Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.715
Filtrar
1.
Sci Total Environ ; 931: 172925, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38697551

RESUMEN

Subfossil pine and oak tree trunks were excavated during exploitation of the Budwity peatland in Northern Poland. Based on dendrochronological analysis, the woodland successions in peatland were reconstructed and correlated with moisture dynamics of the peatland ecosystem inferred from the high-resolution multi-proxy analysis of the peatland deposits. From the results of dendrochronological analysis and the 14C wiggle matching methods, four floating pine chronologies (5882-5595; 5250-5089; 3702-3546; and 2222-1979 mod. cal BP) and two oak chronologies (4932-4599 and 4042-3726 mod. cal BP) were developed. The organic sediments of the peatland (6 m thick) were deposited over approximately nine thousand years. The lower complex (525-315 cm) comprises minerogenic peat, while the upper complex (315.0-0.0 cm) is composed of ombrogenic peat. Subfossil tree trunks are distributed across various peat horizons, which suggests multiple stages of tree colonisation followed by subsequent dying-off phases. Multiproxy sediment analyses (lithological, geochemical and δ13C stable isotope, pollen, plant macrofossils, Cladocera, diatom, and Diptera analyses) indicate that the two earliest phases of pine colonisation (5882-5595 and 5250-5089 mod. cal BP) and the two stages of oak colonisation (4932-4599 and 4042-3726 mod. cal BP) were associated with periodic drying of the peatland. Conversely, tree dying-off phases occurred during periods of increased water levels in the peatland, coinciding with stages of increasing climate humidity during the Holocene. The two most recent phases of pine colonisation occurred during the ombrogenic stage of mire development. Remnants of the dead forest from these phases, marked by subfossil trunks still rooted in the ground, were preserved and exposed presently during peat exploitation, approximately 2.5 m below ground level. The identified phases of tree colonisation and subsequent dying-off phases show correlation with analogical phenomena observed in the other investigated European peatlands.


Asunto(s)
Pinus , Quercus , Suelo , Humedales , Polonia , Suelo/química , Monitoreo del Ambiente , Hidrología , Ecosistema , Sedimentos Geológicos/química
2.
Physiol Plant ; 176(3): e14333, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38710501

RESUMEN

Condensed tannins are widely present in the fruits and seeds of plants and effectively prevent them from being eaten by animals before maturity due to their astringent taste. In addition, condensed tannins are a natural compound with strong antioxidant properties and significant antibacterial effects. Four samples of mature and near-mature Quercus fabri acorns, with the highest and lowest condensed tannin content, were used for genome-based transcriptome sequencing. The KEGG enrichment analysis revealed that the differentially expressed genes (DEGs) were highly enriched in phenylpropanoid biosynthesis and starch and sucrose metabolism. Given that the phenylpropanoid biosynthesis pathway is a crucial step in the synthesis of condensed tannins, we screened for significantly differentially expressed transcription factors and structural genes from the transcriptome data of this pathway and found that the expression levels of four MADS-box, PAL, and 4CL genes were significantly increased in acorns with high condensed tannin content. The quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) experiment further validated this result. In addition, yeast one-hybrid assay confirmed that three MADS-box transcription factors could bind the promoter of the 4CL gene, thereby regulating gene expression levels. This study utilized transcriptome sequencing to discover new important regulatory factors that can regulate the synthesis of acorn condensed tannins, providing new evidence for MADS-box transcription factors to regulate the synthesis of secondary metabolites in fruits.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proantocianidinas , Quercus , Proantocianidinas/metabolismo , Proantocianidinas/biosíntesis , Quercus/genética , Quercus/metabolismo , Transcriptoma/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Frutas/genética , Frutas/metabolismo
3.
Clin Nutr ESPEN ; 61: 230-236, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38777439

RESUMEN

BACKGROUND AND AIM: Frequent administration of blood in ß-thalassemia patients can lead to over-loaded iron, a reduction in the levels of antioxidant activities in the body, and oxidative stress. This study was done to evaluate the antioxidant and protective effect of aqueous oak (Quercus brantii) extract supplementation on these patients. METHODS: This clinical trial was performed on 60 major ß thalassemia patients dividing them into intervention and control groups. In addition to taking desferrioxamine (DFO), the control and intervention groups received respectively placebo capsule supplementation and aqueous Quercus extract capsules (300 mg/day) for 3 months. Serum lipid profiles (LDL-c, HDL-c, triglyceride), Total Antioxidant Capacity (TAC), Glucose, Uric acid, urea nitrogen (BUN), Creatinine, LFT (Liver Function Tests) such as SGOT, SGPT, ALP, Total bilirubin, Direct bilirubin, ferritin, MDA and carbonyl protein (CO) levels were measured before and after the period. In addition, the activity of catalase (CAT), and superoxide dismutase (SOD) was measured in the red blood cell. Furthermore, antioxidant activity and total phenolic content of aqueous Quercus were recorded to standardize capsule formulation. RESULTS: Mean serum MDA, and protein CO, significantly decreased in the intervention group with ß-TM after 3 months of treatment with Quercus extract. In addition, the superoxide dismutase (SOD) enzyme and Total antioxidant capacity (TAC) significantly increased in comparison with the control group. Changes in serum creatinine, BUN, and alanine transferase were not significant. In the study, Quercus extract capsules contain 48/56 mg gallic acid/g (dry extract) total phenol, 58/6 mg/g (dry extract), and flavonoids of 63/8 µg/ml antioxidant power which by GC/MS analysis has been measured. At the end of the study, serum MDA decreased from 48.65 ± 8.74 to 43.94 ± 10.39 µ mol/l after administration of oak extract and protein CO dropped from 2.44 ± 0.38 to 1.2 ± 0.31 nmol DNPH/mg protein after administration of the oak extract. At the end of the study serum, TAC increased in patients interventional group from 907 ± 319 to 977 ± 327 µmol FeSO4/l compared to the control group 916 ± 275 to 905.233 ± 233 µmol FeSO4/l with placebo, and SOD increased from 1577 ± 325 to 2079 ± 554 U/l (compared to 1687 ± 323 U/l with placebo). The treatment effect of Quercus was measured using a mixed-effects model of variance analysis for changes in MDA, protein CO, TAC, and SOD, with significant effects being demonstrated for each laboratory parameter (P = 0.15, P = 0.001, P = 0.02, and P < 0.003, respectively). CONCLUSIONS: Aqueous Quercus extract, due to its high antioxidant potential, reduced MDA, serum carbonyl protein, and increased superoxide dismutase activity effectively decreased serum OS and enhanced serum antioxidant capacity in patients with ß-thalassemia major. oak given as an adjuvant therapy to standard iron chelators may provide an improvement in the OS measurements obtained in these patients. REGISTRATION INFORMATION: This study was submitted, evaluated, and approved by the Iranian Registry of Clinical Trials (IRCT: http://www.irct.ir; IRCT2015101411819N4), which was established for national medical schools in Iran.


Asunto(s)
Antioxidantes , Estrés Oxidativo , Extractos Vegetales , Quercus , Talasemia beta , Humanos , Quercus/química , Estrés Oxidativo/efectos de los fármacos , Talasemia beta/sangre , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Masculino , Femenino , Adulto , Superóxido Dismutasa/sangre , Irán , Adulto Joven , Suplementos Dietéticos , Catalasa/sangre , Deferoxamina/uso terapéutico , Adolescente , Malondialdehído/sangre , Creatinina/sangre
4.
Int J Biol Macromol ; 268(Pt 1): 131686, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38643923

RESUMEN

Despite a fair amount of lignin conversion during mycelial growth, previous structural analyses have not yet revealed how lignin changes continuously and what the relationship is between lignin and ligninolytic enzymes. To clarify these aspects, Quercus acutissima sawdust attaching Ganoderma lucidum mycelium collected from different growth stage was subjected to analysis of lignin structure and ligninolytic enzyme activity. Two key periods of lignin degradation are found during the cultivation of G. lucidum: hypha rapid growth period and primordium formation period. In the first stage, laccase activity is associated with the opening of structures such as methoxyls, ß-O-4' substructures and guaiacyl units in lignin, as well as the shortening of lignin chains. Manganese peroxidases and lignin peroxidases are more suitable for degrading short chain lignin. The structure of phenylcoumarans and syringyl changes greatly in the second stage. The results from sawdust attaching mycelium provide new insights to help improve the cultivation substrate formulation of G. lucidum and understand biomass valorization better.


Asunto(s)
Lignina , Micelio , Quercus , Reishi , Lignina/metabolismo , Lignina/química , Quercus/metabolismo , Quercus/química , Quercus/crecimiento & desarrollo , Micelio/metabolismo , Micelio/crecimiento & desarrollo , Reishi/metabolismo , Reishi/crecimiento & desarrollo , Madera/química , Lacasa/metabolismo , Peroxidasas/metabolismo , Biomasa
5.
Sci Rep ; 14(1): 7784, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565553

RESUMEN

In Iran, native oak species are under threat from episodes of Charcoal Disease, a decline syndrome driven by abiotic stressors (e.g. drought, elevated temperature) and biotic components, Biscogniauxia mediterranea (De Not.) Kuntze and Obolarina persica (M. Mirabolfathy). The outbreak is still ongoing and the country's largest ever recorded. Still, the factors driving its' epidemiology in time and space are poorly known and such knowledge is urgently needed to develop strategies to counteract the adverse effects. In this study, we developed a generic framework based on experimental, machine-learning algorithms and spatial analyses for landscape-level prediction of oak charcoal disease outbreaks. Extensive field surveys were conducted during 2013-2015 in eight provinces (more than 50 unique counties) in the Zagros ecoregion. Pathogenic fungi were isolated and characterized through morphological and molecular approaches, and their pathogenicity was assessed under controlled water stress regimes in the greenhouse. Further, we evaluated a set of 29 bioclimatic, environmental, and host layers in modeling for disease incidence data using four well-known machine learning algorithms including the Generalized Linear Model, Gradient Boosting Model, Random Forest model (RF), and Multivariate Adaptive Regression Splines implemented in MaxEnt software. Model validation statistics [Area Under the Curve (AUC), True Skill Statistics (TSS)], and Kappa index were used to evaluate the accuracy of each model. Models with a TSS above 0.65 were used to prepare an ensemble model. The results showed that among the different climate variables, precipitation and temperature (Bio18, Bio7, Bio8, and bio9) in the case of O. persica and similarly, gsl (growing season length TREELIM, highlighting the warming climate and the endophytic/pathogenic nature of the fungus) and precipitation in case of B. mediterranea are the most important influencing variables in disease modeling, while near-surface wind speed (sfcwind) is the least important variant. The RF algorithm generates the most robust predictions (ROC of 0.95; TSS of 0.77 and 0.79 for MP and OP, respectively). Theoretical analysis shows that the ensemble model (ROC of 0.95 and 0.96; TSS = 0.79 and 0.81 for MP and OP, respectively), can efficiently be used in the prediction of the charcoal disease spatiotemporal distribution. The oak mortality varied ranging from 2 to 14%. Wood-boring beetles association with diseased trees was determined at 20%. Results showed that water deficiency is a crucial component of the oak decline phenomenon in Iran. The Northern Zagros forests (Ilam, Lorestan, and Kermanshah provinces) along with the southern Zagros forests (Fars and Kohgilouyeh va-Boyer Ahmad provinces) among others are the most endangered areas of potential future pandemics of charcoal disease. Our findings will significantly improve our understanding of the current situation of the disease to pave the way against pathogenic agents in Iran.


Asunto(s)
Ascomicetos , Quercus , Quercus/microbiología , Carbón Orgánico , Irán/epidemiología
6.
BMC Genomics ; 25(1): 328, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38566015

RESUMEN

BACKGROUND: Whole-genome duplication and long terminal repeat retrotransposons (LTR-RTs) amplification in organisms are essential factors that affect speciation, local adaptation, and diversification of organisms. Understanding the karyotype projection and LTR-RTs amplification could contribute to untangling evolutionary history. This study compared the karyotype and LTR-RTs evolution in the genomes of eight oaks, a dominant lineage in Northern Hemisphere forests. RESULTS: Karyotype projections showed that chromosomal evolution was relatively conservative in oaks, especially on chromosomes 1 and 7. Modern oak chromosomes formed through multiple fusions, fissions, and rearrangements after an ancestral triplication event. Species-specific chromosomal rearrangements revealed fragments preserved through natural selection and adaptive evolution. A total of 441,449 full-length LTR-RTs were identified from eight oak genomes, and the number of LTR-RTs for oaks from section Cyclobalanopsis was larger than in other sections. Recent amplification of the species-specific LTR-RTs lineages resulted in significant variation in the abundance and composition of LTR-RTs among oaks. The LTR-RTs insertion suppresses gene expression, and the suppressed intensity in gene regions was larger than in promoter regions. Some centromere and rearrangement regions indicated high-density peaks of LTR/Copia and LTR/Gypsy. Different centromeric regional repeat units (32, 78, 79 bp) were detected on different Q. glauca chromosomes. CONCLUSION: Chromosome fusions and arm exchanges contribute to the formation of oak karyotypes. The composition and abundance of LTR-RTs are affected by its recent amplification. LTR-RTs random retrotransposition suppresses gene expression and is enriched in centromere and chromosomal rearrangement regions. This study provides novel insights into the evolutionary history of oak karyotypes and the organization, amplification, and function of LTR-RTs.


Asunto(s)
Quercus , Retroelementos , Quercus/genética , Genoma de Planta , Cariotipo , Secuencias Repetidas Terminales/genética , Evolución Molecular , Filogenia
7.
Ying Yong Sheng Tai Xue Bao ; 35(3): 597-605, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38646746

RESUMEN

We investigated the inter- and intra-species differences of leaf vein traits of three dominant Quercus species, Q. wutaishanica, Q. aliena var. acutiserrata, and Q. variabilis of Niubeiling (subtropical humid climate) and Taohuagou (warm temperate semi-humid climate), located in the eastern and western Qinling Mountains. The nine examined leaf vein traits included primary leaf vein width, secondary leaf vein width, mean fine vein width, primary vein density, fine vein density, vein areole diameter, areole density, 3D fine vein surface area, and fine vein volume. We further elucidated the influencing mechanisms and regulatory pathways of biotic and abiotic factors on leaf vein traits. The results showed that species identity had significant effects on eight out of nine leaf vein traits except 3D fine vein surface area, while habitat had significant effects on primary leaf vein width, secondary leaf vein width, vein areole diameter, fine vein density, and areole density. Altitude had significant effects on primary vein density, mean fine vein width, vein areole diameter, fine vein density and areole density. Habitat, tree species identity, and altitude had significantly interactive effects on primary leaf vein density, 3D fine vein surface area, and fine vein volume. There were significant differences in primary leaf vein width, mean fine vein width, areole density, 3D fine vein surface area, fine vein volume, primary vein density of Q. wutaishanica between the two studied habitats, but the differences were only found in secondary leaf vein width and areole density of Q. aliena var. acutiserrata and Q. variabilis. The examined leaf vein traits were influenced both by biotic and abiotic factors, with varying effect sizes. Among the biotic factors, petiole length, leaf length and width ratio had strong effect on leaf vein traits. Among the abiotic factors, climatic and soil factors had high effect size on vein traits, with the former being higher than the latter. Leaf vein traits were affected directly by biotic factors, but indirectly by abiotic factors (soil and climatic factors) via regulating biotic factors (leaf stoichiometry and leaf phenotypic traits).


Asunto(s)
Ecosistema , Hojas de la Planta , Quercus , Quercus/anatomía & histología , Hojas de la Planta/anatomía & histología , China , Especificidad de la Especie , Altitud
8.
Sci Total Environ ; 927: 172166, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38575023

RESUMEN

Previous favorable climate conditions stimulate tree growth making some forests more vulnerable to hotter droughts. This so-called structural overshoot may contribute to forest dieback, but there is little evidence on its relative importance depending on site conditions and tree species because of limited field data. Here, we analyzed remote sensing (NDVI) and tree-ring width data to evaluate the impacts of the 2017 drought on canopy cover and growth in mixed Mediterranean forests (Fraxinus ornus, Quercus pubescens, Acer monspessulanum, Pinus pinaster) located in southern Italy. Legacy effects were assessed by calculating differences between observed and predicted basal area increment (BAI). Overall, the growth response of the study stands to the 2017 drought was contingent on site conditions and species characteristics. Most sites presented BAI and canopy cover reductions during the drought. Growth decline was followed by a quick recovery and positive legacy effects, particularly in the case of F. ornus. However, we found negative drought legacies in some species (e.g., Q. pubescens, A. monspessulanum) and sites. In those sites showing negative legacies, high growth rates prior to drought in response to previous wet winter-spring conditions may have predisposed trees to drought damage. Vice versa, the positive drought legacy found in some F. ornus site was linked to post-drought growth release due to Q. pubescens dieback and mortality. Therefore, we found evidences of structural drought overshoot, but it was restricted to specific sites and species. Our findings highlight the importance of considering site settings such as stand composition, pre-drought conditions and different tree species when studying structural overshoot. Droughts contribute to modify the composition and dynamics in mixed forests.


Asunto(s)
Sequías , Bosques , Árboles , Árboles/fisiología , Italia , Quercus/crecimiento & desarrollo , Quercus/fisiología , Cambio Climático , Pinus/fisiología , Pinus/crecimiento & desarrollo , Monitoreo del Ambiente , Fraxinus/fisiología , Fraxinus/crecimiento & desarrollo , Acer/crecimiento & desarrollo , Acer/fisiología
9.
BMC Plant Biol ; 24(1): 302, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38637784

RESUMEN

BACKGROUND: Early blight (EB) of Tomatoes, caused by Alternaria solani, is a serious fungal disease that adversely affects tomato production. Infection is characterized by dark lesions on leaves, stems, and fruits. Several agrochemicals can be used to control infection, these chemicals may disrupt environmental equilibrium. An alternative technology is needed to address this significant fungal threat. This study was designed to control the growth of EB in tomatoes caused by A. solani, using green-fabricated silver nanoparticles (Ag-NPs). RESULTS: Ag-NPs were synthesized through an environmentally friendly and cost-effective approach using leaf extract of Quercus incana Roxb. (Fagaceae). The physico-chemical characterization of the Ag-NPs was conducted through UV-visible spectroscopy, scanning electron microscopy, X-ray diffraction analysis, and Fourier transform infrared spectrometry. The Ag-NPs produced were round with a mean diameter of 27 nm. The antifungal activity of these Ag-NPs was assessed through in vitro Petri plate and in vitro leaflet assays against A. solani. The green fabricated Ag-NPs exhibited excellent antifungal activity in vitro at a concentration of 100 mg/l against A. solani, inhibiting growth by 98.27 ± 1.58% and 92.79 ± 1.33% during Petri plate and leaflet assays, respectively. CONCLUSION: In conclusion, this study suggests the practical application of green-fabricated Ag-NPs from Q. incana leaf extract against A. solani to effectively control EB disease in tomatoes.


Asunto(s)
Alternaria , Nanopartículas del Metal , Quercus , Solanum lycopersicum , Plata/química , Nanopartículas del Metal/química , Antifúngicos , Espectroscopía Infrarroja por Transformada de Fourier , Extractos Vegetales/farmacología , Extractos Vegetales/química , Difracción de Rayos X , Antibacterianos
10.
J Environ Manage ; 357: 120841, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38581898

RESUMEN

Quercus gilva, an evergreen tree species in Quercus section Cyclobalanopsis, is an ecologically and economically valuable species in subtropical regions of East Asia. Predicting the impact of climate change on potential distribution of Q. gilva can provide a scientific basis for the conservation and utilization of its genetic resources, as well as for afforestation. In this study, 74 distribution records of Q. gilva and nine climate variables were obtained after data collection and processing. Current climate data downloaded from WorldClim and future climate data predicted by four future climate scenarios (2040s SSP1-2.6, 2040s SSP5-8.5, 2060s SSP1-2.6, and 2060s SSP5-8.5) mainly based on greenhouse gases emissions of distribution sites were used in MaxEnt model with optimized parameters to predict distribution dynamics of Q. gilva and its response to climate change. The results showed that the predicted current distribution was consistent with natural distribution of Q. gilva, which was mainly located in Hunan, Jiangxi, Zhejiang, Fujian, Guizhou, and Taiwan provinces of China, as well as Japan and Jeju Island of South Korea. Under current climate conditions, precipitation factors played a more significant role than temperature factors on distribution of Q. gilva, and precipitation of driest quarter (BIO17) is the most important restriction factor for its current distribution (contribution rate of 57.35%). Under future climate conditions, mean temperature of driest quarter (BIO9) was the essential climate factor affecting future change in potential distribution of Q. gilva. As the degree of climatic anomaly increased in the future, the total area of predicted distribution of Q. gilva showed a shrinking trend (decreased by 12.24%-45.21%) and Q. gilva would migrate to high altitudes and latitudes. The research results illustrated potential distribution range and suitable climate conditions of Q. gilva, which can provide essential theoretical references for the conservation, development, and utilization of Q. gilva and other related species.


Asunto(s)
Gases de Efecto Invernadero , Quercus , Cambio Climático , China , Taiwán , Ecosistema
11.
Molecules ; 29(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38675569

RESUMEN

There are several highly damaging Phytophthora species pathogenic to forest trees, many of which have been spread beyond their native range by the international trade of live plants and infested materials. Such introductions can be reduced through the development of better tools capable of the early, rapid, and high-throughput detection of contaminated plants. This study utilized a volatilomics approach (solid-phase microextraction coupled to gas chromatography-mass spectrometry) to differentiate between several Phytophthora species in culture and discriminate between healthy and Phytophthora-inoculated European beech and pedunculate oak trees. We tentatively identified 14 compounds that could differentiate eight Phytophthora species from each other in vitro. All of the Phytophthora species examined, except Phytophthora cambivora, uniquely produced at least one compound not observed in the other species; however, most detected compounds were shared between multiple species. Phytophthora polonica had the most unique compounds and was the least similar of all the species examined. The inoculated seedlings had qualitatively different volatile profiles and could be distinguished from the healthy controls by the presence of isokaurene, anisole, and a mix of three unknown compounds. This study supports the notion that volatiles are suitable for screening plant material, detecting tree pathogens, and differentiating between healthy and diseased material.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Phytophthora , Enfermedades de las Plantas , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Enfermedades de las Plantas/microbiología , Microextracción en Fase Sólida , Quercus/química , Quercus/microbiología , Fagus/microbiología
12.
BMC Plant Biol ; 24(1): 325, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658813

RESUMEN

BACKGROUND: With the dramatic uplift of the Qinghai-Tibet Plateau (QTP) and the increase in altitude in the Pliocene, the environment became dry and cold, thermophilous plants that originally inhabited ancient subtropical forest essentially disappeared. However, Quercus sect. Heterobalanus (QSH) have gradually become dominant or constructive species distributed on harsh sites in the Hengduan Mountains range in southeastern QTP, Southwest China. Ecological stoichiometry reveals the survival strategies plants adopt to adapt to changing environment by quantifying the proportions and relationships of elements in plants. Simultaneously, as the most sensitive organs of plants to their environment, the structure of leaves reflects of the long-term adaptability of plants to their surrounding environments. Therefore, ecological adaptation mechanisms related to ecological stoichiometry and leaf anatomical structure of QSH were explored. In this study, stoichiometric characteristics were determined by measuring leaf carbon (C), nitrogen (N), and phosphorus (P) contents, and morphological adaptations were determined by examining leaf anatomical traits with microscopy. RESULTS: Different QSH life forms and species had different nutrient allocation strategies. Leaves of QSH plants had higher C and P and lower N contents and higher N and lower P utilization efficiencies. According to an N: P ratio threshold, the growth of QSH species was limited by N, except that of Q. aquifolioides and Q. longispica, which was limited by both N and P. Although stoichiometric homeostasis of C, N, and P and C: N, C: P, and N: P ratios differed slightly across life forms and species, the overall degree of homeostasis was strong, with strictly homeostatic, homeostatic, and weakly homeostatic regulation. In addition, QSH leaves had compound epidermis, thick cuticle, developed palisade tissue and spongy tissue. However, leaves were relatively thin overall, possibly due to leaf leathering and lignification, which is strategy to resist stress from UV radiation, drought, and frost. Furthermore, contents of C, N, and P and stoichiometric ratios were significantly correlated with leaf anatomical traits. CONCLUSIONS: QSH adapt to the plateau environment by adjusting the content and utilization efficiencies of C, N, and P elements. Strong stoichiometric homeostasis of QSH was likely a strategy to mitigate nutrient limitation. The unique leaf structure of the compound epidermis, thick cuticle, well-developed palisade tissue and spongy tissue is another adaptive mechanism for QSH to survive in the plateau environment. The anatomical adaptations and nutrient utilization strategies of QSH may have coevolved during long-term succession over millions of years.


Asunto(s)
Adaptación Fisiológica , Carbono , Nitrógeno , Fósforo , Hojas de la Planta , Quercus , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Quercus/anatomía & histología , Quercus/fisiología , Fósforo/metabolismo , Nitrógeno/metabolismo , Tibet , Carbono/metabolismo , China , Ecosistema
13.
BMC Ecol Evol ; 24(1): 54, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664655

RESUMEN

BACKGROUND: Bolete cultivation is economically and ecologically valuable. Ectomycorrhizae are advantageous for plant development and productivity. This study investigated how boletes affect the formation of Pinus thunbergii and Quercus acutissima ectomycorrhizae using greenhouse-based mycorrhizal experiments, inoculating P. thunbergii and Q. acutissima with four species of boletes (Suillus bovinus, Suillus luteus, Suillus grevillei, and Retiboletus sinensis). RESULTS: Three months after inoculation, morphological and molecular analyses identified S. bovinus, S. luteus, S. grevillei and R. sinensis ectomycorrhizae formation on the roots of both tree species. The mycorrhizal infection rate ranged from 40 to 55%. The host plant species determined the mycorrhiza morphology, which was independent of the bolete species. Differences in plant growth, photosynthesis, and endogenous hormone secretion primarily correlated with the host plant species. Infection with all four bolete species significantly promoted the host plants' growth and photosynthesis rates; indole-3-acetic acid, zeatin, and gibberellic acid secretion increased, and the abscisic acid level significantly decreased. Indole-3-acetic acid was also detected in the fermentation broths of all bolete species. CONCLUSIONS: Inoculation with bolete and subsequent mycorrhizae formation significantly altered the morphology and hormone content in the host seedlings, indicating growth promotion. These findings have practical implications for culturing pine and oak tree species.


Asunto(s)
Micorrizas , Pinus , Quercus , Micorrizas/fisiología , Quercus/microbiología , Quercus/crecimiento & desarrollo , Pinus/microbiología , Pinus/crecimiento & desarrollo , Basidiomycota/fisiología , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Fotosíntesis
14.
Waste Manag ; 181: 114-127, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38608526

RESUMEN

In this study, phenolic compounds using deep eutectic solvents (DES) were extracted from cork dust, and the biogas production potential of DES-treated cork dust samples was determined. The DES treatment was carried out using choline chloride and formic acid (1:2 M ratio) at various temperatures (90, 110 and 130 °C) and treatment times (20, 40 and 60 min) at a solid-to-solvent ratio of 1:10 g mL-1. The highest total phenolic content (137 mg gallic acid equivalent (GAE) g-1 dry cork dust) was achieved at 110 °C/20 min. The extracts exhibited an antioxidant capacity of up to 56.3 ± 3.1 % 1,1-diphenyl-2-picrylhydazyl (DPPH) inhibition at a dilution rate of 100. DES treatment resulted in minimal sugar solubilization at low temperatures, while approximately 42 % of the xylan fraction in the biomass degraded under severe conditions (e.g., 130 °C/60 min). Catechin, 4-hydroxybenzoic acid and gallic acid were the major phenolics in DES extracts. The biogas yield of DES-treated cork dust increased with treatment severity. The highest biogas yield (115.1mLN gVS-1) was observed at 130 °C/60 min, representing an increase of 125 % compared to the untreated sample. SEM images revealed that the surface structure of the samples became smoother after mild pretreatment and rougher after harsh pretreatment. Compositional and FTIR analyses indicated that a higher biogas formation potential was associated with increased cellulose content in the substrate, which could be attributed to hemicellulose solubilization in the hydrolysate. Overall, DES pretreatment effectively enhanced phenol extraction and anaerobic degradability.


Asunto(s)
Biomasa , Disolventes Eutécticos Profundos , Polvo , Fenoles , Fenoles/análisis , Polvo/análisis , Disolventes Eutécticos Profundos/química , Anaerobiosis , Quercus/química , Biocombustibles/análisis , Antioxidantes/análisis , Formiatos/análisis , Formiatos/química
15.
Environ Sci Pollut Res Int ; 31(20): 29536-29548, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38580874

RESUMEN

The soil-plant transfer of trace elements is a complex system in which many factors are involved such as the availability and bioavailability of elements in the soil, climate, pedological parameters, and the essential or toxic character of the elements. The present study proposes the evaluation of the use of multielement contents in vascular plants for prospecting ore deposits of trace elements of strategic interest for Europe. To accomplish this general goal, a study of the soil-plant transfer of major and trace elements using Quercus ilex as a study plant has been developed in the context of two geological domains with very different characteristics in geological terms and in the presence of ore deposits: the Almadén syncline for Hg and the Guadalmez syncline for Sb. The results have made it possible to differentiate geological domains not only in terms of individual elements, but also as a combination of major and trace elements using Factor Analysis. The bioconcentration factors have demonstrated the uptake of macronutrients and micronutrients in very high concentrations but these were barely dependent, or even independent of the concentrations in the soil, in addition to high values of this factor for Sb. The Factor Analysis allowed for the differentiation of geogenic elements from other linked to stibnite ore deposits (Sb, S, and Cu). This element (Sb) can be uptake by Quercus ilex via the root and from there translocating it to the leaves, showing a direct relation between concentrations in soil and plants. This finding opens the possibility of using Quercus ilex leaves for biogeochemical prospecting of geological domains or lithological types of interest to prospect for Sb deposits.


Asunto(s)
Contaminantes del Suelo , Suelo , Oligoelementos , España , Suelo/química , Quercus , Monitoreo del Ambiente
16.
Sci Total Environ ; 928: 172218, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38580109

RESUMEN

In natural habitats, especially in arid and semi-arid areas that are fragile ecosystems, vegetation degradation is one of the most important factors affecting the variability of soil health. Studying physicochemical and biological parameters that serve as indicators of soil health offers important information on the potential risk of land degradation and the progression of changes in soil performance and health during recovery periods. This study specifically examines the impact of vegetation degradation on soil health indicators and the duration needed to improve the physical, chemical, and biological parameters in a semi-arid mountainous area site types with the dominance of Quercus macranthera Fisch & C.A. Mey and Carpinus orientalis Miller in northern Iran. In different years (2003, 2013, and 2023), litter and soil samples (at depths of 0-10, 10-20, and 20-30 cm) were collected in different types of degraded sites. Additionally, in 2023, a non-degraded site was chosen as a control and similar samples were collected. A total of 48 litter (12 samples for each of the study site types) and 144 soil (4 study site types × 3 depths × 12 samples) samples were collected. In order to investigate the spatial changes of soil basal respiration (or CO2 emission), which is involved in global warming, from each site type, 50 soil samples were taken along two 250-meter transects. The findings showed that litter P and Mg contents in the non-degraded site were 1.6 times higher than in degraded site types (2003). Following vegetation degradation, soil fertility indicators decreased by 2-4 times. The biota population was lower by about 80 % under the degraded site types (2003) than in the non-degraded site, and the density of fungi and bacteria in the degraded site types was almost half that of the non-degraded site types. Geostatistics showed the high variance (linear model) of CO2 emissions in areas without degradation. In addition, vegetation degradation significantly reduced soil carbon and nitrogen mineralization. Although soil health indicators under the degraded vegetation have improved over time (30 years), results showed that even thirty years is not enough for the full recovery of a degraded ecosystem, and more time is needed for the degraded area to reach the same conditions as the non-degraded site. Considering the time required for natural restoration in degraded site types, it is necessary to prioritize the conservation of vegetation and improve the ecosystem restoration process with adequate interventions.


Asunto(s)
Restauración y Remediación Ambiental , Bosques , Suelo , Suelo/química , Clima , Ambiente , Irán , Quercus , Betulaceae , Tiempo , Biota , Conservación de los Recursos Naturales
17.
BMC Plant Biol ; 24(1): 279, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38609850

RESUMEN

BACKGROUND: Climate change is expected to alter the factors that drive changes in adaptive variation. This is especially true for species with long life spans and limited dispersal capabilities. Rapid climate changes may disrupt the migration of beneficial genetic variations, making it challenging for them to keep up with changing environments. Understanding adaptive genetic variations in tree species is crucial for conservation and effective forest management. Our study used landscape genomic analyses and phenotypic traits from a thorough sampling across the entire range of Quercus longinux, an oak species native to Taiwan, to investigate the signals of adaptation within this species. RESULTS: Using ecological data, phenotypic traits, and 1,933 single-nucleotide polymorphisms (SNPs) from 205 individuals, we classified three genetic groups, which were also phenotypically and ecologically divergent. Thirty-five genes related to drought and freeze resistance displayed signatures of natural selection. The adaptive variation was driven by diverse environmental pressures such as low spring precipitation, low annual temperature, and soil grid sizes. Using linear-regression-based methods, we identified isolation by environment (IBE) as the optimal model for adaptive SNPs. Redundancy analysis (RDA) further revealed a substantial joint influence of demography, geology, and environments, suggesting a covariation between environmental gradients and colonization history. Lastly, we utilized adaptive signals to estimate the genetic offset for each individual under diverse climate change scenarios. The required genetic changes and migration distance are larger in severe climates. Our prediction also reveals potential threats to edge populations in northern and southeastern Taiwan due to escalating temperatures and precipitation reallocation. CONCLUSIONS: We demonstrate the intricate influence of ecological heterogeneity on genetic and phenotypic adaptation of an oak species. The adaptation is also driven by some rarely studied environmental factors, including wind speed and soil features. Furthermore, the genetic offset analysis predicted that the edge populations of Q. longinux in lower elevations might face higher risks of local extinctions under climate change.


Asunto(s)
Quercus , Humanos , Quercus/genética , Cambio Climático , Genómica , Frío , Suelo
18.
Ying Yong Sheng Tai Xue Bao ; 35(3): 606-614, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38646747

RESUMEN

As the most senstitive plant organs to environmental changes, leaves serve as crucial indicators of plant survival strategies. We measured the morphology, anatomical traits, gas exchange parameters, and chlorophyll fluorescence parameters of Quercus aquifolioides (evergreen broad-leaved) and Sorbus rehderiana (deciduous broad-leaved) at altitudes of 2600, 2800, 3000, 3200 and 3400 m on the eastern edge of the Qinghai-Tibet Plateau, China. We explored the similarity and difference in their responses to altitude change and the ecological adaptation strategy. The results showed that as the altitude increased, leaf dry matter content of Q. aquifolioides decreased, that of S. rehderiana increased, leaf size for both species gradually decreased, and the palisade coefficient of Q. aquifolioides showed a decreasing trend, contrasting with the increasing trend in S. rehderiana. As the altitude increased, the thickness of leaves, palisade tissue, spongy tissue, upper epidermis, and lower epidermis of both species increased significantly, with the increment of 22.4%, 4.9%, 45.1%, 23.3%, 19.6%, and 28.2%, 46.9%, 8.9%, 25.9%, 20.8% at altitude of 3400 m, respectively, compared with the altitude of 2600 m. The gas exchange and chlorophyll fluorescence parameters of S. rehderiana significantly increased with increasing altitude, while Q. aquifolioides showed the opposite trend. Leaf anatomical traits, gas exchange, and chlorophyll fluorescence parameters of both species displayed considerable plasticity. There were significant correlations among most leaf traits and between leaf traits and altitude. The survival strategy of Q. aquifolioides was more conservative in response to altitude changes, while that of S. rehderiana was more active. Both species adapted to different altitudes by adjusting their own traits.


Asunto(s)
Altitud , Hojas de la Planta , Quercus , Sorbus , Quercus/fisiología , Quercus/crecimiento & desarrollo , China , Ecosistema , Tibet , Adaptación Fisiológica
19.
Ann Bot ; 133(7): 1007-1024, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38428030

RESUMEN

BACKGROUND AND AIMS: Introgressive hybridization poses a challenge to taxonomic and phylogenetic understanding of taxa, particularly when there are high numbers of co-occurring, intercrossable species. The genus Quercus exemplifies this situation. Oaks are highly diverse in sympatry and cross freely, creating syngameons of interfertile species. Although a well-resolved, dated phylogeny is available for the American oak clade, evolutionary relationships within many of the more recently derived clades remain to be defined, particularly for the young and exceptionally diverse Mexican white oak clade. Here, we adopted an approach bridging micro- and macroevolutionary scales to resolve evolutionary relationships in a rapidly diversifying clade endemic to Mexico. METHODS: Ecological data and sequences of 155 low-copy nuclear genes were used to identify distinct lineages within the Quercus laeta complex. Concatenated and coalescent approaches were used to assess the phylogenetic placement of these lineages relative to the Mexican white oak clade. Phylogenetic network methods were applied to evaluate the timing and genomic significance of recent or historical introgression among lineages. KEY RESULTS: The Q. laeta complex comprises six well-supported lineages, each restricted geographically and with mostly divergent climatic niches. Species trees corroborated that the different lineages are more closely related to other species of Mexican white oaks than to each other, suggesting that this complex is polyphyletic. Phylogenetic networks estimated events of ancient introgression that involved the ancestors of three present-day Q. laeta lineages. CONCLUSIONS: The Q. laeta complex is a morphologically and ecologically related group of species rather than a clade. Currently, oak phylogenetics is at a turning point, at which it is necessary to integrate phylogenetics and ecology in broad regional samples to figure out species boundaries. Our study illuminates one of the more complicated of the Mexican white oak groups and lays groundwork for further taxonomic study.


Asunto(s)
Filogenia , Quercus , Hibridación Genética , México , Quercus/genética
20.
Environ Pollut ; 347: 123699, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38460588

RESUMEN

As global air pollution, particularly fine particulate matter (PM2.5), has become a major environmental problem, various PM2.5 mitigation technologies including green infrastructure have received significant attention. However, owing to spatial constraints on urban greening, there is a lack of management plans for urban forests to efficiently mitigate PM2.5. In this study, we assessed the PM2.5 reduction capabilities of Pinus densiflora (Korean red pine) and Quercus acutissima (sawtooth oak) by measuring the changes of PM2.5 concentrations using an experimental chamber system. In addition, the PM2.5 reduction efficiency in 90 min (PMRE90) and the amount of PM2.5 reduction per leaf area (PMRLA) were compared based on arrangement structures and density levels. The results showed that the PM2.5 reduction by plants was significantly greater than that of the control experiment without any plants, and an additional reduction effect of approximately 1.38 times was induced by a 1.5 m s-1 air flow. The PMRE90 of Korean red pine was the highest at medium density. In contrast, the PMRE90 of sawtooth oak was the highest at high density. The PMRLA of both species was highest at low densities. The different responses of the species to total reduction were well explained by total leaf area (TLA). The PMRE90 of both species was positively correlated with TLA. The PMRLA of sawtooth oak was approximately 2.3 times greater than that of Korean red pine. However, there were no significant differences in both PMRE90 and PMRLA between the arrangement structures. Our findings reveal the potential mechanisms of vegetation in reducing PM2.5 according to arrangement structure and density. This highlights the importance of efficiently using urban green spaces with spatial constraints on PM2.5 mitigation in the future.


Asunto(s)
Contaminantes Atmosféricos , Pinus , Quercus , Árboles/química , Material Particulado/análisis , República de Corea , Contaminantes Atmosféricos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA