Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 311
Filtrar
1.
Genesis ; 62(2): e23596, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38665067

RESUMEN

The vomeronasal organ (VNO) is a part of the accessory olfactory system, which detects pheromones and chemical factors that trigger a spectrum of sexual and social behaviors. The vomeronasal epithelium (VNE) shares several features with the epithelium of the main olfactory epithelium (MOE). However, it is a distinct neuroepithelium populated by chemosensory neurons that differ from the olfactory sensory neurons in cellular structure, receptor expression, and connectivity. The vomeronasal organ of rodents comprises a sensory epithelium (SE) and a thin non-sensory epithelium (NSE) that morphologically resembles the respiratory epithelium. Sox2-positive cells have been previously identified as the stem cell population that gives rise to neuronal progenitors in MOE and VNE. In addition, the MOE also comprises p63 positive horizontal basal cells, a second pool of quiescent stem cells that become active in response to injury. Immunolabeling against the transcription factor p63, Keratin-5 (Krt5), Krt14, NrCAM, and Krt5Cre tracing experiments highlighted the existence of horizontal basal cells distributed along the basal lamina of SE of the VNO. Single cell sequencing and genetic lineage tracing suggest that the vomeronasal horizontal basal cells arise from basal progenitors at the boundary between the SE and NSE proximal to the marginal zones. Moreover, our experiments revealed that the NSE of rodents is, like the respiratory epithelium, a stratified epithelium where the p63/Krt5+ basal progenitor cells self-replicate and give rise to the apical columnar cells facing the lumen of the VNO.


Asunto(s)
Órgano Vomeronasal , Órgano Vomeronasal/metabolismo , Órgano Vomeronasal/citología , Animales , Ratones , Mucosa Olfatoria/metabolismo , Mucosa Olfatoria/citología , Queratina-15/metabolismo , Queratina-15/genética , Queratina-5/metabolismo , Queratina-5/genética , Queratina-14/metabolismo , Queratina-14/genética , Transactivadores/genética , Transactivadores/metabolismo
2.
BMC Pediatr ; 24(1): 242, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580989

RESUMEN

EPIDERMOLYSIS: Bullosa is a rare hereditary skin condition that causes blisters. Genes encoding structural proteins at or near the dermal-epidermal junction are mutated recessively or dominantly, and this is the primary cause of EB. Herein, two Chinese boys were diagnosed with the condition, each with a different variant in a gene that serves as a reference for EB genetic counseling. Skincare significantly impacted their prognosis and quality of life. CASE PRESENTATION: Two Chinese boys, with phenotypically normal parents, have been diagnosed with distinct blister symptoms, one with Dominant Dystrophic Epidermolysis Bullosa and the other with a severe form of Epidermolysis Bullosa Simplex. The first patient had a G-to-A variant in the COL7A1 allele, at nucleotide position 6163 which was named "G2055A". The proband is heterozygous for Dystrophic Epidermolysis Bullosa due to a COL7A1 allele with a glycine substitution at the triple helix domain. A similar variant has been discovered in his mother, indicating its potential transmission to future generations. Another patient had severe Epidermolysis Bullosa Simplex with a rare c.377T > A  variant resulting in substitution of amino acid p.Leu126Arg (NM_000526.5 (c.377T > G, p.Leu126Arg) in the Keratin 14 gene. In prior literature, Keratin 14 has been associated with an excellent prognosis. However, our patient with this infrequent variant tragically died from sepsis at 21 days old. There has been a reported occurrence of the variant only once. CONCLUSION: Our study reveals that Epidermolysis Bullosa patients with COL7A1 c.6163G > A and KRT14 c.377T>A variants have different clinical presentations, with dominant forms of Dystrophic EB having milder phenotypes than recessive ones. Thus, the better prognosis in the c.6163G > A patient. Furthermore, c.377T>A patient was more prone to infection than the patient with c.6163G>A gene variant. Genetic testing is crucial for identifying the specific variant responsible and improving treatment options.


Asunto(s)
Epidermólisis Ampollosa Distrófica , Epidermólisis Ampollosa Simple , Epidermólisis Ampollosa , Humanos , Masculino , Colágeno , Colágeno Tipo VII/genética , Colágeno Tipo VII/metabolismo , Epidermólisis Ampollosa/genética , Epidermólisis Ampollosa Distrófica/diagnóstico , Epidermólisis Ampollosa Distrófica/genética , Epidermólisis Ampollosa Distrófica/metabolismo , Queratina-14/genética , Mutación , Calidad de Vida
3.
Cell Death Dis ; 15(4): 252, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589352

RESUMEN

Cutaneous squamous carcinoma is the second most common epithelial malignancy, associated with significant morbidity, mortality, and economic burden. However, the mechanisms underlying cSCC remain poorly understood. In this study, we identified TGM3 as a novel cSCC tumor suppressor that acts via the PI3K-AKT axis. RT-qPCR, IHC and western blotting were employed to assess TGM3 levels. TGM3-overexpression/knockdown cSCC cell lines were utilized to detect TGM3's impact on epithelial differentiation as well as tumor cell proliferation, migration, and invasion in vitro. Additionally, subcutaneous xenograft tumor models were employed to examine the effect of TGM3 knockdown on tumor growth in vivo. Finally, molecular and biochemical approaches were employed to gain insight into the tumor-suppressing mechanisms of TGM3. TGM3 expression was increased in well-differentiated cSCC tumors, whereas it was decreased in poor-differentiated cSCC tumors. Loss of TGM3 is associated with poor differentiation and a high recurrence rate in patients with cSCC. TGM3 exhibited tumor-suppressing activity by regulating cell proliferation, migration, and invasion both in vitro and in vivo. As a novel cSCC tumor differentiation marker, TGM3 expression was positively correlated with cell differentiation. In addition, our results demonstrated an interaction between TGM3 and KRT14 that aids in the degradation of KRT14. TGM3 deficiency disrupts keratinocytes differentiation, and ultimately leads to tumorigenesis. Furthermore, RNA-sequence analysis revealed that loss of TGM3 enhanced EMT via the PI3K-AKT signaling pathway. Deguelin, a PI3K-AKT inhibitor, blocked cSCC tumor growth induced by TGM3 knockdown in vivo. Taken together, TGM3 inhibits cSCC tumor growth via PI3K-AKT signaling, which could also serve as a tumor differentiation marker and a potential therapeutic target for cSCC. Proposed model depicted the mechanism by which TGM3 suppress cSCC development. TGM3 reduces the phosphorylation level of AKT and degrades KRT14. In the epithelial cell layer, TGM3 exhibits a characteristic pattern of increasing expression from bottom to top, while KRT14 and pAKT are the opposite. Loss of TGM3 leads to reduced degradation of KRT14 and activation of pAKT, disrupting keratinocyte differentiation, and eventually resulting in the occurrence of low-differentiated cSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Cutáneas , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Cutáneas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Queratina-14/genética , Queratina-14/metabolismo , Carcinoma de Células Escamosas/metabolismo , Transducción de Señal , Proliferación Celular/genética , Diferenciación Celular , Antígenos de Diferenciación , Transglutaminasas/genética , Transglutaminasas/metabolismo , Línea Celular Tumoral
4.
Dev Biol ; 504: 120-127, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37813160

RESUMEN

The current gold-standard for genetic lineage tracing in transgenic mice is based on cell-type specific expression of Cre recombinase. As an alternative, we developed a cell-type specific CRISPR/spCas9 system for lineage tracing. This method relies on RNA polymerase II promoter driven self-cleaving guide RNAs (scgRNA) to achieve tissue-specificity. To demonstrate proof-of-principle for this approach a transgenic mouse was generated harbouring a knock-in of a scgRNA into the Cytokeratin 14 (Krt14) locus. Krt14 expression marks the stem cells of squamous epithelium in the skin and oral mucosa. The scgRNA targets a Stop cassette preceding a fluorescent reporter in the Ai9-tdtomato mouse. Ai9-tdtomato reporter mice harbouring this allele along with a spCas9 transgene demonstrated precise marking of the Krt14 lineage. We conclude that RNA polymerase II promoter driven scgRNAs enable the use of CRISPR/spCas9 for genetic lineage tracing.


Asunto(s)
Sistemas CRISPR-Cas , ARN Polimerasa II , Animales , Ratones , Sistemas CRISPR-Cas/genética , Integrasas/genética , Queratina-14/genética , Queratina-14/metabolismo , Ratones Transgénicos , Regiones Promotoras Genéticas/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo
8.
Nat Commun ; 13(1): 7344, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36446780

RESUMEN

Triple-Negative Breast Cancer (TNBC) has a poor prognosis and adverse clinical outcomes among all breast cancer subtypes as there is no available targeted therapy. Overexpression of Enhancer of zeste homolog 2 (EZH2) has been shown to correlate with TNBC's poor prognosis, but the contribution of EZH2 catalytic (H3K27me3) versus non-catalytic EZH2 (NC-EZH2) function in TNBC progression remains elusive. We reveal that selective hyper-activation of functional EZH2 (H3K27me3) over NC-EZH2 alters TNBC metastatic landscape and fosters its peritoneal metastasis, particularly splenic. Instead of H3K27me3-mediated repression of gene expression; here, it promotes KRT14 transcription by attenuating binding of repressor SP1 to its promoter. Further, KRT14 loss significantly reduces TNBC migration, invasion, and peritoneal metastasis. Consistently, human TNBC metastasis displays positive correlation between H3K27me3 and KRT14 levels. Finally, EZH2 knockdown or H3K27me3 inhibition by EPZ6438 reduces TNBC peritoneal metastasis. Altogether, our preclinical findings suggest a rationale for targeting TNBC with EZH2 inhibitors.


Asunto(s)
Neoplasias Peritoneales , Neoplasias de la Mama Triple Negativas , Humanos , Proteína Potenciadora del Homólogo Zeste 2/genética , Histonas/genética , Queratina-14/genética , Neoplasias Peritoneales/genética , Neoplasias Peritoneales/secundario , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Regulación hacia Arriba
9.
Sci Rep ; 12(1): 17820, 2022 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-36280775

RESUMEN

Nestin is an intermediate filament protein transiently expressed in neural stem/progenitor cells. We previously demonstrated that outer root sheath (ORS) keratinocytes of adult hair follicles (HFs) in mice descend from nestin-expressing cells, despite being an epithelial cell lineage. This study determined the exact stage when nestin-expressing ORS stem/precursor cells or their descendants appear during HF morphogenesis, and whether they are present in adult HFs. Using Nes-Cre/CAG-CAT-EGFP mice, in which enhanced green fluorescent protein (EGFP) is expressed following Cre-based recombination driven by the nestin promoter, we found that EGFP+ cells appeared in the epithelial layer of embryonic HFs as early as the peg stage. EGFP+ cells in hair pegs were positive for keratin 14 (K14) and K5, but not vimentin, SOX2, SOX10, or S100 alpha 6. Tracing of tamoxifen-induced EGFP+ cells in postnatal Nes-CreERT2/CAG-CAT-EGFP mice revealed labeling of some isthmus HF epithelial cells in the first anagen stage. EGFP+ cells in adult HFs were not immunolabeled for K15, an HF multipotent stem cell marker. However, when hairs were depilated in Nes-CreERT2/CAG-CAT-EGFP mice to induce the anagen stage after tamoxifen injection, the majority of ORS keratinocytes in depilation-induced anagen HFs were labeled for EGFP. Our findings indicate that nestin-expressing unipotent progenitor cells capable of differentiating into ORS keratinocytes are present in HF primordia and adult HFs.


Asunto(s)
Células Epiteliales , Folículo Piloso , Nestina , Animales , Ratones , Biomarcadores/metabolismo , Células Epiteliales/metabolismo , Folículo Piloso/metabolismo , Queratina-14/genética , Queratina-14/metabolismo , Ratones Transgénicos , Nestina/genética , Nestina/metabolismo , Tamoxifeno/metabolismo
10.
Int J Mol Sci ; 23(20)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36293226

RESUMEN

The study of human papillomavirus (HPV)-induced carcinogenesis uses multiple in vivo mouse models, one of which relies on the cytokeratin 14 gene promoter to drive the expression of all HPV early oncogenes. This study aimed to determine the HPV16 variant and sublineage present in the K14HPV16 mouse model. This information can be considered of great importance to further enhance this K14HPV16 model as an essential research tool and optimize its use for basic and translational studies. Our study evaluated HPV DNA from 17 samples isolated from 4 animals, both wild-type (n = 2) and HPV16-transgenic mice (n = 2). Total DNA was extracted from tissues and the detection of HPV16 was performed using a qPCR multiplex. HPV16-positive samples were subsequently whole-genome sequenced by next-generation sequencing techniques. The phylogenetic positioning clearly shows K14HPV16 samples clustering together in the sub-lineage A1 (NC001526.4). A comparative genome analysis of K14HPV16 samples revealed three mutations to the human papillomaviruses type 16 sublineage A1 representative strain. Knowledge of the HPV 16 variant is fundamental, and these findings will allow the rational use of this animal model to explore the role of the A1 sublineage in HPV-driven cancer.


Asunto(s)
Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Ratones , Animales , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/genética , Queratina-14/genética , Filogenia , Neoplasias del Cuello Uterino/genética , Papillomavirus Humano 16 , Papillomaviridae/genética , Carcinogénesis/genética , Oncogenes
11.
Anim Genet ; 53(6): 892-896, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36004757

RESUMEN

Epidermolysis bullosa (EB) is a group of blistering disorders that includes several subtypes, classified according to their level of cleavage. Typical clinical signs are blisters and erosions resulting from minimal trauma. The disease has been described in many mammalian species and pathogenic variants in at least 18 different genes have been identified. In the present study, we investigated a Cardigan Welsh Corgi with congenital clinical signs consistent with epidermolysis bullosa. The puppy had blisters and erosions on the paw pads, and the oral mucosa. Histologic examination demonstrated the typical clefting between the dermis and epidermis and confirmed the clinical suspicion. We obtained whole genome sequencing data from the affected puppy and searched for variants in candidate genes known to cause EB. This revealed a heterozygous missense variant, KRT5:p.(E476K), affecting the highly conserved KLLEGE motif of keratin 5. The mutant allele in the affected puppy arose owing to a de novo mutation event as it was absent from both unaffected parents. Knowledge of the functional impact of KRT5 variants in other species together with the demonstration of the de novo mutation event establishes KRT5:p.(E476K) as causative variant for the observed EBS.


Asunto(s)
Enfermedades de los Perros , Epidermólisis Ampollosa Simple , Perros , Animales , Epidermólisis Ampollosa Simple/genética , Epidermólisis Ampollosa Simple/patología , Queratina-5/genética , Queratina-14/genética , Vesícula , Mutación Missense , Mamíferos
12.
Br J Dermatol ; 187(5): 773-777, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35822506

RESUMEN

The phenotypic spectrum of genodermatoses is continuously expanding. Three siblings were referred because of a highly unusual phenotype comprising alopecia, dystrophic nails, palmoplantar keratoderma and trauma-induced skin blistering. Whole-exome sequencing analysis identified a heterozygous large genomic alteration of around 116 0000 bp resulting in the deletion of the KRT9, KRT14, KRT15, KRT16 and KRT19 genes, as well as part of KRT17. This genomic change leads to the generation of a truncated keratin 17 (KRT17) protein encoded by the first three exons of the gene and part of intron 3. The three patients were found to carry the heterozygous genomic deletion while their healthy parents did not, indicative of germline mosaicism. The genomic alteration was found to result in reduced KRT17 expression in patient skin. More importantly, the abnormal truncated KRT17 was found to exert a deleterious effect on keratinocyte cytoskeleton formation, leading to keratin aggregation. Coexpression of wildtype and truncated KRT17 proteins also caused keratin aggregation, demonstrating that the deletion exerts a dominant negative effect. In conclusion, we are reporting on a novel clinical phenotype that was found to result from germline mosaicism for a large genomic deletion spanning six keratin genes, thus expanding the spectrum of clinical manifestations associated with keratin disorders. What is already known about this topic? Various conditions known as keratinopathies have been shown over recent years to be associated with dominant or recessive variants in several individual keratin genes. What does this study add? We report three patients presenting with a unique clinical phenotype that was found to result from germline mosaicism for a large genomic deletion spanning six keratin genes. The genomic variant is predicted to result in a truncated form of keratin 17, which was found in an in vitro assay to disrupt keratinocyte cell cytoskeleton formation.


Asunto(s)
Queratina-17 , Queratinas , Queratina-17/genética , Heterocigoto , Fenotipo , Citoesqueleto , Mutación , Queratina-6/genética , Queratina-14/genética , Queratina-16
13.
J Invest Dermatol ; 142(12): 3282-3293, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35691363

RESUMEN

Epidermolysis bullosa simplex (EBS) is a severe and potentially life-threatening disorder for which no adequate therapy exists. Most cases are caused by dominant sequence variations in keratin genes K5 or K14, leading to the formation of cytoplasmic keratin aggregates, profound keratinocyte fragility, and cytolysis. We hypothesized that pharmacological reduction of keratin aggregates, which compromise keratinocyte integrity, represents a viable strategy for the treatment of EBS. In this study, we show that the multikinase inhibitor PKC412, which is currently in clinical use for acute myeloid leukemia and advanced systemic mastocytosis, reduced keratin aggregation by 40% in patient-derived K14.R125C EBS-associated keratinocytes. Using a combination of epithelial shear stress assay and real-time impedance spectroscopy, we show that PKC412 restored intercellular adhesion. Molecularly, global phosphoproteomic analysis together with immunoblots using phosphoepitope-specific antibodies revealed that PKC412 treatment altered phosphorylated sites on keratins and desmoplakin. Thus, our data provide a proof of concept to repurpose existing drugs for the targeted treatment of EBS and showcase how one broad-range kinase inhibitor reduced keratin filament aggregation in patient-derived EBS keratinocytes and the fragility of EBS cell monolayers. Our study paves the way for a clinical trial using PKC412 for systemic or local application in patients with EBS.


Asunto(s)
Epidermólisis Ampollosa Simple , Humanos , Epidermólisis Ampollosa Simple/genética , Epidermólisis Ampollosa Simple/metabolismo , Queratinas/metabolismo , Estaurosporina/metabolismo , Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/genética , Queratina-14/genética , Queratina-14/metabolismo , Queratina-5/genética , Queratina-5/metabolismo , Mutación
14.
J Invest Dermatol ; 142(10): 2695-2705.e11, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35490743

RESUMEN

Epidermolysis bullosa simplex (EBS), an autosomal dominant skin disorder, is characterized by skin fragility. Genetically, the majority of cases are related to missense sequence variations in two keratin genes K5 or K14, leading to cytolysis of basal keratinocytes (KCs) and intraepidermal blistering. Progress toward the identification of treatments has been hampered by an incomplete understanding of the mechanisms underlying this disease and availability of relevant and reliable in vitro models recapitulating the physiopathological mechanisms. Recent advances in stem cell field have fueled the prospect that these limitations could be overcome, thanks to the availability of disease-specific human induced pluripotent stem cells (hiPSCs). In this study, we generated hiPSC-derived KCs from patients carrying keratin gene K5-dominant sequence variations and compared them with nonaffected hiPSC-derived KCs as well as their primary counterparts. Our results showed that EBS hiPSC-derived KCs displayed proliferative defects, increased capacity to migrate, alteration of extracellular signal‒regulated kinase signaling pathway, and cytoplasmic keratin filament aggregates as observed in primary EBS KCs. Of interest, EBS hiPSC-derived KCs exhibited downregulation of hemidesmosomal proteins, revealing the different effects of keratin gene K5 sequence variations on keratin cytoskeletal organization. With a combination of culture miniaturization and treatment with the chaperone molecule 4-phenylbutyric acid, our results showed that hiPSC-derived KCs represent a suitable model for identifying novel therapies for EBS.


Asunto(s)
Epidermólisis Ampollosa Simple , Células Madre Pluripotentes Inducidas , Epidermólisis Ampollosa Simple/metabolismo , Quinasas MAP Reguladas por Señal Extracelular , Humanos , Queratina-14/genética , Queratina-14/metabolismo , Queratina-5/genética , Queratina-5/metabolismo , Queratinocitos/metabolismo , Queratinas/genética , Queratinas/metabolismo , Mutación , Fenotipo
15.
Stem Cell Res ; 61: 102750, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35334406

RESUMEN

More than 107 pathogenic variations were identified in Keratin 14 gene (KRT14) in patients affected by epidermolysis bullosa simplex (EBS), a rare skin disease with still no curative treatment. Disease models as human induced pluripotent stem cells (hiPSCs) are promising tool for further advance the knowledge about this disorder and accelerate therapies development. Here, two hiPSC lines were reprogrammed from skin fibroblasts of two EBS patients carrying mutations within KRT14 by using CytoTune®Sendai virus. These iPSCs display pluripotent cell morphology, pluripotent markers expression, and the capability to differentiate into the three germ layers.


Asunto(s)
Epidermólisis Ampollosa Simple , Células Madre Pluripotentes Inducidas , Epidermólisis Ampollosa Simple/genética , Epidermólisis Ampollosa Simple/patología , Humanos , Células Madre Pluripotentes Inducidas/patología , Queratina-14/genética , Queratina-5/genética , Mutación , Fenotipo
16.
Br J Dermatol ; 187(3): 441-443, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35191026

RESUMEN

In this study, two (18.2%) clinically unaffected parents from 11 trios were identified with mosaic KRT14 variants.To our knowledge, this is the first report to study the proportion of low-level mosaicism in the clinically unaffected parents whose children were previously regarded as sporadic EBS cases.


Asunto(s)
Epidermólisis Ampollosa Simple , Niño , Epidermólisis Ampollosa Simple/genética , Humanos , Queratina-14/genética , Queratina-5/genética , Mosaicismo , Padres
18.
Biochem Biophys Res Commun ; 586: 55-62, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34826701

RESUMEN

Salivary gland hypofunction due to radiation therapy for head and neck cancer or Sjögren syndrome may cause various oral diseases, which can lead to a decline in the quality of life. Cell therapy using salivary gland stem cells is a promising method for restoring hypofunction. Herein, we show that salivary gland-like cells can be induced from epithelial tissues that were transdifferentiated from mouse embryonic fibroblasts (MEFs). We introduced four genes, Dnp63a, Tfap2a, Grhl2, and Myc (PTMG) that are known to transdifferentiate fibroblasts into oral mucosa-like epithelium in vivo into MEFs. MEFs overexpressing these genes showed epithelial cell characteristics, such as cobblestone appearance and E-cadherin positivity, and formed oral epithelial-like tissue under air-liquid interface culture conditions. The epithelial sheet detached from the culture dish was infected with adenoviruses encoding Sox9 and Foxc1, which we previously identified as essential factors to induce salivary gland formation. The cells detached from the cell sheet formed spheres 10 days after infection and showed a branching morphology. The spheres expressed genes encoding basal/myoepithelial markers, cytokeratin 5, cytokeratin 14, acinar cell marker, aquaporin 5, and the myoepithelial marker α-smooth muscle actin. The dissociated cells of these primary spheres had the ability to form secondary spheres. Taken together, our results provide a new strategy for cell therapy of salivary glands and hold implications in treating patients with dry mouth.


Asunto(s)
Células Acinares/metabolismo , Fibroblastos/metabolismo , Factores de Transcripción Forkhead/genética , Factor de Transcripción SOX9/genética , Glándulas Salivales/metabolismo , Esferoides Celulares/metabolismo , Células Acinares/citología , Adenoviridae/genética , Adenoviridae/metabolismo , Animales , Acuaporina 5/genética , Acuaporina 5/metabolismo , Biomarcadores/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Transdiferenciación Celular/genética , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Embrión de Mamíferos , Fibroblastos/citología , Factores de Transcripción Forkhead/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Queratina-14/genética , Queratina-14/metabolismo , Queratina-5/genética , Queratina-5/metabolismo , Ratones , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factor de Transcripción SOX9/metabolismo , Glándulas Salivales/citología , Esferoides Celulares/citología , Transactivadores/genética , Transactivadores/metabolismo , Factor de Transcripción AP-2/genética , Factor de Transcripción AP-2/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
19.
Theranostics ; 11(20): 9918-9936, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34815795

RESUMEN

Background: Although CREB phosphorylation is known to be essential in UVB/cAMP-stimulated melanogenesis, CREB null mice did not show identifiable pigmentation phenotypes. Here, we show that CREB-regulated transcription co-activator 3 (CRTC3) quantitatively regulates and orchestrates melanogenesis by directly targeting microphthalmia-associated transcription factor (MITF) and regulating the expression of most key melanogenesis-related genes. Methods: We analyzed CRTC3-null, KRT14-SCF transgenic, and their crossover mice. The molecular basis of CRTC3 effects on pigmentation was investigated by histology, melanin/tyrosinase assay, immunoblotting, shRNA, promoter assay, qRT-PCR, and subcellular localization. These analyses were carried out in primary cultured melanocytes, mouse cell lines, normal human cells, co-cultures, and ex vivo human skin. CRTC/CREB activity screening was performed to identify candidate agents for the regulation of melanogenesis. Results: The coat and skin color of CRTC3-null mice was paler due to a reduction in melanin deposition. Melanogenesis-related genes were reduced in CRTC3-deficient cultured melanocytes and tail skin of CRTC3-null mice. Notably, basal levels of MITF present in CRTC3-null mice were sufficient for melanocytic differentiation/survival. Thus CRTC3-null mice showed a comparable number of epidermal melanocytes compared to control mice. Stem cell factor (SCF) introduction by crossing with KRT14-SCF mice increased epidermal melanocytes and melanin deposition in control and CRTC3-null mice, but the skin color remained still light on the CRTC3-null background. Furthermore, we identified the therapeutic potential of altiratinib to inhibit melanogenesis in human melanocytes and human skin effectively and safely. Conclusion: CRTC3 appears to be a key sensor for melanogenesis and can be used as a reversible and tunable tool for selectively regulating melanogenesis without affecting melanocyte integrity. Thus, CRTC3 can also serve as a screening tool for the discovery of ideal melanogenesis-modulating small molecules.


Asunto(s)
Melanoma/genética , Pigmentación de la Piel/genética , Factores de Transcripción/metabolismo , Animales , Línea Celular , Epidermis/metabolismo , Femenino , Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Queratina-14/genética , Queratina-14/metabolismo , Masculino , Melaninas/metabolismo , Melanocitos/efectos de los fármacos , Melanocitos/metabolismo , Melanoma/etiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Transcripción Asociado a Microftalmía/genética , Factor de Transcripción Asociado a Microftalmía/metabolismo , Fosforilación , Cultivo Primario de Células , Piel/metabolismo , Pigmentación de la Piel/fisiología , Factores de Transcripción/genética
20.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34830328

RESUMEN

Epidermolysis bullosa simplex (EBS) is a group of inherited keratinopathies that, in most cases, arise due to mutations in keratins and lead to intraepidermal ruptures. The cellular pathology of most EBS subtypes is associated with the fragility of the intermediate filament network, cytolysis of the basal layer of the epidermis, or attenuation of hemidesmosomal/desmosomal components. Mutations in keratins 5/14 or in other genes that encode associated proteins induce structural disarrangements of different strengths depending on their locations in the genes. Keratin aggregates display impaired dynamics of assembly and diminished solubility and appear to be the trigger for endoplasmic reticulum (ER) stress upon being phosphorylated by MAPKs. Global changes in cellular signaling mainly occur in cases of severe dominant EBS mutations. The spectrum of changes initiated by phosphorylation includes the inhibition of proteasome degradation, TNF-α signaling activation, deregulated proliferation, abnormal cell migration, and impaired adherence of keratinocytes. ER stress also leads to the release of proinflammatory danger-associated molecular pattern (DAMP) molecules, which enhance avalanche-like inflammation. Many instances of positive feedback in the course of cellular stress and the development of sterile inflammation led to systemic chronic inflammation in EBS. This highlights the role of keratin in the maintenance of epidermal and immune homeostasis.


Asunto(s)
Alarminas/genética , Epidermis/metabolismo , Epidermólisis Ampollosa Simple/genética , Queratina-14/genética , Queratina-5/genética , Queratinocitos/metabolismo , Alarminas/metabolismo , Estrés del Retículo Endoplásmico/genética , Epidermis/patología , Epidermólisis Ampollosa Simple/metabolismo , Epidermólisis Ampollosa Simple/patología , Regulación de la Expresión Génica , Humanos , Inflamación , Filamentos Intermedios/metabolismo , Filamentos Intermedios/patología , Filamentos Intermedios/ultraestructura , Queratina-14/metabolismo , Queratina-5/metabolismo , Queratinocitos/patología , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Mutación , Complejo de la Endopetidasa Proteasomal/metabolismo , Agregado de Proteínas , Proteolisis , Transducción de Señal , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA