Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.559
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(37): e2413089121, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39231204

RESUMEN

The ubiquitin ligase Anaphase-Promoting Complex/Cyclosome (APC/C) and its regulatory protein Cdc20 play important roles in the control of different stages of mitosis. APC/C associated with Cdc20 is active and promotes metaphase-anaphase transition by targeting for degradation inhibitors of anaphase initiation. Earlier in mitosis, premature action of APC/C is prevented by the mitotic checkpoint (or spindle assembly checkpoint) system, which ensures that anaphase is not initiated until all chromosomes are properly attached to the mitotic spindle. The active mitotic checkpoint system promotes the assembly of a Mitotic Checkpoint Complex (MCC), which binds to APC/C and inhibits its activity. The interaction of MCC with APC/C is strongly enhanced by Cdc20 bound to APC/C. While the association of Cdc20 with APC/C was known to be essential for both these stages of mitosis, it was not known how Cdc20 remains bound in spite of ongoing processes, phosphorylation and ubiquitylation, that stimulate its release from APC/C. We find that MCC strongly inhibits the release of Cdc20 from APC/C by the action of mitotic protein kinase Cdk1-cyclin B. This is not due to protection from phosphorylation of specific sites in Cdc20 that affect its interaction with APC/C. Rather, MCC stabilizes the binding to APC/C of partially phosphorylated forms of Cdc20. MCC also inhibits the autoubiquitylation of APC/C-bound Cdc20 and its ubiquitylation-promoted release from APC/C. We propose that these actions of MCC to maintain Cdc20 bound to APC/C in mitosis are essential for the control of mitosis during active mitotic checkpoint and in subsequent anaphase initiation.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase , Proteínas Cdc20 , Puntos de Control de la Fase M del Ciclo Celular , Mitosis , Proteínas Cdc20/metabolismo , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Humanos , Mitosis/fisiología , Puntos de Control de la Fase M del Ciclo Celular/fisiología , Células HeLa , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Ubiquitinación , Fosforilación , Proteína Quinasa CDC2/metabolismo , Proteína Quinasa CDC2/genética , Unión Proteica , Huso Acromático/metabolismo
2.
Elife ; 122024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39092485

RESUMEN

The spindle assembly checkpoint (SAC) temporally regulates mitosis by preventing progression from metaphase to anaphase until all chromosomes are correctly attached to the mitotic spindle. Centrosomes refine the spatial organization of the mitotic spindle at the spindle poles. However, centrosome loss leads to elongated mitosis, suggesting that centrosomes also inform the temporal organization of mitosis in mammalian cells. Here, we find that the mitotic delay in acentrosomal cells is enforced by the SAC in a MPS1-dependent manner, and that a SAC-dependent mitotic delay is required for bipolar cell division to occur in acentrosomal cells. Although acentrosomal cells become polyploid, polyploidy is not sufficient to cause dependency on a SAC-mediated delay to complete cell division. Rather, the division failure in absence of MPS1 activity results from mitotic exit occurring before acentrosomal spindles can become bipolar. Furthermore, prevention of centrosome separation suffices to make cell division reliant on a SAC-dependent mitotic delay. Thus, centrosomes and their definition of two spindle poles early in mitosis provide a 'timely two-ness' that allows cell division to occur in absence of a SAC-dependent mitotic delay.


Asunto(s)
Proteínas de Ciclo Celular , Centrosoma , Puntos de Control de la Fase M del Ciclo Celular , Mitosis , Centrosoma/metabolismo , Humanos , Puntos de Control de la Fase M del Ciclo Celular/fisiología , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Huso Acromático/metabolismo , Huso Acromático/fisiología , División Celular , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , Células HeLa
3.
Adv Sci (Weinh) ; 11(35): e2406009, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39018254

RESUMEN

The spindle assembly checkpoint (SAC) ensures chromosome segregation fidelity by manipulating unattached kinetochore-dependent assembly of the mitotic checkpoint complex (MCC). The MCC binds to and inhibits the anaphase promoting complex/cyclosome (APC/C) to postpone mitotic exit. However, the mechanism by which unattached kinetochores mediate MCC formation is not yet fully understood. Here, it is shown that CCDC68 is an outer kinetochore protein that preferentially localizes to unattached kinetochores. Furthermore, CCDC68 interacts with the SAC factor CDC20 to inhibit its autoubiquitination and MCC disassembly. Therefore, CCDC68 restrains APC/C activation to ensure a robust SAC and allow sufficient time for chromosome alignment, thus ensuring chromosomal stability. Hence, the study reveals that CCDC68 is required for CDC20-dependent MCC stabilization to maintain mitotic checkpoint activation.


Asunto(s)
Proteínas Cdc20 , Cinetocoros , Puntos de Control de la Fase M del Ciclo Celular , Humanos , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Ciclosoma-Complejo Promotor de la Anafase/genética , Proteínas Cdc20/metabolismo , Proteínas Cdc20/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Segregación Cromosómica/fisiología , Células HeLa , Cinetocoros/metabolismo , Puntos de Control de la Fase M del Ciclo Celular/genética , Puntos de Control de la Fase M del Ciclo Celular/fisiología , Mitosis/fisiología
4.
Indian J Public Health ; 68(2): 314-317, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38953826

RESUMEN

Cancer patients suffer from complicated chemotoxicity. Pharmacogenomics can help stratify patients by predicting their response to treatment and susceptibility toward severe side effects. The spindle-assembly checkpoint (SAC) is an important pathway that is activated by platinum and taxane compounds and plays a crucial role in their cytotoxic activity. This study investigated a SAC component, Budding Uninhibited by Benzimidazoles 3 (BUB3), its expression, and genetic variants in advanced ovarian cancer patients treated with paclitaxel-carboplatin chemotherapy. Among 80 patients, BUB3 expression correlated with chemosensitivity, suggesting its potential as a predictive marker for chemotherapy response. However, high BUB3 expression was associated with a higher risk of poor survival. In addition, genetic polymorphisms in BUB3 (rs11248416 and rs11248419) were significantly linked to chemotherapy-related toxicities, with rs11248416 showing a negative impact on the patient's physical quality of life.


Asunto(s)
Carboplatino , Neoplasias Ováricas , Paclitaxel , Humanos , Femenino , Paclitaxel/administración & dosificación , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Carboplatino/administración & dosificación , Persona de Mediana Edad , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Polimorfismo de Nucleótido Simple , Proteínas de Ciclo Celular/genética , Adulto , Antineoplásicos/uso terapéutico , Calidad de Vida
5.
Sci Rep ; 14(1): 15912, 2024 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987356

RESUMEN

Pancreatic adenocarcinoma is one of the most aggressive and lethal forms of cancer. Chemotherapy is the primary treatment for pancreatic cancer, but resistance to the drugs used remains a major challenge. A genome-wide CRISPR interference and knockout screen in the PANC-1 cell line with the drug nab-paclitaxel has identified a group of spindle assembly checkpoint (SAC) genes that enhance survival in nab-paclitaxel. Knockdown of these SAC genes (BUB1B, BUB3, and TTK) attenuates paclitaxel-induced cell death. Cells treated with the small molecule inhibitors BAY 1217389 or MPI 0479605, targeting the threonine tyrosine kinase (TTK), also enhance survival in paclitaxel. Overexpression of these SAC genes does not affect sensitivity to paclitaxel. These discoveries have helped to elucidate the mechanisms behind paclitaxel cytotoxicity. The outcomes of this investigation may pave the way for a deeper comprehension of the diverse responses of pancreatic cancer to therapies including paclitaxel. Additionally, they could facilitate the formulation of novel treatment approaches for pancreatic cancer.


Asunto(s)
Albúminas , Resistencia a Antineoplásicos , Paclitaxel , Neoplasias Pancreáticas , Paclitaxel/farmacología , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Resistencia a Antineoplásicos/genética , Línea Celular Tumoral , Albúminas/farmacología , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase M del Ciclo Celular/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas
6.
Curr Biol ; 34(16): 3820-3829.e5, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39079532

RESUMEN

Gametes are produced via meiosis, a specialized cell division associated with frequent errors that cause birth defects and infertility. Uniquely in meiosis I, homologous chromosomes segregate to opposite poles, usually requiring their linkage by chiasmata, the products of crossover recombination.1 The spindle checkpoint delays cell-cycle progression until all chromosomes are properly attached to microtubules,2 but the steps leading to the capture and alignment of chromosomes on the meiosis I spindle remain poorly understood. In budding yeast meiosis I, Mad2 and Mad3BUBR1 are equally important for spindle checkpoint delay, but biorientation of homologs on the meiosis I spindle requires Mad2, but not Mad3BUBR1.3,4 Here we reveal the distinct functions of Mad2 and Mad3BUBR1 in meiosis I chromosome segregation. Mad2 promotes the prophase to metaphase I transition, while Mad3BUBR1 associates with the TOGL1 domain of Stu1CLASP, a conserved plus-end microtubule protein that is important for chromosome capture onto the spindle. Homologous chromosome pairs that are proficient in crossover formation but fail to biorient rely on Mad3BUBR1-Stu1CLASP to ensure their efficient attachment to microtubules and segregation during meiosis I. Furthermore, we show that Mad3BUBR1-Stu1CLASP are essential to rescue the segregation of mini-chromosomes lacking crossovers. Our findings define a new pathway ensuring microtubule-dependent chromosome capture and demonstrate that spindle checkpoint proteins safeguard the fidelity of chromosome segregation both by actively promoting chromosome alignment and by delaying cell-cycle progression until this has occurred.


Asunto(s)
Proteínas de Ciclo Celular , Segregación Cromosómica , Puntos de Control de la Fase M del Ciclo Celular , Meiosis , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Huso Acromático , Meiosis/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Segregación Cromosómica/fisiología , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Puntos de Control de la Fase M del Ciclo Celular/fisiología , Huso Acromático/metabolismo , Huso Acromático/fisiología , Proteínas Mad2/metabolismo , Proteínas Mad2/genética , Microtúbulos/metabolismo
7.
PLoS Genet ; 20(6): e1011302, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38829899

RESUMEN

Cryptococcus neoformans is an opportunistic, human fungal pathogen which undergoes fascinating switches in cell cycle control and ploidy when it encounters stressful environments such as the human lung. Here we carry out a mechanistic analysis of the spindle checkpoint which regulates the metaphase to anaphase transition, focusing on Mps1 kinase and the downstream checkpoint components Mad1 and Mad2. We demonstrate that Cryptococcus mad1Δ or mad2Δ strains are unable to respond to microtubule perturbations, continuing to re-bud and divide, and die as a consequence. Fluorescent tagging of Chromosome 3, using a lacO array and mNeonGreen-lacI fusion protein, demonstrates that mad mutants are unable to maintain sister-chromatid cohesion in the absence of microtubule polymers. Thus, the classic checkpoint functions of the SAC are conserved in Cryptococcus. In interphase, GFP-Mad1 is enriched at the nuclear periphery, and it is recruited to unattached kinetochores in mitosis. Purification of GFP-Mad1 followed by mass spectrometric analysis of associated proteins show that it forms a complex with Mad2 and that it interacts with other checkpoint signalling components (Bub1) and effectors (Cdc20 and APC/C sub-units) in mitosis. We also demonstrate that overexpression of Mps1 kinase is sufficient to arrest Cryptococcus cells in mitosis, and show that this arrest is dependent on both Mad1 and Mad2. We find that a C-terminal fragment of Mad1 is an effective in vitro substrate for Mps1 kinase and map several Mad1 phosphorylation sites. Some sites are highly conserved within the C-terminal Mad1 structure and we demonstrate that mutation of threonine 667 (T667A) leads to loss of checkpoint signalling and abrogation of the GAL-MPS1 arrest. Thus Mps1-dependent phosphorylation of C-terminal Mad1 residues is a critical step in Cryptococcus spindle checkpoint signalling. We conclude that CnMps1 protein kinase, Mad1 and Mad2 proteins have all conserved their important, spindle checkpoint signalling roles helping ensure high fidelity chromosome segregation.


Asunto(s)
Proteínas de Ciclo Celular , Cryptococcus neoformans , Proteínas Mad2 , Huso Acromático , Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Mad2/metabolismo , Proteínas Mad2/genética , Huso Acromático/metabolismo , Huso Acromático/genética , Transducción de Señal , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Puntos de Control de la Fase M del Ciclo Celular/genética , Mitosis/genética , Cinetocoros/metabolismo , Segregación Cromosómica/genética , Microtúbulos/metabolismo , Microtúbulos/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética
8.
EMBO Rep ; 25(6): 2743-2772, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38806674

RESUMEN

Interference with microtubule dynamics in mitosis activates the spindle assembly checkpoint (SAC) to prevent chromosome segregation errors. The SAC induces mitotic arrest by inhibiting the anaphase-promoting complex (APC) via the mitotic checkpoint complex (MCC). The MCC component MAD2 neutralizes the critical APC cofactor, CDC20, preventing exit from mitosis. Extended mitotic arrest can promote mitochondrial apoptosis and caspase activation. However, the impact of mitotic cell death on tissue homeostasis in vivo is ill-defined. By conditional MAD2 overexpression, we observe that chronic SAC activation triggers bone marrow aplasia and intestinal atrophy in mice. While myelosuppression can be compensated for, gastrointestinal atrophy is detrimental. Remarkably, deletion of pro-apoptotic Bim/Bcl2l11 prevents gastrointestinal syndrome, while neither loss of Noxa/Pmaip or co-deletion of Bid and Puma/Bbc3 has such a protective effect, identifying BIM as rate-limiting apoptosis effector in mitotic cell death of the gastrointestinal epithelium. In contrast, only overexpression of anti-apoptotic BCL2, but none of the BH3-only protein deficiencies mentioned above, can mitigate myelosuppression. Our findings highlight tissue and cell-type-specific survival dependencies in response to SAC perturbation in vivo.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Apoptosis , Proteína 11 Similar a Bcl2 , Puntos de Control de la Fase M del Ciclo Celular , Proteínas Mad2 , Proteínas Proto-Oncogénicas c-bcl-2 , Animales , Proteína 11 Similar a Bcl2/metabolismo , Proteína 11 Similar a Bcl2/genética , Ratones , Proteínas Mad2/metabolismo , Proteínas Mad2/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Atrofia , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Mitosis , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/metabolismo , Proteína Proapoptótica que Interacciona Mediante Dominios BH3/genética , Proteínas Cdc20/metabolismo , Proteínas Cdc20/genética , Médula Ósea/patología , Médula Ósea/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas Supresoras de Tumor
9.
Cell Signal ; 119: 111172, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38604342

RESUMEN

Simvastatin is an inhibitor of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, which is a rate-limiting enzyme of the cholesterol synthesis pathway. It has been used clinically as a lipid-lowering agent to reduce low-density lipoprotein (LDL) cholesterol levels. In addition, antitumor activity has been demonstrated. Although simvastatin attenuates the prenylation of small GTPases, its effects on cell division in which small GTPases play an important role, have not been examined as a mechanism underlying its cytostatic effects. In this study, we determined its effect on cell division. Cell cycle synchronization experiments revealed a delay in mitotic progression in simvastatin-treated cells at concentrations lower than the IC50. Time-lapse imaging analysis indicated that the duration of mitosis, especially from mitotic entry to anaphase onset, was prolonged. In addition, simvastatin increased the number of cells exhibiting misoriented anaphase/telophase and bleb formation. Inhibition of the spindle assembly checkpoint (SAC) kinase Mps1 canceled the mitotic delay. Additionally, the number of cells exhibiting kinetochore localization of BubR1, an essential component of SAC, was increased, suggesting an involvement of SAC in the mitotic delay. Enhancement of F-actin formation and cell rounding at mitotic entry indicates that cortical actin dynamics were affected by simvastatin. The cholesterol removal agent methyl-ß-cyclodextrin (MßCD) accelerated mitotic progression differently from simvastatin, suggesting that cholesterol loss from the plasma membrane is not involved in the mitotic delay. Of note, the small GTPase RhoA, which is a critical factor for cortical actin dynamics, exhibited upregulated expression. In addition, Rap1 was likely not geranylgeranylated. Our results demonstrate that simvastatin affects actin dynamics by modifying small GTPases, thereby activating the spindle assembly checkpoint and causing abnormal cell division.


Asunto(s)
Puntos de Control de la Fase M del Ciclo Celular , Simvastatina , Simvastatina/farmacología , Humanos , Puntos de Control de la Fase M del Ciclo Celular/efectos de los fármacos , Células HeLa , Proteínas de Unión al GTP Monoméricas/metabolismo , Mitosis/efectos de los fármacos , División Celular/efectos de los fármacos , Proteína de Unión al GTP rhoA/metabolismo
10.
Adv Sci (Weinh) ; 11(26): e2308690, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38682484

RESUMEN

Spindle assembly checkpoint (SAC) is a crucial safeguard mechanism of mitosis fidelity that ensures equal division of duplicated chromosomes to the two progeny cells. Impaired SAC can lead to chromosomal instability (CIN), a well-recognized hallmark of cancer that facilitates tumor progression; paradoxically, high CIN levels are associated with better therapeutic response and prognosis. However, the mechanism by which CIN determines tumor cell survival and therapeutic response remains poorly understood. Here, using a cross-omics approach, YY2 is identified as a mitotic regulator that promotes SAC activity by activating the transcription of budding uninhibited by benzimidazole 3 (BUB3), a component of SAC. While both conditions induce CIN, a defect in YY2/SAC activity enhances mitosis and tumor growth. Meanwhile, hyperactivation of SAC mediated by YY2/BUB3 triggers a delay in mitosis and suppresses growth. Furthermore, it is revealed that YY2/BUB3-mediated excessive CIN causes higher cell death rates and drug sensitivity, whereas residual tumor cells that survived DNA damage-based therapy have moderate CIN and increased drug resistance. These results provide insights into the role of SAC activity and CIN levels in influencing tumor cell survival and drug response, as well as suggest a novel anti-tumor therapeutic strategy that combines SAC activity modulators and DNA-damage agents.


Asunto(s)
Inestabilidad Cromosómica , Neoplasias Colorrectales , Progresión de la Enfermedad , Inestabilidad Cromosómica/genética , Humanos , Ratones , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Animales , Línea Celular Tumoral , Puntos de Control de la Fase M del Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Modelos Animales de Enfermedad
11.
Proc Natl Acad Sci U S A ; 121(12): e2322677121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38466841

RESUMEN

The spindle assembly checkpoint (SAC) ensures faithful chromosome segregation during cell division by monitoring kinetochore-microtubule attachment. Plants produce both sequence-conserved and diverged SAC components, and it has been largely unknown how SAC activation leads to the assembly of these proteins at unattached kinetochores to prevent cells from entering anaphase. In Arabidopsis thaliana, the noncanonical BUB3.3 protein was detected at kinetochores throughout mitosis, unlike MAD1 and the plant-specific BUB1/MAD3 family protein BMF3 that associated with unattached chromosomes only. When BUB3.3 was lost by a genetic mutation, mitotic cells often entered anaphase with misaligned chromosomes and presented lagging chromosomes after they were challenged by low doses of the microtubule depolymerizing agent oryzalin, resulting in the formation of micronuclei. Surprisingly, BUB3.3 was not required for the kinetochore localization of other SAC proteins or vice versa. Instead, BUB3.3 specifically bound to BMF3 through two internal repeat motifs that were not required for BMF3 kinetochore localization. This interaction enabled BMF3 to recruit CDC20, a downstream SAC target, to unattached kinetochores. Taken together, our findings demonstrate that plant SAC utilizes unconventional protein interactions for arresting mitosis, with BUB3.3 directing BMF3's role in CDC20 recruitment, rather than the recruitment of BUB1/MAD3 proteins observed in fungi and animals. This distinct mechanism highlights how plants adapted divergent versions of conserved cell cycle machinery to achieve specialized SAC control.


Asunto(s)
Arabidopsis , Cinetocoros , Animales , Cinetocoros/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Puntos de Control de la Fase M del Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Puntos de Control del Ciclo Celular , Huso Acromático/metabolismo
12.
Chromosoma ; 133(2): 149-168, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38456964

RESUMEN

In eukaryotes, meiosis is the genetic basis for sexual reproduction, which is important for chromosome stability and species evolution. The defects in meiosis usually lead to chromosome aneuploidy, reduced gamete number, and genetic diseases, but the pathogenic mechanisms are not well clarified. Kinesin-7 CENP-E is a key regulator in chromosome alignment and spindle assembly checkpoint in cell division. However, the functions and mechanisms of CENP-E in male meiosis remain largely unknown. In this study, we have revealed that the CENP-E gene was highly expressed in the rat testis. CENP-E inhibition influences chromosome alignment and spindle organization in metaphase I spermatocytes. We have found that a portion of misaligned homologous chromosomes is located at the spindle poles after CENP-E inhibition, which further activates the spindle assembly checkpoint during the metaphase-to-anaphase transition in rat spermatocytes. Furthermore, CENP-E depletion leads to abnormal spermatogenesis, reduced sperm count, and abnormal sperm head structure. Our findings have elucidated that CENP-E is essential for homologous chromosome alignment and spindle assembly checkpoint in spermatocytes, which further contribute to chromosome stability and sperm cell quality during spermatogenesis.


Asunto(s)
Proteínas Cromosómicas no Histona , Puntos de Control de la Fase M del Ciclo Celular , Meiosis , Espermatocitos , Animales , Masculino , Ratas , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Cinesinas/metabolismo , Cinesinas/genética , Puntos de Control de la Fase M del Ciclo Celular/genética , Espermatocitos/metabolismo , Espermatocitos/citología , Espermatogénesis , Huso Acromático/metabolismo , Testículo/metabolismo , Testículo/citología
13.
Development ; 151(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38546043

RESUMEN

The timely degradation of proteins that regulate the cell cycle is essential for oocyte maturation. Oocytes are equipped to degrade proteins via the ubiquitin-proteasome system. In meiosis, anaphase promoting complex/cyclosome (APC/C), an E3 ubiquitin-ligase, is responsible for the degradation of proteins. Ubiquitin-conjugating enzyme E2 S (UBE2S), an E2 ubiquitin-conjugating enzyme, delivers ubiquitin to APC/C. APC/C has been extensively studied, but the functions of UBE2S in oocyte maturation and mouse fertility are not clear. In this study, we used Ube2s knockout mice to explore the role of UBE2S in mouse oocytes. Ube2s-deleted oocytes were characterized by meiosis I arrest with normal spindle assembly and spindle assembly checkpoint dynamics. However, the absence of UBE2S affected the activity of APC/C. Cyclin B1 and securin are two substrates of APC/C, and their levels were consistently high, resulting in the failure of homologous chromosome separation. Unexpectedly, the oocytes arrested in meiosis I could be fertilized and the embryos could become implanted normally, but died before embryonic day 10.5. In conclusion, our findings reveal an indispensable regulatory role of UBE2S in mouse oocyte meiosis and female fertility.


Asunto(s)
Puntos de Control de la Fase M del Ciclo Celular , Meiosis , Animales , Femenino , Ratones , Ciclosoma-Complejo Promotor de la Anafase/genética , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Oocitos/metabolismo , Ubiquitinas/metabolismo
14.
PLoS One ; 19(3): e0301084, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38530809

RESUMEN

There is an ongoing need for antifungal agents to treat humans. Identification of new antifungal agents can be based on screening compounds using whole cell assays. Screening compounds that target a particular molecule is possible in budding yeast wherein sophisticated strain engineering allows for controlled expression of endogenous or heterologous genes. We have considered the yeast Mps1 protein kinase as a reasonable target for antifungal agents because mutant or druggable forms of the protein, upon inactivation, cause rapid loss of cell viability. Furthermore, extensive analysis of the Mps1 in budding yeast has offered potential tactics for identifying inhibitors of its enzymatic activity. One such tactic is based on the finding that overexpression of Mps1 leads to cell cycle arrest via activation of the spindle assembly checkpoint. We have endeavored to adapt this assay to be based on the overexpression of Mps1 orthologs from pathogenic yeast in hopes of having a whole-cell assay system to test the activity of these orthologs. Mps1 orthologous genes from seven pathogenic yeast or other pathogenic fungal species were isolated and expressed in budding yeast. Two orthologs clearly produced phenotypes similar to those produced by the overexpression of budding yeast Mps1, indicating that this system for heterologous Mps1 expression has potential as a platform for identifying prospective antifungal agents.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Antifúngicos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Puntos de Control de la Fase M del Ciclo Celular , Estudios Prospectivos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Huso Acromático/metabolismo
15.
Mol Cancer Res ; 22(5): 423-439, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38324016

RESUMEN

NDC80 complex (NDC80C) is composed of four subunits (SPC24, SPC25, NDC80, and NUF2) and is vital for kinetochore-microtubule (KT-MT) attachment during mitosis. Paradoxically, NDC80C also functions in the activation of the spindle-assembly checkpoint (SAC). This raises an interesting question regarding how mitosis is regulated when NDC80C levels are compromised. Using a degron-mediated depletion system, we found that acute silencing of SPC24 triggered a transient mitotic arrest followed by mitotic slippage. SPC24-deficient cells were unable to sustain SAC activation despite the loss of KT-MT interaction. Intriguingly, our results revealed that other subunits of the NDC80C were co-downregulated with SPC24 at a posttranslational level. Silencing any individual subunit of NDC80C likewise reduced the expression of the entire complex. We found that the SPC24-SPC25 and NDC80-NUF2 subcomplexes could be individually stabilized using ectopically expressed subunits. The synergism of SPC24 downregulation with drugs that promote either mitotic arrest or mitotic slippage further underscored the dual roles of NDC80C in KT-MT interaction and SAC maintenance. The tight coordinated regulation of NDC80C subunits suggests that targeting individual subunits could disrupt mitotic progression and provide new avenues for therapeutic intervention. IMPLICATIONS: These results highlight the tight coordinated regulation of NDC80C subunits and their potential as targets for antimitotic therapies.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas del Citoesqueleto , Mitosis , Proteínas Nucleares , Humanos , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Células HeLa , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Cinetocoros/metabolismo , Puntos de Control de la Fase M del Ciclo Celular/genética , Huso Acromático/metabolismo , Subunidades de Proteína/metabolismo , Subunidades de Proteína/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética
16.
Commun Biol ; 7(1): 164, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38337031

RESUMEN

Accurate mitosis is coordinated by the spindle assembly checkpoint (SAC) through the mitotic checkpoint complex (MCC), which inhibits the anaphase-promoting complex or cyclosome (APC/C). As an essential regulator, Cdc20 promotes mitotic exit through activating APC/C and monitors kinetochore-microtubule attachment through activating SAC. Cdc20 requires multiple interactions with APC/C and MCC subunits to elicit these functions. Functionally assessing these interactions within cells requires efficient depletion of endogenous Cdc20, which is highly difficult to achieve by RNA interference (RNAi). Here we generated Cdc20 RNAi-sensitive cell lines which display a penetrant metaphase arrest by a single RNAi treatment. In this null background, we accurately measured the contribution of each known motif of Cdc20 on APC/C and SAC activation. The CRY box, a previously identified degron, was found critical for SAC by promoting MCC formation and its interaction with APC/C. These data reveal additional regulation within the SAC and establish a novel method to interrogate Cdc20.


Asunto(s)
Proteínas Cdc20 , Puntos de Control de la Fase M del Ciclo Celular , Huso Acromático , Ciclosoma-Complejo Promotor de la Anafase/genética , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas Cdc20/química , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Puntos de Control de la Fase M del Ciclo Celular/genética , Huso Acromático/genética , Huso Acromático/metabolismo , Transducción de Señal , Humanos
17.
Prostate ; 84(6): 605-619, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38375594

RESUMEN

BACKGROUND: Metastatic castration-resistant prostate cancer (CRPC), the most refractory prostate cancer, inevitably progresses and becomes unresponsive to hormone therapy, revealing a pressing unmet need for this disease. Novel agents targeting HDAC6 and microtubule dynamics can be a potential anti-CRPC strategy. METHODS: Cell proliferation was examined in CRPC PC-3 and DU-145 cells using sulforhodamine B assay and anchorage-dependent colony formation assay. Flow cytometric analysis of propidium iodide staining was used to determine cell-cycle progression. Cell-based tubulin polymerization assay and confocal immunofluorescence microscopic examination determine microtubule assembly/disassembly status. Protein expressions were determined using Western blot analysis. RESULTS: A total of 82 novel derivatives targeting HDAC6 were designed and synthesized, and Compound 25202 stood out, showing the highest efficacy in blocking HDAC6 (IC50, 3.5 nM in enzyme assay; IC50, 1.0 µM in antiproliferative assay in CRPC cells), superior to tubastatin A (IC50, 5.4 µM in antiproliferative assay). The selectivity and superiority of 25202 were validated by examining the acetylation of both α-tubulin and histone H3, detecting cell apoptosis and HDACs enzyme activity assessment. Notably, 25202 but not tubastatin A significantly decreased HDAC6 protein expression. 25202 prolonged mitotic arrest through the detection of cyclin B1 upregulation, Cdk1 activation, mitotic phosphoprotein levels, and Bcl-2 phosphorylation. Compound 25202 did not mimic docetaxel in inducing tubulin polymerization but disrupted microtubule organization. Compound 25202 also increased the phosphorylation of CDC20, BUB1, and BUBR1, indicating the activation of the spindle assembly checkpoint (SAC). Moreover, 25202 profoundly sensitized cisplatin-induced cell death through impairment of cisplatin-evoked DNA damage response and DNA repair in both ATR-Chk1 and ATM-Chk2 pathways. CONCLUSION: The data suggest that 25202 is a novel selective and potent HDAC6 inhibitor. Compound 25202 blocks HDAC6 activity and interferes microtubule dynamics, leading to SAC activation and mitotic arrest prolongation that eventually cause apoptosis of CRPC cells. Furthermore, 25202 sensitizes cisplatin-induced cell apoptosis through impeding DNA damage repair pathways.


Asunto(s)
Cisplatino , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Cisplatino/farmacología , Neoplasias de la Próstata Resistentes a la Castración/patología , Tubulina (Proteína)/metabolismo , Puntos de Control de la Fase M del Ciclo Celular , Línea Celular Tumoral , Apoptosis , Proliferación Celular , Microtúbulos/metabolismo , Microtúbulos/patología , Histona Desacetilasa 6/metabolismo
18.
Proc Natl Acad Sci U S A ; 121(2): e2316583121, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38170753

RESUMEN

The kinetochore scaffold 1 (KNL1) protein recruits spindle assembly checkpoint (SAC) proteins to ensure accurate chromosome segregation during mitosis. Despite such a conserved function among eukaryotic organisms, its molecular architectures have rapidly evolved so that the functional mode of plant KNL1 is largely unknown. To understand how SAC signaling is regulated at kinetochores, we characterized the function of the KNL1 gene in Arabidopsis thaliana. The KNL1 protein was detected at kinetochores throughout the mitotic cell cycle, and null knl1 mutants were viable and fertile but exhibited severe vegetative and reproductive defects. The mutant cells showed serious impairments of chromosome congression and segregation, that resulted in the formation of micronuclei. In the absence of KNL1, core SAC proteins were no longer detected at the kinetochores, and the SAC was not activated by unattached or misaligned chromosomes. Arabidopsis KNL1 interacted with SAC essential proteins BUB3.3 and BMF3 through specific regions that were not found in known KNL1 proteins of other species, and recruited them independently to kinetochores. Furthermore, we demonstrated that upon ectopic expression, the KNL1 homolog from the dicot tomato was able to functionally substitute KNL1 in A. thaliana, while others from the monocot rice or moss associated with kinetochores but were not functional, as reflected by sequence variations of the kinetochore proteins in different plant lineages. Our results brought insights into understanding the rapid evolution and lineage-specific connection between KNL1 and the SAC signaling molecules.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Puntos de Control de la Fase M del Ciclo Celular/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Unión Proteica , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Mitosis , Cinetocoros/metabolismo , Huso Acromático/genética , Huso Acromático/metabolismo , Segregación Cromosómica
19.
Clin Lab ; 70(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38213208

RESUMEN

BACKGROUND: BUB1 mitotic checkpoint serine/threonine kinase B (BUB1B) is a member of the spindle assembly checkpoint family and is related to cancer disease progression, invasion, metastasis, and functional promotion of angiogenesis. Several studies have noted that the BUB1B gene is frequently upregulated in various types of cancers. However, the expression patterns of BUB1B across different cancer types and its diagnostic and prognostic potential have not been investigated from a pan-cancer perspective. METHODS: The Cancer Genome Atlas (TCGA) data were used to explore the diagnostic and prognostic immunological potential of BUB1B in 33 cancer types. RESULTS: BUB1B was almost universally upregulated across all cancers, with increased protein expression in at least six cancer types and an enhanced phosphorylation level of S670 in two cancer types. Furthermore, BUB1B expression was negatively associated with clinical progression and prognosis in most cancers. BUB1B expression was positively associated with tumor mutational burden and microsatellite instability in 17 and 7 cancer types, respectively, and there was a correlation between BUB1B expression and DNA methylation at multiple probes in 30 cancer types. Additionally, a positive relationship existed between BUB1B expression and the infiltration levels of Th2, Tcm, and T helper cells, whereas BUB1B showed a negative correlation with the infiltration levels of other immune cells in multiple cancers. Moreover, functions associated with cell cycle progression and ubiquitin-mediated proteolysis were involved in the functional mechanism of BUB1B. CONCLUSIONS: Our pan-cancer study offers a comprehensive understanding of the role of BUB1B in tumorigenesis and tumor immunity across different types of cancer.


Asunto(s)
Puntos de Control de la Fase M del Ciclo Celular , Neoplasias , Humanos , Pronóstico , Proteínas Serina-Treonina Quinasas/genética , Neoplasias/diagnóstico , Neoplasias/genética , Serina , Proteínas de Ciclo Celular
20.
Chromosoma ; 133(1): 77-92, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37256347

RESUMEN

Chromosome gains or losses often lead to copy number variations (CNV) and loss of heterozygosity (LOH). Both quantities are low in hematologic "liquid" cancers versus solid tumors in data of The Cancer Genome Atlas (TCGA) that also shows the fraction of a genome affected by LOH is ~ one-half of that with CNV. Suspension cultures of p53-null THP-1 leukemia-derived cells conform to these trends, despite novel evidence here of genetic heterogeneity and transiently elevated CNV after perturbation. Single-cell DNAseq indeed reveals at least 8 distinct THP-1 aneuploid clones with further intra-clonal variation, suggesting ongoing genetic evolution. Importantly, acute inhibition of the mitotic spindle assembly checkpoint (SAC) produces CNV levels that are typical of high-CNV solid tumors, with subsequent cell death and down-selection to novel CNV. Pan-cancer analyses show p53 inactivation associates with aneuploidy, but leukemias exhibit a weaker trend even though p53 inactivation correlates with poor survival. Overexpression of p53 in THP-1 does not rescue established aneuploidy or LOH but slightly increases cell death under oxidative or confinement stress, and triggers p21, a key p53 target, but without affecting net growth. Our results suggest that factors other than p53 exert stronger pressures against aneuploidy in liquid cancers, and identifying such CNV suppressors could be useful across liquid and solid tumor types.


Asunto(s)
Leucemia , Neoplasias , Humanos , Puntos de Control de la Fase M del Ciclo Celular , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Variaciones en el Número de Copia de ADN , Heterogeneidad Genética , Aneuploidia , Neoplasias/genética , Neoplasias/metabolismo , Leucemia/genética , Leucemia/metabolismo , Huso Acromático/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA