Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(26): e2207037119, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35727984

RESUMEN

While biofilms formed by bacteria have received great attention due to their importance in pathogenesis, much less research has been focused on the biofilms formed by archaea. It has been known that extracellular filaments in archaea, such as type IV pili, hami, and cannulae, play a part in the formation of archaeal biofilms. We have used cryo-electron microscopy to determine the atomic structure of a previously uncharacterized class of archaeal surface filaments from hyperthermophilic Pyrobaculum calidifontis. These filaments, which we call archaeal bundling pili (ABP), assemble into highly ordered bipolar bundles. The bipolar nature of these bundles most likely arises from the association of filaments from at least two different cells. The component protein, AbpA, shows homology, both at the sequence and structural level, to the bacterial protein TasA, a major component of the extracellular matrix in bacterial biofilms, contributing to biofilm stability. We show that AbpA forms very stable filaments in a manner similar to the donor-strand exchange of bacterial TasA fibers and chaperone-usher pathway pili where a ß-strand from one subunit is incorporated into a ß-sheet of the next subunit. Our results reveal likely mechanistic similarities and evolutionary connection between bacterial and archaeal biofilms, and suggest that there could be many other archaeal surface filaments that are as yet uncharacterized.


Asunto(s)
Proteínas Arqueales , Biopelículas , Fimbrias Bacterianas , Pyrobaculum , Proteínas Arqueales/química , Microscopía por Crioelectrón , Fimbrias Bacterianas/química , Conformación Proteica en Lámina beta , Pyrobaculum/química , Pyrobaculum/fisiología
2.
J Phys Chem A ; 125(1): 139-145, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33389998

RESUMEN

Mössbauer spectroscopy, nuclear forward scattering, and Raman spectroscopy were applied to study redox transformations of the synthesized mixed-valence (III/V) antimony oxide. The transformations were induced by a culture of a hyperthermophilic archaeon of the genus Pyrobaculum. The applied methods allowed us to reveal the minor decrease of ca. 11.0 ± 1.2% of the antimony(V) content of the mixed-valence oxide with the concomitant increase of antimony(III). The method sensitivities for the quantitative assessment of the Sb(III/V) ratio have been considered.


Asunto(s)
Antimonio/análisis , Óxidos/análisis , Pyrobaculum/química , Antimonio/metabolismo , Oxidación-Reducción , Óxidos/metabolismo , Pyrobaculum/metabolismo , Espectroscopía de Mossbauer , Espectrometría Raman
3.
J Mol Biol ; 432(16): 4658-4672, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32569746

RESUMEN

Protein glycosylation constitutes a critical post-translational modification that supports a vast number of biological functions in living organisms across all domains of life. A seemingly boundless number of enzymes, glycosyltransferases, are involved in the biosynthesis of these protein-linked glycans. Few glycan-biosynthetic glycosyltransferases have been characterized in vitro, mainly due to the majority being integral membrane proteins and the paucity of relevant acceptor substrates. The crenarchaeote Pyrobaculum calidifontis belongs to the TACK superphylum of archaea (Thaumarchaeota, Aigarchaeota, Crenarchaeota, Korarchaeota) that has been proposed as an eukaryotic ancestor. In archaea, N-glycans are mainly found on cell envelope surface-layer proteins, archaeal flagellins and pili. Archaeal N-glycans are distinct from those of eukaryotes, but one noteworthy exception is the high-mannose N-glycan produced by P. calidifontis, which is similar in sugar composition to the eukaryotic counterpart. Here, we present the characterization and crystal structure of the first member of a crenarchaeal membrane glycosyltransferase, PcManGT. We show that the enzyme is a GDP-, dolichylphosphate-, and manganese-dependent mannosyltransferase. The membrane domain of PcManGT includes three transmembrane helices that topologically coincide with "half" of the six-transmembrane helix cellulose-binding tunnel in Rhodobacter spheroides cellulose synthase BcsA. Conceivably, this "half tunnel" would be suitable for binding the dolichylphosphate-linked acceptor substrate. The PcManGT gene (Pcal_0472) is located in a large gene cluster comprising 14 genes of which 6 genes code for glycosyltransferases, and we hypothesize that this cluster may constitute a crenarchaeal N-glycosylation (PNG) gene cluster.


Asunto(s)
Manosiltransferasas/química , Manosiltransferasas/metabolismo , Polisacáridos/metabolismo , Pyrobaculum/enzimología , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Cristalografía por Rayos X , Glicosilación , Modelos Moleculares , Conformación Proteica , Procesamiento Proteico-Postraduccional , Pyrobaculum/química
4.
Proteins ; 88(5): 669-678, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31693208

RESUMEN

A gene encoding galactose 1-phosphate uridylyltransferase (GalT) was identified in the hyperthermophilic archaeon Pyrobaculum aerophilum. The gene was overexpressed in Escherichia coli, after which its product was purified and characterized. The expressed enzyme was highly thermostable and retained about 90% of its activity after incubation for 10 minutes at temperatures up to 90°C. Two different crystal structures of P. aerophilum GalT were determined: the substrate-free enzyme at 2.33 Å and the UDP-bound H140F mutant enzyme at 1.78 Å. The main-chain coordinates of the P. aerophilum GalT monomer were similar to those in the structures of the E. coli and human GalTs, as was the dimeric arrangement. However, there was a striking topological difference between P. aerophilum GalT and the other two enzymes. In the E. coli and human enzymes, the N-terminal chain extends from one subunit into the other and forms part of the substrate-binding pocket in the neighboring subunit. By contrast, the N-terminal chain in P. aerophilum GalT extends to the substrate-binding site in the same subunit. Amino acid sequence alignment showed that a shorter surface loop in the N-terminal region contributes to the unique topology of P. aerophilum GalT. Structural comparison of the substrate-free enzyme with UDP-bound H140F suggests that binding of the glucose moiety of the substrate, but not the UDP moiety, gives rise to a large structural change around the active site. This may in turn provide an appropriate environment for the enzyme reaction.


Asunto(s)
Proteínas Arqueales/química , Galactosafosfatos/química , Subunidades de Proteína/química , Pyrobaculum/química , UTP-Hexosa-1-Fosfato Uridililtransferasa/química , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Estabilidad de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Galactosafosfatos/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Calor , Humanos , Cinética , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Pyrobaculum/enzimología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , UTP-Hexosa-1-Fosfato Uridililtransferasa/genética , UTP-Hexosa-1-Fosfato Uridililtransferasa/metabolismo
5.
PLoS Comput Biol ; 15(4): e1006683, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30951524

RESUMEN

The actin family of cytoskeletal proteins is essential to the physiology of virtually all archaea, bacteria, and eukaryotes. While X-ray crystallography and electron microscopy have revealed structural homologies among actin-family proteins, these techniques cannot probe molecular-scale conformational dynamics. Here, we use all-atom molecular dynamic simulations to reveal conserved dynamical behaviors in four prokaryotic actin homologs: MreB, FtsA, ParM, and crenactin. We demonstrate that the majority of the conformational dynamics of prokaryotic actins can be explained by treating the four subdomains as rigid bodies. MreB, ParM, and FtsA monomers exhibited nucleotide-dependent dihedral and opening angles, while crenactin monomer dynamics were nucleotide-independent. We further show that the opening angle of ParM is sensitive to a specific interaction between subdomains. Steered molecular dynamics simulations of MreB, FtsA, and crenactin dimers revealed that changes in subunit dihedral angle lead to intersubunit bending or twist, suggesting a conserved mechanism for regulating filament structure. Taken together, our results provide molecular-scale insights into the nucleotide and polymerization dependencies of the structure of prokaryotic actins, suggesting mechanisms for how these structural features are linked to their diverse functions.


Asunto(s)
Actinas/química , Proteínas Bacterianas/química , Biología Computacional , Cristalografía por Rayos X , Proteínas del Citoesqueleto/química , Proteínas de Escherichia coli/química , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Pyrobaculum/química , Homología Estructural de Proteína
6.
Acta Crystallogr D Struct Biol ; 73(Pt 5): 420-427, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28471366

RESUMEN

The family B DNA polymerase from Pyrobaculum calidifontis (Pc-polymerase) consists of 783 amino acids and is magnesium-ion dependent. It has an optimal pH of 8.5, an optimal temperature of 75°C and a half-life of 4.5 h at 95°C, giving it greater thermostability than the widely used Taq DNA polymerase. The enzyme is also capable of PCR-amplifying larger DNA fragments of up to 7.5 kb in length. It was shown to have functional, error-correcting 3'-5' exonuclease activity, as do the related high-fidelity DNA polymerases from Pyrococcus furiosus, Thermococcus kodakarensis KOD1 and Thermococcus gorgonarius, which have extensive commercial applications. Pc-polymerase has a quite low sequence identity of approximately 37% to these enzymes, which, in contrast, have very high sequence identity to each other, suggesting that the P. calidifontis enzyme is distinct. Here, the structure determination of Pc-polymerase is reported, which has been refined to an R factor of 24.47% and an Rfree of 28.81% at 2.80 Šresolution. The domains of the enzyme are arranged in a circular fashion to form a disc with a narrow central channel. One face of the disc has a number of connected crevices in it, which allow the protein to bind duplex and single-stranded DNA. The central channel is thought to allow incoming nucleoside triphosphates to access the active site. The enzyme has a number of unique structural features which distinguish it from other archaeal DNA polymerases and may account for its high processivity. A model of the complex with the primer-template duplex of DNA indicates that the largest conformational change that occurs upon DNA binding is the movement of the thumb domain, which rotates by 7.6° and moves by 10.0 Å. The surface potential of the enzyme is dominated by acidic groups in the central region of the molecule, where catalytic magnesium ions bind at the polymerase and exonuclease active sites. The outer regions are richer in basic amino acids that presumably interact with the sugar-phosphate backbone of DNA. The large number of salt bridges may contribute to the high thermal stability of this enzyme.


Asunto(s)
ADN Polimerasa Dirigida por ADN/química , Pyrobaculum/enzimología , Secuencia de Aminoácidos , Cristalografía por Rayos X , Estabilidad de Enzimas , Modelos Moleculares , Pyrobaculum/química , Alineación de Secuencia , Temperatura
7.
Int J Mol Sci ; 18(1)2017 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-28067849

RESUMEN

Serine protease inhibitors (serpins) are native inhibitors of serine proteases, constituting a large protein family with members spread over eukaryotes and prokaryotes. However, only very few prokaryotic serpins, especially from extremophiles, have been characterized to date. In this study, Pnserpin, a putative serine protease inhibitor from the thermophile Pyrobaculum neutrophilum, was overexpressed in Escherichia coli for purification and characterization. It irreversibly inhibits chymotrypsin-, trypsin-, elastase-, and subtilisin-like proteases in a temperature range from 20 to 100 °C in a concentration-dependent manner. The stoichiometry of inhibition (SI) of Pnserpin for proteases decreases as the temperature increases, indicating that the inhibitory activity of Pnserpin increases with the temperature. SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) showed that Pnserpin inhibits proteases by forming a SDS-resistant covalent complex. Homology modeling and molecular dynamic simulations predicted that Pnserpin can form a stable common serpin fold. Results of the present work will help in understanding the structural and functional characteristics of thermophilic serpin and will broaden the current knowledge about serpins from extremophiles.


Asunto(s)
Extremófilos/química , Pyrobaculum/química , Inhibidores de Serina Proteinasa/aislamiento & purificación , Secuencia de Aminoácidos , Electroforesis en Gel de Poliacrilamida , Concentración de Iones de Hidrógeno , Cinética , Simulación de Dinámica Molecular , Estabilidad Proteica , Reproducibilidad de los Resultados , Alineación de Secuencia , Análisis de Secuencia de Proteína , Inhibidores de Serina Proteinasa/química , Homología Estructural de Proteína , Temperatura
8.
Elife ; 52016 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-27852434

RESUMEN

The similarity of eukaryotic actin to crenactin, a filament-forming protein from the crenarchaeon Pyrobaculum calidifontis supports the theory of a common origin of Crenarchaea and Eukaryotes. Monomeric structures of crenactin and actin are similar, although their filament architectures were suggested to be different. Here we report that crenactin forms bona fide double helical filaments that show exceptional similarity to eukaryotic F-actin. With cryo-electron microscopy and helical reconstruction we solved the structure of the crenactin filament to 3.8 Å resolution. When forming double filaments, the 'hydrophobic plug' loop in crenactin rearranges. Arcadin-2, also encoded by the arcade gene cluster, binds tightly with its C-terminus to the hydrophobic groove of crenactin. Binding is reminiscent of eukaryotic actin modulators such as cofilin and thymosin ß4 and arcadin-2 is a depolymeriser of crenactin filaments. Our work further supports the theory of shared ancestry of Eukaryotes and Crenarchaea.


Asunto(s)
Citoesqueleto de Actina/química , Factores Despolimerizantes de la Actina/química , Actinas/química , Proteínas Bacterianas/genética , Proteínas de Microfilamentos/genética , Citoesqueleto de Actina/ultraestructura , Factores Despolimerizantes de la Actina/ultraestructura , Actinas/ultraestructura , Microscopía por Crioelectrón , Citoesqueleto/química , Citoesqueleto/ultraestructura , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/ultraestructura , Conformación Proteica , Estructura Secundaria de Proteína , Pyrobaculum/química
9.
Proteins ; 84(12): 1786-1796, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27616573

RESUMEN

A gene encoding an sn-glycerol-1-phosphate dehydrogenase (G1PDH) was identified in the hyperthermophilic archaeon Pyrobaculum calidifontis. The gene was overexpressed in Escherichia coli, and its product was purified and characterized. In contrast to conventional G1PDHs, the expressed enzyme showed strong preference for NADH: the reaction rate (Vmax ) with NADPH was only 2.4% of that with NADH. The crystal structure of the enzyme was determined at a resolution of 2.45 Å. The asymmetric unit consisted of one homohexamer. Refinement of the structure and HPLC analysis showed the presence of the bound cofactor NADPH in subunits D, E, and F, even though it was not added in the crystallization procedure. The phosphate group at C2' of the adenine ribose of NADPH is tightly held through the five biased hydrogen bonds with Ser40 and Thr42. In comparison with the known G1PDH structure, the NADPH molecule was observed to be pushed away from the normal coenzyme binding site. Interestingly, the S40A/T42A double mutant enzyme acquired much higher reactivity than the wild-type enzyme with NADPH, which suggests that the biased interactions around the C2'-phosphate group make NADPH binding insufficient for catalysis. Our results provide a unique structural basis for coenzyme preference in NAD(P)-dependent dehydrogenases. Proteins 2016; 84:1786-1796. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Proteínas Arqueales/química , Coenzimas/química , Glicerolfosfato Deshidrogenasa/química , NADP/química , NAD/química , Subunidades de Proteína/química , Pyrobaculum/química , Secuencias de Aminoácidos , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Sitios de Unión , Clonación Molecular , Coenzimas/metabolismo , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Glicerolfosfato Deshidrogenasa/genética , Glicerolfosfato Deshidrogenasa/metabolismo , Enlace de Hidrógeno , Cinética , Modelos Moleculares , NAD/metabolismo , NADP/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Secundaria de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Pyrobaculum/enzimología , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinámica
10.
Proc Natl Acad Sci U S A ; 112(30): 9340-5, 2015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26124094

RESUMEN

The prokaryotic origins of the actin cytoskeleton have been firmly established, but it has become clear that the bacterial actins form a wide variety of different filaments, different both from each other and from eukaryotic F-actin. We have used electron cryomicroscopy (cryo-EM) to examine the filaments formed by the protein crenactin (a crenarchaeal actin) from Pyrobaculum calidifontis, an organism that grows optimally at 90 °C. Although this protein only has ∼ 20% sequence identity with eukaryotic actin, phylogenetic analyses have placed it much closer to eukaryotic actin than any of the bacterial homologs. It has been assumed that the crenactin filament is double-stranded, like F-actin, in part because it would be hard to imagine how a single-stranded filament would be stable at such high temperatures. We show that not only is the crenactin filament single-stranded, but that it is remarkably similar to each of the two strands in F-actin. A large insertion in the crenactin sequence would prevent the formation of an F-actin-like double-stranded filament. Further, analysis of two existing crystal structures reveals six different subunit-subunit interfaces that are filament-like, but each is different from the others in terms of significant rotations. This variability in the subunit-subunit interface, seen at atomic resolution in crystals, can explain the large variability in the crenactin filaments observed by cryo-EM and helps to explain the variability in twist that has been observed for eukaryotic actin filaments.


Asunto(s)
Actinas/química , Pyrobaculum/química , Citoesqueleto de Actina , Alanina/química , Secuencia de Aminoácidos , Biología Computacional , Simulación por Computador , Microscopía por Crioelectrón , Citoesqueleto/química , Concentración de Iones de Hidrógeno , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Unión Proteica , Conformación Proteica , Pyrobaculum/genética , Proteínas Recombinantes/química , Homología de Secuencia de Aminoácido , Programas Informáticos
12.
Biochim Biophys Acta ; 1844(4): 803-9, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24583237

RESUMEN

Studies on thiamin biosynthesis have so far been achieved in eubacteria, yeast and plants, in which the thiamin structure is formed as thiamin phosphate from a thiazole and a pyrimidine moiety. This condensation reaction is catalyzed by thiamin phosphate synthase, which is encoded by the thiE gene or its orthologs. On the other hand, most archaea do not seem to have the thiE gene, but instead their thiD gene, coding for a 2-methyl-4-amino-5-hydroxymethylpyrimidine (HMP) kinase/HMP phosphate kinase, possesses an additional C-terminal domain designated thiN. These two proteins, ThiE and ThiN, do not share sequence similarity. In this study, using recombinant protein from the hyperthermophile archaea Pyrobaculum calidifontis, we demonstrated that the ThiN protein is an analog of the ThiE protein, catalyzing the formation of thiamin phosphate with the release of inorganic pyrophosphate from HMP pyrophosphate and 4-methyl-5-ß-hydroxyethylthiazole phosphate (HET-P). In addition, we found that the ThiN protein can liberate an inorganic pyrophosphate from HMP pyrophosphate in the absence of HET-P. A structure model of the enzyme-product complex of P. calidifontis ThiN domain was proposed on the basis of the known three-dimensional structure of the ortholog of Pyrococcus furiosus. The significance of Arg320 and His341 residues for thiN-coded thiamin phosphate synthase activity was confirmed by site-directed mutagenesis. This is the first report of the experimental analysis of an archaeal thiamin synthesis enzyme.


Asunto(s)
Transferasas Alquil y Aril/química , Proteínas Arqueales/química , Quitina/química , Modelos Moleculares , Pyrobaculum/química , Tiamina Monofosfato/química , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Dominio Catalítico , Quitina/metabolismo , Difosfatos/química , Difosfatos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrólisis , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Pirimidinas/química , Pirimidinas/metabolismo , Pyrobaculum/enzimología , Pyrobaculum/genética , Pyrococcus furiosus/química , Pyrococcus furiosus/enzimología , Pyrococcus furiosus/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología Estructural de Proteína , Especificidad por Sustrato , Termodinámica , Tiamina Monofosfato/biosíntesis
13.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 2): 492-500, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24531483

RESUMEN

The crystal structure of the archaeal actin, crenactin, from the rod-shaped hyperthermophilic (optimal growth at 90°C) crenarchaeon Pyrobaculum calidifontis is reported at 3.35 Šresolution. Despite low amino-acid sequence identity, the three-dimensional structure of the protein monomer is highly similar to those of eukaryotic actin and the bacterial MreB protein. Crenactin-specific features are also evident, as well as elements that are shared between crenactin and eukaryotic actin but are not found in MreB. In the crystal, crenactin monomers form right-handed helices, demonstrating that the protein is capable of forming filament-like structures. Monomer interactions in the helix, as well as interactions between crenactin and ADP in the nucleotide-binding pocket, are resolved at the atomic level and compared with those of actin and MreB. The results provide insights into the structural and functional properties of a heat-stable archaeal actin and contribute to the understanding of the evolution of actin-family proteins in the three domains of life.


Asunto(s)
Actinas/química , Proteínas Arqueales/química , Proteínas Bacterianas/química , Proteínas del Citoesqueleto/química , Pyrobaculum/química , Proteínas de Saccharomyces cerevisiae/química , Actinas/genética , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Proteínas Bacterianas/genética , Cristalografía por Rayos X , Proteínas del Citoesqueleto/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Evolución Molecular , Calor , Modelos Moleculares , Datos de Secuencia Molecular , Estabilidad Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Pyrobaculum/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Thermotoga maritima/química , Thermotoga maritima/metabolismo
14.
PLoS One ; 9(1): e86050, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24465865

RESUMEN

The OB-fold is a small, versatile single-domain protein binding module that occurs in all forms of life, where it binds protein, carbohydrate, nucleic acid and small-molecule ligands. We have exploited this natural plasticity to engineer a new class of non-immunoglobulin alternatives to antibodies with unique structural and biophysical characteristics. We present here the engineering of the OB-fold anticodon recognition domain from aspartyl tRNA synthetase taken from the thermophile Pyrobaculum aerophilum. For this single-domain scaffold we have coined the term OBody. Starting from a naïve combinatorial library, we engineered an OBody with 3 nM affinity for hen egg-white lysozyme, by optimising the affinity of a naïve OBody 11,700-fold over several affinity maturation steps, using phage display. At each maturation step a crystal structure of the engineered OBody in complex with hen egg-white lysozyme was determined, showing binding elements in atomic detail. These structures have given us an unprecedented insight into the directed evolution of affinity for a single antigen on the molecular scale. The engineered OBodies retain the high thermal stability of the parental OB-fold despite mutation of up to 22% of their residues. They can be expressed in soluble form and also purified from bacteria at high yields. They also lack disulfide bonds. These data demonstrate the potential of OBodies as a new scaffold for the engineering of specific binding reagents and provide a platform for further development of future OBody-based applications.


Asunto(s)
Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Aspartato-ARNt Ligasa/química , Aspartato-ARNt Ligasa/metabolismo , Ingeniería de Proteínas , Pyrobaculum/química , Pyrobaculum/metabolismo , Secuencia de Aminoácidos , Animales , Anticodón/metabolismo , Proteínas Arqueales/genética , Aspartato-ARNt Ligasa/genética , Sitios de Unión , Pollos , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Muramidasa/metabolismo , Conformación Proteica , Estabilidad Proteica , Pyrobaculum/genética
15.
Biosci Biotechnol Biochem ; 76(9): 1601-10, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22972344

RESUMEN

The enzymes from hyperthermophiles are generally extremely thermostable and lose little or no activity during long periods under a variety conditions. This high stability is very attractive, in that it gives the enzymes potential for use in numerous bioprocesses. My research group has investigated this high stability from the viewpoint of the relationship between function and structure. In this review, I describe the molecular mechanism underlying the extreme stability of unboiled NAD-dependent glutamate dehydrogenase from the hyperthermophile Pyrobaculum islandicum. I also describe the activation of the inactive recombinant enzyme produced in mesophilic Escherichia coli from the viewpoint of the relationship between structure and activity.


Asunto(s)
Proteínas Arqueales/química , Glutamato Deshidrogenasa/química , Ácido Glutámico/química , Pyrobaculum/enzimología , Secuencia de Aminoácidos , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Activación Enzimática , Estabilidad de Enzimas , Escherichia coli/genética , Glutamato Deshidrogenasa/genética , Glutamato Deshidrogenasa/metabolismo , Ácido Glutámico/metabolismo , Calor , Modelos Moleculares , Estructura Terciaria de Proteína , Pyrobaculum/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Especificidad por Sustrato
16.
Appl Microbiol Biotechnol ; 91(4): 1061-72, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21614503

RESUMEN

The highly thermostable esterase from the hyperthermophilic archaeon Pyrobaculum calidifontis VA1 (PestE) shows high enantioselectivity (E > 100) in the kinetic resolution of racemic chiral carboxylic acids, but little selectivity towards acetates of tertiary alcohols (E = 2-4). To explain these unique properties, its crystal structure has been determined at 2.0 Å resolution. The enzyme is a member of the hormone-sensitive lipase group (group H) of the esterase/lipase superfamily on the basis of the amino acid sequence identity. The PestE structure shows a canonical α/ß-hydrolase fold as core domain with a cap structure at the C-terminal end of the ß-sheet. A tetramer in the crystal packing is formed of two dimers; the dimeric form is observed in solution. Conserved dimers and even tetramers are found in other group H proteins. The amino acid residues Ser157, His284, and Asp254 form the catalytic triad, which is typically found in α/ß-hydrolases. The oxyanion hole is composed of Gly85 and Gly86 within the conserved sequence motif HGGG(M,F,W) (amino acid residues 83-87) and Ala158. With the elucidated structure, experimental results about enantioselectivity towards the two model substrate classes (as exemplified for 3-phenylbutanoic acid ethyl ester and 1,1,1-trifluoro-2-phenylbut-3-yn-2-yl acetate) could be explained by molecular modeling. For both enantiomers of the tertiary alcohol, orientations in two binding pockets were obtained without significant energy differences corresponding to the observed low enantioselectivity due to missing steric repulsions. In contrast, for the carboxylic acid ester, two different orientations with significant energy differences for each enantiomer were found matching the high E values.


Asunto(s)
Esterasas/química , Esterasas/metabolismo , Pyrobaculum/enzimología , Dominio Catalítico , Cristalografía por Rayos X , Modelos Moleculares , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Pyrobaculum/química , Especificidad por Sustrato
17.
J Mol Biol ; 405(5): 1215-32, 2011 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-21134383

RESUMEN

Protein synthesis occurs in macromolecular particles called ribosomes. All ribosomes are composed of RNA and proteins. While the protein composition of bacterial and eukaryotic ribosomes has been well-characterized, a systematic analysis of archaeal ribosomes has been lacking. Here we report the first comprehensive two-dimensional PAGE and mass spectrometry analysis of archaeal ribosomes isolated from the thermophilic Pyrobaculum aerophilum and the thermoacidophilic Sulfolobus acidocaldarius Crenarchaeota. Our analysis identified all 66 ribosomal proteins (r-proteins) of the P. aerophilum small and large subunits, as well as all but two (62 of 64; 97%) r-proteins of the S. acidocaldarius small and large subunits that are predicted genomically. Some r-proteins were identified with one or two lysine methylations and N-terminal acetylations. In addition, we identify three hypothetical proteins that appear to be bona fide r-proteins of the S. acidocaldarius large subunit. Dissociation of r-proteins from the S. acidocaldarius large subunit indicates that the novel r-proteins establish tighter interactions with the large subunit than some integral r-proteins. Furthermore, cryo electron microscopy reconstructions of the S. acidocaldarius and P. aerophilum 50S subunits allow for a tentative localization of the binding site of the novel r-proteins. This study illustrates not only the potential diversity of the archaeal ribosomes but also the necessity to experimentally analyze the archaeal ribosomes to ascertain their protein composition. The discovery of novel archaeal r-proteins and factors may be the first step to understanding how archaeal ribosomes cope with extreme environmental conditions.


Asunto(s)
Proteínas Arqueales/química , Pyrobaculum/química , Proteínas Ribosómicas/química , Ribosomas/química , Proteínas Arqueales/clasificación , Proteínas Arqueales/aislamiento & purificación , Sitios de Unión , Lisina/química , Metilación , Nucleósido-Trifosfatasa/metabolismo , Filogenia , Proteómica , Proteínas Ribosómicas/clasificación , Proteínas Ribosómicas/aislamiento & purificación , Sulfolobus acidocaldarius/química
18.
J Mol Biol ; 383(1): 224-37, 2008 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-18625240

RESUMEN

Phi-value analysis was used to characterise the structure of the transition state (TS) for folding of POB L146A Y166W, a peripheral subunit-binding domain that folds in microseconds. Helix 2 was structured in the TS with consolidating interactions from the structured loop that connects the two alpha-helices. This distribution of Phi-values was very similar to that determined for E3BD F166W, a homologue with high sequence and structural similarity. The extrapolated folding rate constants in water at 298 K were 210,000 s(-1) for POB and 27,500 s(-1) for E3BD. A contribution to the faster folding of POB came from its having significantly greater helical propensity in helix 2, the folding nucleus. The folding rate also appeared to be influenced by differences in the sequence and structural properties of the loop connecting the two helices. Unimodal downhill folding has been proposed as a conserved, biologically important property of peripheral subunit-binding domains. POB folds five times faster and E3BD folds slower than a proposed limit of 40,000 s(-1) for barrier-limited folding. However, experimental evidence strongly suggests that both POB L146A Y166W and E3BD F166W fold in a barrier-limited process through a very similar TS ensemble.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Escherichia coli/química , Escherichia coli/genética , Geobacillus stearothermophilus/química , Geobacillus stearothermophilus/genética , Enlace de Hidrógeno , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Concentración Osmolar , Desnaturalización Proteica , Ingeniería de Proteínas , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Pyrobaculum/química , Pyrobaculum/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Termodinámica
19.
J Mol Biol ; 380(1): 181-92, 2008 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-18513746

RESUMEN

Cystathionine beta-synthase domains are found in a myriad of proteins from organisms across the tree of life and have been hypothesized to function as regulatory modules that sense the energy charge of cells. Here we characterize the structure and stability of PAE2072, a dimeric tandem cystathionine beta-synthase domain protein from the hyperthermophilic crenarchaeon Pyrobaculum aerophilum. Crystal structures of the protein in unliganded and AMP-bound forms, determined at resolutions of 2.10 and 2.35 A, respectively, reveal remarkable conservation of key functional features seen in the gamma subunit of the eukaryotic AMP-activated protein kinase. The structures also confirm the presence of a suspected intermolecular disulfide bond between the two subunits that is shown to stabilize the protein. Our AMP-bound structure represents a first step in investigating the function of a large class of uncharacterized prokaryotic proteins. In addition, this work extends previous studies that have suggested that, in certain thermophilic microbes, disulfide bonds play a key role in stabilizing intracellular proteins and protein-protein complexes.


Asunto(s)
Adenosina Monofosfato/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Cistationina betasintasa/química , Pyrobaculum/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Dimerización , Disulfuros/química , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Análisis de Secuencia de Proteína , Relación Estructura-Actividad , Temperatura , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA