilaments and then transported by dynein along microtubules (MTs) to the perinuclear region for genome release. Understanding the mechanisms of dynein-driven transport is significant for a comprehensive understanding of IAV infection. In this work, the roles of dynactin in dynein-driven transport of IAV were quantitatively dissected in situ using quantum dot-based single-virus tracking. It was revealed that dynactin was essential for dynein to transport IAV toward the nucleus. After virus entry, virus-carrying vesicles bound to dynein and dynactin before being delivered to MTs. The attachment of dynein to the vesicles was dependent on dynactin and its subunits, p150Glued and Arp1. Once viruses reached MTs, dynactin-assisted dynein initiates retrograde transport of IAV. Importantly, the retrograde transport of viruses could be initiated at both plus ends (32%) and other regions on MTs (68%). Subsequently, dynactin accompanied and assisted dynein to persistently transport the virus along MTs in the retrograde direction. This study revealed the dynactin-dependent dynein-driven transport process of IAV, enhancing our understanding of IAV infection and providing important insights into the cell's endocytic transport mechanism.


Asunto(s)
Complejo Dinactina , Dineínas , Virus de la Influenza A , Puntos Cuánticos , Complejo Dinactina/metabolismo , Dineínas/metabolismo , Puntos Cuánticos/química , Puntos Cuánticos/metabolismo , Humanos , Virus de la Influenza A/metabolismo , Transporte Biológico , Animales , Microtúbulos/metabolismo , Perros , Células de Riñón Canino Madin Darby , Células A549
4.
Sci Rep ; 14(1): 19044, 2024 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152185

RESUMEN

The nuclear pore complexes on the nuclear membrane serve as the exclusive gateway for communication between the nucleus and the cytoplasm, regulating the transport of various molecules, including nucleic acids and proteins. The present work investigates the kinetics of the transport of negatively charged graphene quantum dots through nuclear membranes, focusing on quantifying their transport characteristics. Experiments are carried out in permeabilized HeLa cells using time-lapse confocal fluorescence microscopy. Our findings indicate that negatively charged graphene quantum dots exhibit rapid transport to the nuclei, involving two distinct transport pathways in the translocation process. Complementary experiments on the nuclear import and export of graphene quantum dots validate the bi-directionality of transport, as evidenced by comparable transport rates. The study also shows that the negatively charged graphene quantum dots possess favorable retention properties, underscoring their potential as drug carriers.


Asunto(s)
Transporte Activo de Núcleo Celular , Núcleo Celular , Grafito , Puntos Cuánticos , Puntos Cuánticos/química , Puntos Cuánticos/metabolismo , Humanos , Grafito/química , Células HeLa , Núcleo Celular/metabolismo , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Microscopía Confocal
5.
Biophys Chem ; 310: 107238, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38733645

RESUMEN

Quantum dots (QDs) are semiconductor nanocrystals (2-10 nm) with unique optical and electronic properties due to quantum confinement effects. They offer high photostability, narrow emission spectra, broad absorption spectrum, and high quantum yields, making them versatile in various applications. Due to their highly reactive surfaces, QDs can conjugate with biomolecules while being used, produced, or unintentionally released into the environment. This systematic review delves into intricate relationship between QDs and proteins, examining their interactions that influence their physicochemical properties, enzymatic activity, ligand binding affinity, and stability. The research utilized electronic databases like PubMed, WOS, and Proquest, along with manual reviews from 2013 to 2023 using relevant keywords, to identify suitable literature. After screening titles and abstracts, only articles meeting inclusion criteria were selected for full text readings. This systematic review of 395 articles identifies 125 articles meeting the inclusion criteria, categorized into five overarching themes, encompassing various mechanisms of QDs and proteins interactions, including adsorption to covalent binding, contingent on physicochemical properties of QDs. Through a meticulous analysis of existing literature, it unravels intricate nature of interaction, significant influence on nanomaterials and biological entities, and potential for synergistic applications harnessing both specific and nonspecific interactions across various fields.


Asunto(s)
Proteínas , Puntos Cuánticos , Humanos , Nanotecnología , Unión Proteica , Proteínas/química , Proteínas/metabolismo , Puntos Cuánticos/química , Puntos Cuánticos/metabolismo
6.
Adv Sci (Weinh) ; 11(19): e2308338, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38447188

RESUMEN

Liquid‒liquid phase separation (LLPS) is a ubiquitous process in which proteins, RNA, and biomolecules assemble into membrane-less compartments, playing important roles in many biological functions and diseases. The current knowledge on the biophysical and biochemical principles of LLPS is largely from in vitro studies; however, the physiological environment in living cells is complex and not at equilibrium. The characteristics of intracellular dynamics and their roles in physiological LLPS remain to be resolved. Here, by using single-particle tracking of quantum dots and dynamic monitoring of the formation of stress granules (SGs) in single cells, the spatiotemporal dynamics of intracellular transport in cells undergoing LLPS are quantified. It is shown that intracellular diffusion and active transport are both reduced. Furthermore, the formation of SG droplets contributes to increased spatial heterogeneity within the cell. More importantly, the study demonstrated that the LLPS of SGs can be regulated by intracellular dynamics in two stages: the reduced intracellular diffusion promotes SG assembly and the microtubule-associated transport facilitates SG coalescences. The work on intracellular dynamics not only improves the understanding of the mechanism of physiology phase separations occurring in nonequilibrium environments but also reveals an interplay between intracellular dynamics and LLPS.


Asunto(s)
Puntos Cuánticos , Humanos , Puntos Cuánticos/metabolismo , Transporte Biológico/fisiología , Gránulos de Estrés/metabolismo , Separación de Fases
7.
Cells ; 12(3)2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36766825

RESUMEN

Quantum dots are nanoparticles (2-10 nm) that emit strong and tunable fluorescence. Quantum dots have been heavily used in high-demand commercialized products, research, and for medical purposes. Emerging concerns have demonstrated the negative impact of quantum dots on living cells; however, the intracellular trafficking of QDs in yeast cells and the effect of this interaction remains unclear. The primary goal of our research is to investigate the trafficking path of red cadmium selenide zinc sulfide quantum dots (CdSe/ZnS QDs) in Saccharomyces cerevisiae and the impact QDs have on yeast cellular dynamics. Using cells with GFP-tagged reference organelle markers and confocal microscopy, we were able to track the internalization of QDs. We found that QDs initially aggregate at the exterior of yeast cells, enter the cell using clathrin-receptor-mediated endocytosis, and distribute at the late Golgi/trans-Golgi network. We also found that the treatment of red CdSe/ZnS QDs resulted in growth rate reduction and loss of polarized growth in yeast cells. Our RNA sequence analysis revealed many altered genes. Particularly, we found an upregulation of DID2, which has previously been associated with cell cycle arrest when overexpressed, and a downregulation of APS2, a gene that codes for a subunit of AP2 protein important for the recruitment of proteins to clathrin-mediated endocytosis vesicle. Furthermore, CdSe/ZnS QDs treatment resulted in a slightly delayed endocytosis and altered the actin dynamics in yeast cells. We found that QDs caused an increased level of F-actin and a significant reduction in profilin protein expression. In addition, there was a significant elevation in the amount of coronin protein expressed, while the level of cofilin was unchanged. Altogether, this suggests that QDs favor the assembly of actin filaments. Overall, this study provides a novel toxicity mechanism of red CdSe/ZnS QDs on yeast actin dynamics and cellular processes, including endocytosis.


Asunto(s)
Compuestos de Cadmio , Puntos Cuánticos , Compuestos de Selenio , Saccharomyces cerevisiae , Compuestos de Cadmio/toxicidad , Compuestos de Selenio/farmacología , Puntos Cuánticos/metabolismo , Actinas , Citoesqueleto de Actina
8.
Chirality ; 34(12): 1503-1514, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36300866

RESUMEN

Nanocolloids that are cumulatively referred to as nanocarbons, attracted significant attention during the last decade because of facile synthesis methods, water solubility, tunable photoluminescence, easy surface modification, and high biocompatibility. Among the latest development in this reserach area are chiral nanocarbons exemplified by chiral carbon dots (CDots). They are expected to have applications in sensing, catalysis, imaging, and nanomedicine. However, the current methods of CDots synthesis show often contradictory chemical/optical properties and structural information that required a systematic study with careful structural evaluation. Here, we investigate and optimize chiroptical activity and photoluminescence of L- and D-CDots obtained by hydrothermal carbonization of L- and D-cysteine, respectively. Nuclear magnetic resonance spectroscopy demonstrates that they are formed via gradual dehydrogenation and condensation reactions of the starting amino acid leading to particles with a wide spectrum of functional groups including aromatic cycles. We found that the chiroptical activity of CDots has an inverse correlation with the synthesis duration and temperature, whereas the photoluminescence intensity has a direct one, which is associated with degree of carbonization. Also, our studies show that the hydrothermal synthesis of cysteine in the presence of boric acid leads to the formation of CDots rather than boron nitride nanoparticles as was previously proposed in several reports. These results can be used to design chiral carbon-based nanoparticles with optimal chemical, chiroptical, and photoluminescent properties.


Asunto(s)
Nanopartículas , Puntos Cuánticos , Carbono/química , Puntos Cuánticos/química , Puntos Cuánticos/metabolismo , Cisteína , Estereoisomerismo , Nanopartículas/química
9.
Arch Pharm (Weinheim) ; 355(12): e2200299, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36058643

RESUMEN

Quantum dots (QDs) are semiconducting nanoparticles having different optical and electrical properties when compared to larger particles. They exhibit photoluminescence when irradiated with ultraviolet light, which is due to the transition of an excited electron from the valence band to the conductance band followed by the return of the exciting electron back into the valence band. The size and material of QDs can affect their optical and other properties too. The QDs possess special attributes like high brightness, protection from photobleaching, photostability, color tunability, low toxicity, low production cost, a multiplexing limit, and a high surface-to-volume proportion, which make them a promising tool for biomedical applications. Here, in this study, we summarize the utilization of QDs in different applications including bioimaging, diagnostics, immunostaining, single-cell analysis, drug delivery, and protein detection. Moreover, we discuss the advantages and challenges of using QDs in biomedical applications when compared with other conventional tools.


Asunto(s)
Nanopartículas , Puntos Cuánticos , Puntos Cuánticos/metabolismo , Relación Estructura-Actividad , Sistemas de Liberación de Medicamentos/métodos
10.
ACS Appl Mater Interfaces ; 14(39): 44147-44157, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36153958

RESUMEN

Elucidating the biological behavior of engineered nanoparticles, for example, the protein corona, is important for the development of safe and efficient nanomedicine, but our current understanding is still limited due to its highly dynamic nature and lack of adequate analytical tools. In the present work, we demonstrate the establishment of a fluorescence resonance energy transfer (FRET)-based platform for monitoring the dynamic evolution behavior of the protein corona in complex biological media. With human serum albumin and lysozyme as the model serum proteins, the protein exchange process of the preformed corona on the surface of chiral quantum dots (QDs) upon feeding either individual protein or human serum was monitored in situ by FRET. Important parameters characterizing the evolution process of protein corona could be obtained upon quantitative analysis of FRET data. Further combining real-time FRET monitoring with gel electrophoresis experiments revealed that the nature of the protein initially adsorbed on the surface of QDs significantly affects the subsequent dynamic exchange behavior of the protein corona. Furthermore, our results also revealed that only a limited proportion of proteins are involved in the protein exchange, and the exchange process exhibits a significant dependence on the surface chirality of QDs. This work demonstrates the feasibility of FRET as a powerful tool to exploit the dynamic evolution process of the protein corona, which can provide theoretical guidance for further design of advanced nanomaterials for biomedical applications.


Asunto(s)
Corona de Proteínas , Puntos Cuánticos , Proteínas Sanguíneas , Transferencia Resonante de Energía de Fluorescencia/métodos , Humanos , Muramidasa/metabolismo , Puntos Cuánticos/metabolismo , Albúmina Sérica Humana
11.
J Phys Chem B ; 126(14): 2635-2646, 2022 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-35353512

RESUMEN

The use of indium phosphide (InP) quantum dots (QDs) as biological fluorophores is limited by the low photoluminescence quantum yield (ϕPL) and the lack of effective bioconjugation strategies. The former issue has been addressed by introducing a strain relaxing intermediate shell such as ZnSe, GaP etc. that significantly enhances the ϕPL of InP. Herein, we present an effective strategy for the conjugation of emissive InP/GaP/ZnS QDs with a commonly used globular protein, namely bovine serum albumin (BSA), which generate colloidally stable QD bioconjugates, labeled as InP-BSA and demonstrate its use as energy transfer probes. The conjugate contains one protein per QD, and the circular dichroism spectra of BSA and InP-BSA exhibit similar fractions of α-helix and ß-sheet, reflective of the fact that the secondary structure of the protein is intact on binding. More importantly, the fluorescence polarization studies corroborate the fact that the bound protein can hold a variety of chromophoric acceptors. Upon selectively exciting the InP-BSA component in the presence of bound chromophores, a reduction in the emission intensity of the donor is observed with a concomitant increase in emission of the acceptor. Time-resolved investigations further confirm an efficient nonradiative energy transfer from InP-BSA to the bound acceptors.


Asunto(s)
Puntos Cuánticos , Compuestos de Zinc , Transferencia de Energía , Indio , Fosfinas , Puntos Cuánticos/química , Puntos Cuánticos/metabolismo , Albúmina Sérica Bovina/química , Sulfuros/química , Compuestos de Zinc/química
12.
Adv Clin Chem ; 107: 1-40, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35337601

RESUMEN

Quantum dots (QDs) are crystalline inorganic semiconductor nanoparticles a few nanometers in size that possess unique optical electronic properties vs those of larger materials. For example, QDs usually exhibit a strong and long-lived photoluminescence emission, a feature dependent on size, shape and composition. These special optoelectronic properties make them a promising alternative to conventional luminescent dyes as optical labels in biomedical applications including biomarker quantification, biomolecule targeting and molecular imaging. A key parameter for use of QDs is to functionalize their surface with suitable (bio)molecules to provide stability in aqueous solutions and efficient and selective tagging biomolecules of interest. Researchers have successfully developed biocompatible QDs and have linked them to various biomolecule recognition elements, i.e., antibodies, proteins, DNA, etc. In this chapter, QD synthesis and characterization strategies are reviewed as well as the development of nanoplatforms for luminescent biosensing and imaging-guided targeting. Relevant biomedical applications are highlighted with a particular focus on recent progress in ultrasensitive detection of clinical biomarkers. Finally, key future research goals to functionalize QDs as diagnostic tools are explored.


Asunto(s)
Puntos Cuánticos , Anticuerpos , Humanos , Proteínas , Puntos Cuánticos/química , Puntos Cuánticos/metabolismo
13.
Part Fibre Toxicol ; 19(1): 17, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35260173

RESUMEN

BACKGROUND: Quantum dots (QDs) have gained increased attention for their extensive biomedical and electronic products applications. Due to the high priority of QDs in contacting the circulatory system, understanding the hemocompatibility of QDs is one of the most important aspects for their biosafety evaluation. Thus far, the effect of QDs on coagulation balance haven't been fully understood, and limited studies also have yet elucidated the potential mechanism from the perspective of interaction of QDs with coagulation-related proteins. RESULTS: QDs induced the derangement of coagulation balance by prolonging the activated partial thromboplastin time and prothrombin time as well as changing the expression levels of coagulation and fibrinolytic factors. The contact of QDs with PTM (prothrombin), PLG (plasminogen) and FIB (fibrinogen) which are primary coagulation-related proteins in the coagulation and fibrinolysis systems formed QDs-protein conjugates through hydrogen-bonding and hydrophobic interaction. The affinity of proteins with QDs followed the order of PTM > PLG > FIB, and was larger with CdTe/ZnS QDs than CdTe QDs. Binding with QDs not only induced static fluorescence quenching of PTM, PLG and FIB, but also altered their conformational structures. The binding of QDs to the active sites of PTM, PLG and FIB may promote the activation of proteins, thus interfering the hemostasis and fibrinolysis processes. CONCLUSIONS: The interactions of QDs with PTM, PLG and FIB may be key contributors for interference of coagulation balance, that is helpful to achieve a reliable and comprehensive evaluation on the potential biological influence of QDs from the molecular level.


Asunto(s)
Compuestos de Cadmio , Puntos Cuánticos , Compuestos de Cadmio/química , Compuestos de Cadmio/metabolismo , Puntos Cuánticos/metabolismo , Espectrometría de Fluorescencia , Telurio/química , Telurio/metabolismo
14.
J Nanobiotechnology ; 20(1): 22, 2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-34991619

RESUMEN

BACKGROUND: Quantum dots (QDs) have been used as fluorophores in various imaging fields owing to their strong fluorescent intensity, high quantum yield (QY), and narrow emission bandwidth. However, the application of QDs to bio-imaging is limited because the QY of QDs decreases substantially during the surface modification step for bio-application. RESULTS: In this study, we fabricated alloy-typed core/shell CdSeZnS/ZnS quantum dots (alloy QDs) that showed higher quantum yield and stability during the surface modification for hydrophilization compared with conventional CdSe/CdS/ZnS multilayer quantum dots (MQDs). The structure of the alloy QDs was confirmed using time-of-flight medium-energy ion scattering spectroscopy. The alloy QDs exhibited strong fluorescence and a high QY of 98.0%. After hydrophilic surface modification, the alloy QDs exhibited a QY of 84.7%, which is 1.5 times higher than that of MQDs. The QY was 77.8% after the alloy QDs were conjugated with folic acid (FA). Alloy QDs and MQDs, after conjugation with FA, were successfully used for targeting human KB cells. The alloy QDs exhibited a stronger fluorescence signal than MQD; these signals were retained in the popliteal lymph node area for 24 h. CONCLUSION: The alloy QDs maintained a higher QY in hydrophilization for biological applications than MQDs. And also, alloy QDs showed the potential as nanoprobes for highly sensitive bioimaging analysis.


Asunto(s)
Aleaciones , Compuestos de Cadmio/química , Sistemas de Liberación de Medicamentos/métodos , Puntos Cuánticos , Sulfuros/química , Compuestos de Zinc/química , Aleaciones/química , Aleaciones/farmacocinética , Animales , Línea Celular Tumoral , Ácido Fólico , Células HeLa , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Microscopía Electrónica de Transmisión , Imagen Óptica , Puntos Cuánticos/química , Puntos Cuánticos/metabolismo , Compuestos de Selenio/química , Propiedades de Superficie
15.
J Mater Chem B ; 10(2): 247-261, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34878486

RESUMEN

The development of QDs-based fluorescent bionanoprobe for cellular imaging fundamentally relies upon the precise knowledge of particle-cell interaction, optical properties of QDs inside and outside of the cell, movement of a particle in and out of the cell, and the fate of particle. We reported engineering and physicochemical characterization of water-dispersible Eu3+/Mn2+ co-doped ZnSe@ZnS core/shell QDs and studied their potential as a bionanoprobe for biomedical applications, evaluating their biocompatibility, fluorescence behaviour by CytoViva dual mode fluorescence imaging, time-dependent uptake, endocytosis and exocytosis in RAW 264.7 macrophages. The oxidation state and local atomic structure of the Eu dopant studied by X-ray absorption fine structure (XAFS) analysis manifested that the Eu3+ ions occupied sites in both ZnSe and ZnS lattices for the core/shell QDs. A novel approach was developed to relieve the excitation constraint of wide bandgap ZnSe by co-incorporation of Eu3+/Mn2+ codopants, enabling the QDs to be excited at a wide UV-visible range. The QDs displayed tunable emission colors by a gradual increase in Eu3+ concentration at a fixed amount of Mn2+, systematically enhancing the Mn2+ emission intensity via energy transfer from the Eu3+ to Mn2+ ion. The ZnSe:Eu3+/Mn2+@ZnS QDs presented high cell viability above 85% and induced no cell activation. The detailed analyses of QDs-treated cells by dual mode fluorescence CytoViva microscopy confirmed the systematic color-tunable fluorescence and its intensity enhances as a function of incubation time. The QDs were internalized by the cells predominantly via macropinocytosis and other lipid raft-mediated endocytic pathways, retaining an efficient amount for 24 h. The unique color tunability and consistent high intensity emission make these QDs useful for developing a multiplex fluorescent bionanoprobe, activatable in wide-visible region.


Asunto(s)
Colorantes Fluorescentes/química , Puntos Cuánticos/química , Animales , Europio/química , Europio/metabolismo , Europio/toxicidad , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/metabolismo , Colorantes Fluorescentes/toxicidad , Manganeso/química , Manganeso/metabolismo , Manganeso/toxicidad , Ratones , Microscopía Fluorescente , Puntos Cuánticos/metabolismo , Puntos Cuánticos/toxicidad , Células RAW 264.7 , Compuestos de Selenio/química , Compuestos de Selenio/metabolismo , Compuestos de Selenio/toxicidad , Sulfuros/química , Sulfuros/metabolismo , Sulfuros/toxicidad , Compuestos de Zinc/química , Compuestos de Zinc/metabolismo , Compuestos de Zinc/toxicidad
16.
Chem Biol Interact ; 351: 109716, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34688612

RESUMEN

Doping quantum dots (QDs) with extra element presents a promising future for their applications in the fields of environmental monitoring, commercial products and biomedical sciences. However, it remains unknown for the influence of doping on the molecular biocompatibility of QDs and the underlying mechanisms of the interaction between doped-QDs and protein molecules. Using the "one-pot" method, we synthesized N-acetyl-l-cysteine capped CdTe: Zn2+ QDs with higher fluorescence quantum yield, improved stability and better molecular biocompatibility compared with undoped CdTe QDs. Using digestive enzyme trypsin (TRY) as the protein model, the interactions of undoped QDs and Zn-doped QDs with TRY as well as the underlying mechanisms were investigated using multi-spectroscopy, isothermal titration calorimetry and dialysis techniques. Van der Waals forces and hydrogen bonds are the major driving forces in the interaction of both QDs with TRY, which leading to the loosening of protein skeleton and tertiary structural changes. Compared with undoped QDs, Zn-doped QDs bind less amount of TRY with a higher affinity and then release higher amount of Cd. Zn-doped QDs have a less stimulating impact on TRY activity by decreasing TRY binding and reducing Cd binding to TRY. Taken all together, Zn-doped QDs offer a safer alternative for the applications of QDs by reducing unwanted interactions with proteins and improving biocompatibility at the molecular level.


Asunto(s)
Compuestos de Cadmio/química , Puntos Cuánticos/metabolismo , Telurio/química , Tripsina/metabolismo , Zinc/química , Biocatálisis/efectos de los fármacos , Enlace de Hidrógeno , Unión Proteica , Estructura Terciaria de Proteína/efectos de los fármacos , Puntos Cuánticos/química , Electricidad Estática , Tripsina/química
17.
Neurotoxicology ; 88: 134-143, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34785253

RESUMEN

As a newly developed cadmium-free quantum dot (QD), CuInS2/ZnS has great application potential in many fields, but its biological safety has not been fully understood. In this study, the in vitro toxicity of CuInS2/ZnS QDs on U87 human glioma cell line was explored. The cells were treated with different concentrations of QDs (12.5, 25, 50 and 100 µg/mL), and the uptake of QDs by the U87 cells was detected by fluorescence imaging and flow cytometry. The cell viability was observed by MTT assay, and the gene expression profile was analyzed by transcriptome sequencing. These results showed that QDs could enter the cells and mainly located in the cytoplasm. The uptake rate was over 90 % when the concentration of QDs reached 25 µg/mL. The cell viability (50 and 100 µg/mL) increased at 24 h (P < 0.05), but no significant difference after 48 h and 72 h treatment. The results of differential transcription showed that coding RNA accounted for the largest proportion (62.15 %), followed by long non-coding RNA (18.65 %). Total 220 genes were up-regulated and 1515 genes were down-regulated, and significantly altered gene functions included nucleosome, chromosome-DNA binding, and chromosome assembly. In conclusion, CuInS2/ZnS QDs could enter U87 cells, did not reduce the cell viability, but would obviously alter the gene expression profile. These findings provide valuable information for a proper understanding of the toxicity risk of CuInS2/ZnS QD and promote the rational utilization of QDs in the future.


Asunto(s)
Neuroglía/efectos de los fármacos , Puntos Cuánticos/toxicidad , Transcriptoma/efectos de los fármacos , Línea Celular , Cobre , Relación Dosis-Respuesta a Droga , Humanos , Indio , Microscopía Fluorescente , Neuroglía/metabolismo , Puntos Cuánticos/metabolismo , Sulfuros , Compuestos de Zinc
18.
Phys Chem Chem Phys ; 24(1): 86-97, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34878460

RESUMEN

Alzheimer's disease (AD) is a primary form of dementia with debilitating consequences, but no effective cure is available. While the pathophysiology of AD remains multifactorial, the aggregation of amyloid beta (Aß) mediated by the cell membrane is known to be the cause for the neurodegeneration associated with AD. Here we examined the effects of graphene quantum dots (GQDs) on the obstruction of the membrane axis of Aß in its three representative forms of monomers (Aß-m), oligomers (Aß-o), and amyloid fibrils (Aß-f). Specifically, we determined the membrane fluidity of neuroblastoma SH-SY5Y cells perturbed by the Aß species, especially by the most toxic Aß-o, and demonstrated their recovery by GQDs using confocal fluorescence microscopy. Our computational data through discrete molecular dynamics simulations further revealed energetically favorable association of the Aß species with the GQDs in overcoming peptide-peptide aggregation. Overall, this study positively implicated GQDs as an effective agent in breaking down the membrane axis of Aß, thereby circumventing adverse downstream events and offering a potential therapeutic solution for AD.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Membrana Celular/metabolismo , Grafito/metabolismo , Puntos Cuánticos/metabolismo , Péptidos beta-Amiloides/química , Membrana Celular/química , Grafito/química , Humanos , Simulación de Dinámica Molecular , Agregado de Proteínas , Puntos Cuánticos/química
19.
J Nanobiotechnology ; 19(1): 456, 2021 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-34963471

RESUMEN

BACKGROUND: Carbon dots (CDs) are widely used in cell imaging due to their excellent optical properties, biocompatibility and low toxicity. At present, most of the research on CDs focuses on biomedical application, while there are few studies on the application of microbial imaging. RESULTS: In this study, B- and N-doped carbon dots (BN-CDs) were prepared from citric acid, ethylenediamine, and boric acid by microwave hydrothermal method. Based on BN-CDs labeling yeast, the dead or living of yeast cell could be quickly identified, and their growth status could also be clearly observed. In order to further observe the morphology of yeast cell under different lethal methods, six methods were used to kill the cells and then used BN-CDs to label the cells for imaging. More remarkably, imaging of yeast cell with ultrasound and antibiotics was significantly different from other imaging due to the overflow of cell contents. In addition, the endocytosis mechanism of BN-CDs was investigated. The cellular uptake of BN-CDs is dose, time and partially energy-dependent along with the involvement of passive diffusion. The main mechanism of endocytosis is caveolae-mediated. CONCLUSION: BN-CDs can be used for long-term stable imaging of yeast, and the study provides basic research for applying CDs to microbiol imaging.


Asunto(s)
Carbono/química , Imagen Óptica/métodos , Puntos Cuánticos/química , Saccharomyces cerevisiae/citología , Ácidos Bóricos/química , Ácidos Bóricos/metabolismo , Carbono/metabolismo , Ácido Cítrico/química , Ácido Cítrico/metabolismo , Endocitosis , Etilenodiaminas/química , Etilenodiaminas/metabolismo , Fluorescencia , Calor , Viabilidad Microbiana , Microondas , Puntos Cuánticos/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo
20.
Mikrochim Acta ; 188(12): 418, 2021 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-34767099

RESUMEN

A novel bifunctional carbon dot (CD)-based sensing platform was constructed for detection of tetracyclines (TCs) and Al3+. The fluorescence CDs were fabricated by hydrothermal method using phenylenediamine (p-PD) and ethylenebis(oxyethylenenitrilo) tetraacetic acid (EGTA) as precursors. The obtained prepared CDs show bright yellow fluorescence (y-CDs, EX = 400 nm and Em = 556 nm), high fluorescence quantum yield (QY = 21.55 ± 0.06%), and preferable optical stability. TCs can directly quench the fluorescence of y-CDs based on static quenching characteristics and a small internal filtration effect (IEF). By adding Al3+ to the y-CDs + TCs system, the fluorescence is partly recovered because TCs escape from the surface of the y-CDs and form a more stable chelate with Al3+. The sensing platform displays good selectivity and high sensitivity to TCs and Al3+ with low detection limits of 0.057-0.23 µM and 0.091 µM, respectively. Importantly, this sensing platform has enabled the detection of TCs and Al3+ in milk samples with satisfactory recoveries and RSDs, confirming the reliability and feasibility of this method. Combining with low toxicity and preferable biocompatibility, the y-CDs are extended to cellular imaging and detection of CTC and Al3+ in A549 cells.


Asunto(s)
Aluminio/metabolismo , Análisis de los Alimentos/métodos , Puntos Cuánticos/metabolismo , Tetraciclinas/efectos adversos , Animales , Tetraciclinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA