Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 428
Filtrar
1.
Sci Rep ; 14(1): 13610, 2024 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871751

RESUMEN

Natural products play a significant role in providing the current demand as antiparasitic agents, which offer an attractive approach for the discovery of novel drugs. The present study aimed to evaluate in vitro the potential impact of seaweed Padina pavonica (P. pavonica) extract in combating Acanthamoeba castellanii (A. castellanii). The phytochemical constituents of the extract were characterized by Gas chromatography-mass spectrometry. Six concentrations of the algal extract were used to evaluate its antiprotozoal activity at various incubation periods. Our results showed that the extract has significant inhibition against trophozoites and cysts viability, with complete inhibition at the high concentrations. The IC50 of P. pavonica extract was 4.56 and 4.89 µg/mL for trophozoites and cysts, respectively, at 24 h. Morphological alterations of A. castellanii trophozoites/cysts treated with the extract were assessed using inverted and scanning electron microscopes and showed severe damage features upon treatment with the extract at different concentrations. Molecular Docking of extracted compounds against Acanthamoeba cytochrome P450 monooxygenase (AcCYP51) was performed using Autodock vina1.5.6. A pharmacokinetic study using SwissADME was also conducted to investigate the potentiality of the identified bioactive compounds from Padina extract to be orally active drug candidates. In conclusion, this study highlights the in vitro amoebicidal activity of P. pavonica extract against A. castellanii adults and cysts and suggests potential AcCYP51 inhibition.


Asunto(s)
Queratitis por Acanthamoeba , Acanthamoeba castellanii , Simulación del Acoplamiento Molecular , Extractos Vegetales , Acanthamoeba castellanii/efectos de los fármacos , Queratitis por Acanthamoeba/tratamiento farmacológico , Queratitis por Acanthamoeba/parasitología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antiprotozoarios/farmacología , Antiprotozoarios/química , Trofozoítos/efectos de los fármacos , Animales , Humanos
2.
Parasit Vectors ; 17(1): 242, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38812022

RESUMEN

BACKGROUND: Proteases produced by Acanthamoeba spp. play an important role in their virulence and may be the key to understanding Acanthamoeba pathogenesis; thus, increasing attention has been directed towards these proteins. The present study aimed to investigate the lytic factors produced by Acanthamoeba castellanii during the first hours of in vitro co-culture with human corneal epithelial cells (HCECs). METHODS: We used one old and one recent Acanthamoeba isolate, both from patients with severe keratitis, and subsets of these strains with enhanced pathogenic potential induced by sequential passaging over HCEC monolayers. The proteolytic profiles of all strains and substrains were examined using 1D in-gel zymography. RESULTS: We observed the activity of additional proteases (ranging from 33 to 50 kDa) during the early interaction phase between amoebae and HCECs, which were only expressed for a short time. Based on their susceptibilities to protease inhibitors, these proteases were characterized as serine proteases. Protease activities showed a sharp decline after 4 h of co-incubation. Interestingly, the expression of Acanthamoeba mannose-binding protein did not differ between amoebae in monoculture and those in co-culture. Moreover, we observed the activation of matrix metalloproteinases in HCECs after contact with Acanthamoeba. CONCLUSIONS: This study revealed the involvement of two novel serine proteases in Acanthamoeba pathogenesis and suggests a pivotal role of serine proteases during Acanthamoeba-host cell interaction, contributing to cell adhesion and lysis.


Asunto(s)
Acanthamoeba castellanii , Técnicas de Cocultivo , Células Epiteliales , Epitelio Corneal , Péptido Hidrolasas , Humanos , Acanthamoeba castellanii/enzimología , Acanthamoeba castellanii/genética , Células Epiteliales/parasitología , Epitelio Corneal/parasitología , Epitelio Corneal/enzimología , Péptido Hidrolasas/metabolismo , Péptido Hidrolasas/genética , Queratitis por Acanthamoeba/parasitología , Serina Proteasas/metabolismo , Serina Proteasas/genética , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Virulencia
3.
Int J Pharm ; 659: 124252, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38782149

RESUMEN

Although rare, amoebic keratitis (AK) is a disease caused by Acanthamoeba spp. that can lead to blindness. The drugs currently available for its treatment are very toxic, which has motivated the investigation for more effective and safe therapeutic options. In this study, the in vitro activity of ß-caryophyllene (BCP) was exploited taking into account its action against other protozoans as well as its well-known healing and anti-inflammatory properties (aspects relevant for the AK pathogenesis). On the other hand, high volatilization and oxidation phenomena are found for this compound, which led to its incorporation into nanoemulsions (NEs). Two emulsifying agents were tested, resulting in monodisperse systems with reduced droplet size (<265 nm) and high surface charge (positive and negative for NEs prepared with cetrimonium bromide -CTAB and Phosal® 50+, respectively). NEs prepared with CTAB were shown to be more stable after long-term storage at 4 and 25 °C than those prepared with Phosal®. Pure BCP, at the highest concentration (500 µM), resulted in a level of inhibition of Acanthamoeba trophozoites equivalent to that of reference drug (chlorhexidine). This activity was even greater after oil nanoencapsulation. The reduced droplet size could improve the interaction of the oil with the microorganism, justifying this finding. Changes in surface charge did not impact the activity. Positively charged NEs improved the interaction and retention of BCP in the cornea and thus should be prioritized for further studies.


Asunto(s)
Queratitis por Acanthamoeba , Emulsiones , Sesquiterpenos Policíclicos , Queratitis por Acanthamoeba/tratamiento farmacológico , Queratitis por Acanthamoeba/parasitología , Sesquiterpenos Policíclicos/química , Nanopartículas , Administración Oftálmica , Cetrimonio/química , Animales , Acanthamoeba/efectos de los fármacos , Estabilidad de Medicamentos , Tamaño de la Partícula , Soluciones Oftálmicas , Humanos
4.
Eur J Protistol ; 91: 126032, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37948889

RESUMEN

Acanthamoeba castellanii is a free-living amoeba that acts as an opportunistic pathogen for humans and is the pathogenic agent of Acanthamoeba keratitis (AK). A. castellanii may present as proliferative and infective trophozoites or as resistant cysts during their life cycle. The immune response against AK is still poorly explored; however, it is well established that macrophages and neutrophils play essential roles in controlling corneal infection during the disease outcome. The release of NETs is one of the innate immune strategies to prevent parasite infection, especially when neutrophils interact with microorganisms that are too large to be phagocytosed, which is the case for amoeba species. The present work demonstrated that A. castellanii trophozoites can trigger NET formation upon in vitro interaction with neutrophils. Using DNase as a control, we observed increased parasite survival after coinciding with neutrophils, which may be correlated with NET degradation. Indeed, A. castellanii trophozoites degrade the NET DNA scaffold. Molecular analysis confirmed the occurrence of a 3'-nucleotidase/nuclease (3'-NT/NU) in the A. castellanii genome. We also demonstrated that trophozoites exhibit significantly higher 3'-NT/NU activity than cysts, which cannot trigger NET release. Considering that previous studies indicated the pathological role of 3'-NT-/NU in parasite infection, we suggest that this enzyme may act as the mechanism of escape of A. castellanii trophozoites from NETs.


Asunto(s)
Queratitis por Acanthamoeba , Acanthamoeba castellanii , Trampas Extracelulares , Animales , Humanos , Trofozoítos/fisiología , Queratitis por Acanthamoeba/parasitología
5.
Exp Parasitol ; 255: 108630, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37820893

RESUMEN

INTRODUCTION: The free-living protozoan Acanthamoeba can cause severe keratitis known as Acanthamoeba Keratitis (AK) and granulomatous amoebic encephalitis (GAE). The pathogenesis of Acanthamoeba includes intricate interactions between the organism and the host's immune system. The downstream analysis of a well-annotated genome assembly along with proteomic analysis can unravel several biological processes and aid in the identification of potential genes involved in pathogenicity. METHODS: Based on the next-generation sequencing data analysis, genes including lysophospholipase, phospholipase, S8/S53 peptidase, carboxylesterase, and mannose-binding protein were selected as probable pathogenic targets that were validated by conventional PCR in a total of 30 Acanthamoeba isolates. This was followed by real-time PCR for the evaluation of relative gene expression in the keratitis and amoebic encephalitis animal model induced using keratitis (CHA5), encephalitis (CHA24) and non-pathogenic environmental isolate (CHA36). In addition, liquid chromatography-mass spectrometry (LC-MS/MS) was performed for keratitis, encephalitis, and non-pathogenic environmental isolate before and after treatment with polyhexamethylene biguanide (PHMB). RESULTS: The conventional PCR demonstrated the successful amplification of lysophospholipase, phospholipase, S8/S53 peptidase, carboxylesterase, and mannose-binding protein genes in clinical and environmental isolates. The expression analysis revealed phospholipase, lysophospholipase, and mannose-binding genes to be significantly upregulated in the keratitis isolate (CHA 5) during AK in the animal model. In the case of the amoebic encephalitis model, phospholipase, lysophospholipase, S8/S53 peptidase, and carboxylesterase were significantly upregulated in the encephalitis isolate compared to the keratitis isolate. The proteomic data revealed differential protein expression in pathogenic versus non-pathogenic isolates in the pre and post-treatment with PHMB. CONCLUSION: The gene expression data suggests that lysophospholipase, phospholipase, S8/S53 peptidase, carboxylesterase, and mannose-binding protein (MBP) could play a role in the contact-dependent and independent mechanisms of Acanthamoeba pathogenesis. In addition, the proteomic profiling of the 3 isolates revealed differential protein expression crucial for parasite growth, survival, and virulence. Our results provide baseline data for selecting possible pathogenic targets that could be utilized for designing knockout experiments in the future.


Asunto(s)
Queratitis por Acanthamoeba , Acanthamoeba , Amebiasis , Encefalitis , Lectina de Unión a Manosa , Animales , Lisofosfolipasa/genética , Cromatografía Liquida , Proteómica , Espectrometría de Masas en Tándem , Queratitis por Acanthamoeba/parasitología , Amebiasis/parasitología , Reacción en Cadena en Tiempo Real de la Polimerasa , Expresión Génica , Péptido Hidrolasas
6.
Parasitol Res ; 122(9): 2109-2118, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37418019

RESUMEN

Acanthamoeba are free-living protozoa present ubiquitously in numerous environmental reservoirs that exist as an actively feeding trophozoite or a dormant cyst stage. The pathogenic Acanthamoeba are known to cause Acanthamoeba keratitis (AK) and granulomatous amoebic encephalitis (GAE). Despite their omnipresence, the number of infections is quite low. The reason behind this low frequency of Acanthamoeba infections could be the existence of many non-pathogenic strains or a successful host immune response to these infections. Studies in the past have proposed a few physiological parameters for the differentiation of pathogenic and non-pathogenic strains. Additionally, in vivo experiments are known to play an essential role in understanding the virulence of parasites, immunological aspects, and disease pathogenesis. The thermotolerance (30 °C, 37 °C, and 40 °C) and osmotolerance (0.5 M, 1 M, and 1.5 M) tests were performed on 43 Acanthamoeba isolates from patients with keratitis (n = 22), encephalitis (n = 5), and water samples (n = 16). In addition, the genotype of 10 Acanthamoeba isolates (keratitis (n = 2), encephalitis (n = 2), water (n = 6)) was determined and were then evaluated for pathogenicity on mouse model by inducing Acanthamoeba keratitis and amoebic encephalitis. The results of the thermotolerance and osmotolerance assays categorized 29/43 (67.4%) isolates as pathogenic, 8 as low pathogenic (18.6%), and the remaining 6 (13.9%) as non-pathogenic. The 10 Acanthamoeba isolates were categorized as T11 (5 isolates), T5 (2 isolates), T4 (2 isolates), and T10 (1 isolate) genotypes. Out of 10 Acanthamoeba isolates, 9 were successful in establishing AK, amoebic encephalitis, or both in the mice model, and a single isolate was found non-pathogenic. Two isolates from water samples were non-pathogenic in the physiological tests but successfully established Acanthamoeba infection in the mice model. The results of the physiological assays and in vivo experiments were analogous for 7 isolates while 1 isolate from the water was low pathogenic in the physiological assays but failed to produce pathogenicity during in vivo experiments. The physiological parameters are not very dependable to test the pathogenic potential of Acanthamoeba isolates, and thus results must always be validated by in vivo experiments. There is no infallible approach for determining the potential pathogenicity of environmental isolates of Acanthamoeba because several parameters regulate the pathogenic potential.


Asunto(s)
Queratitis por Acanthamoeba , Acanthamoeba , Amebiasis , Encefalitis , Encefalitis Infecciosa , Animales , Ratones , Acanthamoeba/genética , Queratitis por Acanthamoeba/parasitología , Amebiasis/parasitología , Genotipo , Encefalitis/parasitología , Agua
7.
J Infect Public Health ; 16(6): 841-852, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37030037

RESUMEN

Acanthamoeba keratitis is a rare parasitic infection of the cornea that can lead to permanent blindness if not diagnosed and treated promptly. We collected data on the incidences of Acanthamoeba keratitis from 20 countries and calculated an annual incidence of 23,561 cases, with the lowest rates in Tunisia and Belgium, and the highest in India. We analyzed 3755 Acanthamoeba sequences from the GenBank database across Asia, Europe, North America, South America, and Oceania and genotyped them into T1, T2, T3, T4, T5, T10, T11, T12, and T15. Many genotypes possess different characteristics, yet T4 is the most prevalent genotype. As efficient treatment against Acanthamoeba remains lacking, prevention from early diagnosis via staining, PCR, or in vivo confocal microscopy (IVCM) becomes significant for the condition's prognosis. IVCM is the most recommended approach for the early detection of Acanthamoeba. If IVCM is unavailable, PCR should be used as an alternative.


Asunto(s)
Queratitis por Acanthamoeba , Acanthamoeba , Humanos , Queratitis por Acanthamoeba/diagnóstico , Queratitis por Acanthamoeba/epidemiología , Queratitis por Acanthamoeba/parasitología , Acanthamoeba/genética , Córnea/parasitología , Genotipo , Pronóstico
8.
Parasitol Res ; 122(5): 1167-1175, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36922408

RESUMEN

Species of the genus Acanthamoeba are free-living protozoans that occasionally act as parasites, causing a severe, progressive corneal infection termed Acanthamoeba keratitis (AK). The variable pathogenic potential among Acanthamoeba lineages has been shown by in vitro assays, but little is known about the behavior of different strains in animal models of AK. This work aimed to evaluate the infectivity of Acanthamoeba from distinct morphological groups and genotypes in a rat model of AK and apply an immunohistochemical technique for histological characterization of the lesions. Only a strain classified as group I/genotype T17, isolated from a soil source, caused ulcerated corneal lesions in two Wistar rats (n = 9) subjected to intrastromal inoculation. Two strains derived from AK human cases (group II/genotype T4 and group III/genotype T5) did not induce corneal lesions in the rats. A previous association of group II/genotype T4 trophozoites with lethally irradiated Escherichia coli did not influence the infectivity. A hyperimmune serum produced in Wistar rats was validated by an immunocytochemical technique using the three distinct strains and then applied for immunohistochemistry. The abundance of antigenic residues was observed in both corneas with keratitis, suggesting that the infectious process tended to resolve. Despite the low infection rate of the AK Wistar rat model, we produced an immunochemical tool with a potential diagnostic application. We also showed for the first time the ability of Acanthamoeba from T17 genotype to cause AK in experimental conditions.


Asunto(s)
Queratitis por Acanthamoeba , Acanthamoeba , Ratas , Humanos , Animales , Acanthamoeba/genética , Ratas Wistar , Queratitis por Acanthamoeba/parasitología , Córnea/parasitología , Genotipo , Escherichia coli
9.
Cornea ; 42(5): 624-629, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36518074

RESUMEN

PURPOSE: Acanthamoeba castellanii ( A. castellanii ) displays host specificity at the level of the ocular surface. This study determined the susceptibility of the intact and traumatized feline cornea to A. castellanii binding and invasion relative to other host species with established susceptibility and resistance to Acanthamoeba binding. METHODS: Full-thickness buttons of fresh feline, porcine, and canine corneas were prepared. The corneal epithelium was confirmed intact by fluorescein staining or lightly scarified with a 25-G needle to simulate corneal trauma. Acanthamoeba castellanii was axenically cultivated. Corneal buttons were incubated with the parasite suspension or parasite-free medium for 18 hours at 35°C. Corneal buttons were rinsed, fixed, and processed for histopathology and immunohistochemistry using immunoperoxidase and immunofluorescence methods of amoeba detection. RESULTS: Numerous amoebae were bound to feline and porcine corneas incubated with parasites. In both intact and traumatized corneas, amoebae were detected at all levels in the corneal epithelium and within the anterior stroma. In traumatized corneal sections, amoebae were frequently present in regions of epithelial damage. Corneal architecture was well-preserved in sections incubated with parasite-free medium; however, epithelial cell sloughing, separation of epithelial layers, and epithelial detachment from the stroma were observed in corneas incubated with amoebae. Intact and traumatized canine corneas were relatively free of adherent amoebae, and corneal architecture was indistinguishable between sections incubated with the parasite suspension and parasite-free medium. CONCLUSIONS: The feline cornea is highly susceptible to in vitro binding and invasion by A. castellanii . Acanthamoeba binding to the feline cornea does not require a previous epithelial defect.


Asunto(s)
Queratitis por Acanthamoeba , Acanthamoeba castellanii , Lesiones de la Cornea , Epitelio Corneal , Animales , Gatos , Perros , Porcinos , Córnea/parasitología , Epitelio Corneal/patología , Queratitis por Acanthamoeba/parasitología , Lesiones de la Cornea/patología
10.
Molecules ; 27(19)2022 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-36234875

RESUMEN

Acanthamoeba species are capable of causing amoebic keratitis (AK). As a monotherapy, alpha-mangostin is effective for the treatment of AK; however, its bioavailability is quite poor. Moreover, the efficacy of therapy is contingent on the parasite and virulent strains. To improve readiness against AK, it is necessary to find other derivatives with accurate target identification. Beta-tubulin (BT) has been used as a target for anti-Acanthamoeba (A. keratitis). In this work, therefore, a model of the BT protein of A. keratitis was constructed by homology modeling utilizing the amino acid sequence from NCBI (GenBank: JQ417907.1). Ramachandran Plot was responsible for validating the protein PDB. The verified BT PDB was used for docking with the specified ligand. Based on an improved docking score compared to alpha-mangostin (AM), two modified compounds were identified: 1,6-dihydroxy-7-methoxy-2,8-bis(3-methylbut-2-en-1-yl)-9H-xanthen-9-one (C1) and 1,6-dihydroxy-2,8-bis(3-methylbut-2-en-1-yl)-9H-xanthen-9-one (C2). In addition, molecular dynamics simulations were conducted to analyze the interaction characteristics of the two bound BT-new compound complexes. During simulations, the TRP9, ARG50, VAL52, and GLN122 residues of BT-C1 that align to the identical residues in BT-AM generate consistent hydrogen bond interactions with 0-3 and 0-2. However, the BT-C2 complex has a different binding site, TYR 258, ILE 281, and SER 302, and can form more hydrogen bonds in the range 0-4. Therefore, this study reveals that C1 and C2 inhibit BT as an additive or synergistic effect; however, further in vitro and in vivo studies are needed.


Asunto(s)
Queratitis por Acanthamoeba , Acanthamoeba , Queratitis por Acanthamoeba/parasitología , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Tubulina (Proteína) , Xantonas
11.
Biomed Pharmacother ; 150: 113062, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35658232

RESUMEN

The genus Acanthamoeba is characterized by being a group of ubiquitous and free-living amoebae that inhabit a variety of environments. Generally, human infections by this parasite are associated with Acanthamoeba keratitis, especially in contact lens wearers, and with chronic but fatal granulomatous amoebic meningoencephalitis. Current treatments used for eradication of amoeba from infection sites represent a challenge for pharmacotherapy, due to the lack of effective treatment and the amoebae highly resistant to anti-amoebic drugs. In this study, we describe the results of the assessment of the IC50 of 10 isobenzofuran-1(3H)-one derivatives (QOET) against four Acanthamoeba strains. The compounds QOET-3 and QOET-9 were the selected derivatives with the lowest IC50 in A. castellanii Neff trophozoites (73.71 ± 0.25 and 69.99 ± 15.32 µM, respectively). Interestingly, analysis of the compound effects on the cell apoptosis-like features showed that both active molecules triggered programmed cell death (PCD) in A. castellanii Neff. The results obtained in this study highlights that isobenzofuranone derivatives could represent an interesting source for developing novel antiamoebic drugs.


Asunto(s)
Queratitis por Acanthamoeba , Acanthamoeba castellanii , Amebicidas , Queratitis por Acanthamoeba/parasitología , Amebicidas/farmacología , Animales , Muerte Celular , Humanos , Trofozoítos
12.
Exp Parasitol ; 239: 108312, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35738459

RESUMEN

Acanthamoeba castellanii is a free-living protozoan that causes several severe human parasitic diseases such as Acanthamoeba keratitis and granulomatous encephalitis. A. castellanii feeds on bacteria, yeasts, and other organic particles as food sources, but the mechanisms of digestion in acanthamoebal cells are unclear. Rab GTPases participate in endosomal delivery in eukaryotes after phagocytosis. This study aimed to determine the potential functions of A. castellanii Rab7 (AcRab7), which is involved in phagocytosis, and the relationship between AcRab7 and further cellular physiological phenomena. In this study, the inhibitor CID1067700 (CID) was used to specifically inhibit the binding of nucleotides to confirm the potential functions of AcRab7. Cellular proliferation and ATP assays were also used to detect underlying cellular physiological functions after blocking the phagocytosis pathway. We found that AcRab7 expression increased as the co-culture time with Escherichia coli increased. Immunofluorescence staining showed that AcRab7 colocalized with lysosomes in its GTP-activating form. In addition, AcRab7 inhibition resulted in a reduction in cell proliferation and ATP levels. Our results suggest that AcRab7 participates in endosomal delivery and dominates energy production and cell growth.


Asunto(s)
Queratitis por Acanthamoeba , Acanthamoeba castellanii , Queratitis por Acanthamoeba/parasitología , Acanthamoeba castellanii/fisiología , Adenosina Trifosfato , Escherichia coli , Humanos , Fagocitosis
13.
Microbiol Spectr ; 10(3): e0007722, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35467370

RESUMEN

Traditional cysticidal assays for Acanthamoeba species revolve around treating cysts with compounds and manually observing the culture for evidence of excystation. This method is time-consuming, labor-intensive, and low throughput. We adapted and trained a YOLOv3 machine learning, object detection neural network to recognize Acanthamoeba castellanii trophozoites and cysts in microscopy images to develop an automated cysticidal assay. This trained neural network was used to count trophozoites in wells treated with compounds of interest to determine if a compound treatment was cysticidal. We validated this new assay with known cysticidal and noncysticidal compounds. In addition, we undertook a large-scale bioluminescence-based screen of 9,286 structurally unique marine microbial metabolite fractions against the trophozoites of A. castellanii and identified 29 trophocidal hits. These hits were then subjected to this machine learning-based automated cysticidal assay. One marine microbial metabolite fraction was identified as both trophocidal and cysticidal. IMPORTANCE The free-living Acanthamoeba can exist as a trophozoite or cyst and both stages can cause painful blinding keratitis. Infection recurrence occurs in approximately 10% of cases due to the lack of efficient drugs that can kill both trophozoites and cysts. Therefore, the discovery of therapeutics that are effective against both stages is a critical unmet need to avert blindness. Current efforts to identify new anti-Acanthamoeba compounds rely primarily upon assays that target the trophozoite stage of the parasite. We adapted and trained a machine learning, object detection neural network to recognize Acanthamoeba trophozoites and cysts in microscopy images. Our machine learning-based cysticidal assay improved throughput, demonstrated high specificity, and had an exquisite ability to identify noncysticidal compounds. We combined this cysticidal assay with our bioluminescence-based trophocidal assay to screen about 9,000 structurally unique marine microbial metabolites against A. castellanii. Our screen identified a marine metabolite that was both trophocidal and cysticidal.


Asunto(s)
Queratitis por Acanthamoeba , Acanthamoeba castellanii , Amebicidas , Queratitis por Acanthamoeba/tratamiento farmacológico , Queratitis por Acanthamoeba/parasitología , Amebicidas/farmacología , Amebicidas/uso terapéutico , Animales , Aprendizaje Automático , Trofozoítos
14.
PLoS One ; 17(2): e0264021, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35171970

RESUMEN

BACKGROUND: Acanthamoeba keratitis is challenging to treat and thought to result in poor outcomes, but very few comparative studies exist to assess whether ulcers caused by Acanthamoeba are worse than those caused by bacteria or fungus. METHODS: In a retrospective cohort study, all cases of smear- or culture-proven Acanthamoeba keratitis diagnosed from January 2006 to June 2011 at an eye hospital in South India were identified from the microbiology database. Random samples of the same number of cases of bacterial and fungal keratitis, matched by year, were identified from the same database in order to compare outcomes between the three types of organism. The main outcomes were the time until the following events: re-epithelialization, discontinuation of antimicrobials, perforation/keratoplasty, elevated intraocular pressure, and new cataract. RESULTS: The median time until re-epithelialization was 113 days for Acanthamoeba keratitis, 30 days for fungal keratitis, and 25 days for bacterial keratitis, and the median time until discontinuation of antimicrobial therapy was 100 days for Acanthamoeba keratitis, 49 days for fungal keratitis, and 40 days for bacterial keratitis. Compared to the other two organisms, Acanthamoeba ulcers took significantly longer to re-epithelialize (adjusted HR 0.4, 95% CI 0.3 to 0.6 relative to bacterial ulcers and HR 0.3, 95% CI 0.2 to 0.5 relative to fungal ulcers; overall p<0.001) and had significantly longer courses of antimicrobials (adjusted HR 0.3, 95% CI 0.2 to 0.6 relative to bacterial ulcers and HR 0.5, 95%CI 0.3 to 0.8 relative to fungal ulcers; overall p<0.001). No statistically significant difference was observed between the three organisms for the other time-to-event outcomes. CONCLUSIONS: Acanthamoeba keratitis was more difficult to treat and had worse clinical outcomes than bacterial or fungal ulcers, highlighting the lack of adequate treatment regimens for this infection.


Asunto(s)
Queratitis por Acanthamoeba/patología , Antiinfecciosos/uso terapéutico , Infecciones Bacterianas del Ojo/patología , Infecciones Fúngicas del Ojo/patología , Repitelización , Acanthamoeba/aislamiento & purificación , Queratitis por Acanthamoeba/tratamiento farmacológico , Queratitis por Acanthamoeba/parasitología , Adulto , Bacterias/aislamiento & purificación , Infecciones Bacterianas del Ojo/tratamiento farmacológico , Infecciones Bacterianas del Ojo/microbiología , Infecciones Fúngicas del Ojo/tratamiento farmacológico , Infecciones Fúngicas del Ojo/microbiología , Femenino , Hongos/aislamiento & purificación , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos , Factores de Riesgo
15.
ACS Infect Dis ; 8(2): 271-279, 2022 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-34994538

RESUMEN

Acanthamoeba is a ubiquitous and free-living protozoan pathogen responsible for causing Acanthamoeba keratitis (AK), a severe corneal infection inflicting immense pain that can result in permanent blindness. A drug-based treatment of AK has remained arduous because Acanthamoeba trophozoites undergo encystment to become highly drug-resistant cysts upon exposure to harsh environmental conditions such as amoebicidal agents (e.g., polyhexanide, chloroquine, and chlorohexidine). As such, drugs that block the Acanthamoeba encystation process could result in a successful AK treatment. Histone deacetylase inhibitors (HDACi) have recently emerged as novel therapeutic options for treating various protozoan and parasitic diseases. Here, we investigated whether novel HDACi suppress the proliferation and encystation of Acanthamoeba. Synthetic class II HDACi FFK29 (IIa selective) and MPK576 (IIb selective) dose-dependently decreased the viability of Acanthamoeba trophozoites. While these HDACi demonstrated a negligible effect on the viability of mature cysts, Acanthamoeba encystation was significantly inhibited by these HDACi. Apoptosis was slightly increased in trophozoites after a treatment with these HDACi, whereas cysts were unaffected by the HDACi exposure. The viability of human corneal cells was not affected by HDACi concentrations up to 10 µmol/L. In conclusion, these synthetic HDACi demonstrated potent amoebicidal effects and inhibited the growth and encystation of Acanthamoeba, thus highlighting their enormous potential for further development.


Asunto(s)
Queratitis por Acanthamoeba , Acanthamoeba castellanii , Amebicidas , Queratitis por Acanthamoeba/tratamiento farmacológico , Queratitis por Acanthamoeba/parasitología , Amebicidas/farmacología , Animales , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Trofozoítos
16.
Invest Ophthalmol Vis Sci ; 63(1): 11, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34994769

RESUMEN

Purpose: To determine the amoebicidal activity of functionalized poly-epsilon-lysine hydrogels (pɛK+) against Acanthamoeba castellanii. Methods: A. castellanii trophozoites and cysts were grown in the presence of pɛK solution (0-2.17 mM), pɛK or pɛK+ hydrogels, or commercial hydrogel contact lens (CL) for 24 hours or 7 days in PBS or Peptone-Yeast-Glucose (PYG) media (nutrient-deplete or nutrient-replete cultures, respectively). Toxicity was determined using propidium iodide and imaged using fluorescence microscopy. Ex vivo porcine corneas were inoculated with A. castellanii trophozoites ± pɛK, pɛK+ hydrogels or commercial hydrogel CL for 7 days. Corneal infection was assessed by periodic acid-Schiff staining and histologic analysis. Regrowth of A. castellanii from hydrogel lenses and corneal discs at 7 days was assessed using microscopy and enumeration. Results: The toxicity of pɛK+ hydrogels resulted in the death of 98.52% or 83.31% of the trophozoites at 24 hours or 7 days, respectively. The toxicity of pɛK+ hydrogels resulted in the death of 70.59% or 82.32% of the cysts in PBS at 24 hours or 7 days, respectively. Cysts exposed to pɛK+ hydrogels in PYG medium resulted in 75.37% and 87.14% death at 24 hours and 7 days. Ex vivo corneas infected with trophozoites and incubated with pɛK+ hydrogels showed the absence of A. castellanii in the stroma, with no regrowth from corneas or pɛK+ hydrogel, compared with infected-only corneas and those incubated in presence of commercial hydrogel CL. Conclusions: pɛK+ hydrogels demonstrated pronounced amoebicidal and cysticidal activity against A. castellanii. pɛK+ hydrogels have the potential for use as CLs that could minimize the risk of CL-associated Acanthamoeba keratitis.


Asunto(s)
Queratitis por Acanthamoeba/tratamiento farmacológico , Acanthamoeba castellanii/efectos de los fármacos , Amebicidas/farmacología , Córnea/parasitología , Infecciones Parasitarias del Ojo/tratamiento farmacológico , Hidrogeles/farmacología , Polilisina/farmacología , Queratitis por Acanthamoeba/parasitología , Amebicidas/toxicidad , Animales , Células Cultivadas , Soluciones para Lentes de Contacto/farmacología , Modelos Animales de Enfermedad , Epitelio Corneal/efectos de los fármacos , Infecciones Parasitarias del Ojo/parasitología , Humanos , Hidrogeles/toxicidad , Microscopía Fluorescente , Polilisina/toxicidad , Porcinos , Trofozoítos/efectos de los fármacos
17.
Cornea ; 41(2): 206-210, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35037904

RESUMEN

PURPOSE: The aim of this study was to determine the impact of Acanthamoeba keratitis (AK) caused by contact lens (CL) use on vision-related quality of life (VRQOL) and the sociodemographic factors and disease outcome associated with VRQOL. METHODS: Sixty-one CL-associated AK cases and 59 asymptomatic CL wearers (mean age ±SD 39.4 ± 16.5 vs. 45.5 ± 15.2 yrs, P = 0.04) were recruited from Moorfields Eye Hospital and Institute for Optometry, London. AK cases were surveyed during active disease and were stratified into "poor" and "good" outcomes based on clinical features. VRQOL was measured using Rasch-transformed scores from the Emotional, Mobility, and Reading domains of the 32-item Impact of Visual Impairment questionnaire. AK cases were compared with controls and "poor" outcomes compared with "good" with multivariable linear regression. Multivariable linear regression models were also used to identify the sociodemographic factors and disease outcome associated with VRQOL. RESULTS: AK was associated with significant and substantial reductions in all 3 evaluated domains of VRQOL (Reading -59.6%, Mobility -59.8%, and Emotional -66.2%) compared with controls, independent of sociodemographic factors. Patients with AK who experienced poor outcomes, those who were of British White race (compared with all other races) and female, had lower VRQOL scores across all domains. Patients with AK with lower incomes scored worse on Reading and Mobility domains, whereas those with lower education had poorer Emotional scores. CONCLUSIONS: AK has a considerable detrimental impact on VRQOL. Clinicians should consider the importance of referring patients with AK for rehabilitative support and counseling as part of active disease management.


Asunto(s)
Queratitis por Acanthamoeba/psicología , Acanthamoeba/aislamiento & purificación , Lentes de Contacto/efectos adversos , Infecciones Parasitarias del Ojo/psicología , Calidad de Vida , Agudeza Visual , Queratitis por Acanthamoeba/parasitología , Queratitis por Acanthamoeba/fisiopatología , Adulto , Estudios de Casos y Controles , Lentes de Contacto/parasitología , Córnea/parasitología , Infecciones Parasitarias del Ojo/parasitología , Infecciones Parasitarias del Ojo/fisiopatología , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo
19.
Microbiol Spectr ; 9(3): e0051221, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34935418

RESUMEN

Acanthamoeba castellanii is a free-living, pathogenic ameba found in the soil and water. It invades the body through ulcerated skin, the nasal passages, and eyes and can cause blinding keratitis and granulomatous encephalitis. However, the mechanisms underlying the opportunistic pathogenesis of A. castellanii remain unclear. In this study, we observed that commensal bacteria significantly reduced the cytotoxicity of the ameba on mammalian cells. This effect occurred in the presence of both Gram-positive and Gram-negative commensals. Additionally, commensals mitigated the disruption of cell junctions. Ex vivo experiments on mouse eyeballs further showed that the commensals protected the corneal epithelial layer. Together, these findings indicate that A. castellanii is pathogenic to individuals with a dysbiosis of the microbiota at infection sites, further highlighting the role of commensals as a natural barrier during parasite invasion. IMPORTANCE Acanthamoeba castellanii, an opportunistic protozoan widely present in the environment, can cause Acanthamoeba keratitis and encephalitis in humans. However, only a few reports describe how the ameba acts as an opportunistic pathogen. Our study showed that the normal microbiota interfered with the cytotoxicity of Acanthamoeba, persevered during Acanthamoeba invasion, and reduced corneal epithelium peeling in the mouse eyeball model. This suggests that commensals may act as a natural barrier against Acanthamoeba invasion. In future, individuals who suffer from Acanthamoeba keratitis should be examined for microbiota absence or dysbiosis to reduce the incidence of Acanthamoeba infection in clinical settings.


Asunto(s)
Queratitis por Acanthamoeba/parasitología , Acanthamoeba castellanii/fisiología , Bacterias Gramnegativas/fisiología , Bacterias Grampositivas/fisiología , Queratitis por Acanthamoeba/microbiología , Animales , Córnea/microbiología , Córnea/parasitología , Epitelio/parasitología , Femenino , Humanos , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos BALB C , Simbiosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA