Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 187
Filtrar
1.
Front Immunol ; 15: 1455457, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39301034

RESUMEN

Chemokines are cytokines that mediate leukocyte traffic between the lymphoid organs, the bloodstream, and the site of tissue damage, which is essential for an efficient immune response. In particular, the gamma interferon (IFN- γ) inducible chemokines CXCL9, CXCL10, and CXCL11, and their receptor CXCR3, are involved in T cell and macrophage recruitment to the site of infection. The nature and function of these chemokines and their receptor are well-known in mammals, but further research is needed to achieve a similar level of understanding in fish immunity. Thus, in this study, we seek to identify the genes encoding the components of the Atlantic salmon (Salmo salar) CXCL9, CXCL10, CXCL11/CXCR3 axis (CXCL9-11/CXCR3), predict the protein structure from the amino acid sequence, and explore the regulation of gene expression as well as the response of these chemokines and their receptor to viral infections. The cxcl9, cxcl10, cxcl11, and cxcr3 gene sequences were retrieved from the databases, and the phylogenetic analysis was conducted to determine the evolutionary relationships. The study revealed an interesting pattern of clustering and conservation among fish and mammalian species. The salmon chemokine sequences clustered with orthologs from other fish species, while the mammalian sequences formed separate clades. This indicates a divergent evolution of chemokines between mammals and fish, possibly due to different evolutionary pressures. While the structural analysis of the chemokines and the CXCR3 receptor showed the conservation of critical motifs and domains, suggesting preserved functions and stability throughout evolution. Regarding the regulation of gene expression, some components of the CXCL9-11/CXCR3 axis are induced by recombinant gamma interferon (rIFN-γ) and by Infectious pancreatic necrosis virus (IPNV) infection in Atlantic salmon cells. Further studies are needed to explore the role of Atlantic salmon CXCL9-11 chemokines in regulating immune cell migration and endothelial activation, as seen in mammals. To the best of our knowledge, there have been no functional studies of chemokines to understand these effects in Atlantic salmon.


Asunto(s)
Quimiocina CXCL9 , Filogenia , Receptores CXCR3 , Salmo salar , Animales , Salmo salar/inmunología , Salmo salar/genética , Receptores CXCR3/genética , Receptores CXCR3/metabolismo , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Quimiocina CXCL9/inmunología , Regulación de la Expresión Génica , Quimiocina CXCL11/genética , Quimiocina CXCL11/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/metabolismo , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Virus de la Necrosis Pancreática Infecciosa/inmunología
2.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(3): 512-518, 2024 Jun 18.
Artículo en Chino | MEDLINE | ID: mdl-38864138

RESUMEN

OBJECTIVE: To investigate the characteristics of the CD8+ T cells infiltration from the 4 subtypes in medulloblastoma (MB), to analyze the relationship between CD8+ T cells infiltration and prognosis, to study the function of C-X-C motif chemokine ligand 11 (CXCL11) and its receptor in CD8+ T cells infiltration into tumors and to explore the potential mechanism, and to provide the necessary clinicopathological basis for exploring the immunotherapy of MB. METHODS: In the study, 48 clinical MB samples (12 cases in each of 4 subtypes) were selected from the multiple medical center from 2012 to 2019. The transcriptomics analysis for the tumor of 48 clinical samples was conducted on the NanoString PanCancer IO360TM Panel (NanoString Technologies). Immunohistochemistry (IHC) staining of formalin-fixed, paraffin-embedded sections from MB was carried out using CD8 primary antibody to analyze diffe-rential quantities of CD8+ T cells in the MB four subtypes. Through bioinformatics analysis, the relationship between CD8+T cells infiltration and prognosis of the patients and the expression differences of various chemokines in the different subtypes of MB were investigated. The expression of CXCR3 receptor on the surface of CD8+T cells in MB was verified by double immunofluorescence staining, and the underlying molecular mechanism of CD8+T cells infiltration into the tumor was explored. RESULTS: The characteristic index of CD8+T cells in the WNT subtype of MB was relatively high, suggesting that the number of CD8+T cells in the WNT subtype was significantly higher than that in the other three subtypes, which was confirmed by CD8 immunohistochemical staining and Gene Expression Omnibus (GEO) database analysis by using R2 online data analysis platform. And the increase of CD8+T cells infiltration was positively correlated with the patient survival. The expression level of CXCL11 in the WNT subtype MB was significantly higher than that of the other three subtypes. Immunofluorescence staining showed the presence of CXCL11 receptor, CXCR3, on the surface of CD8+T cells, suggesting that the CD8+T cells might be attracted to the MB microenvironment by CXCL11 through CXCR3. CONCLUSION: The CD8+T cells infiltrate more in the WNT subtype MB than other subtypes. The mechanism may be related to the activation of CXCL11-CXCR3 chemokine system, and the patients with more infiltration of CD8+T cells in tumor have better prognosis. This finding may provide the necessary clinicopathological basis for the regulatory mechanism of CD8+T cells infiltration in MB, and give a new potential therapeutic target for the future immunotherapy of MB.


Asunto(s)
Linfocitos T CD8-positivos , Quimiocina CXCL11 , Meduloblastoma , Receptores CXCR3 , Humanos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Meduloblastoma/inmunología , Meduloblastoma/patología , Meduloblastoma/clasificación , Meduloblastoma/genética , Meduloblastoma/metabolismo , Receptores CXCR3/metabolismo , Receptores CXCR3/genética , Quimiocina CXCL11/metabolismo , Quimiocina CXCL11/genética , Pronóstico , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Neoplasias Cerebelosas/inmunología , Neoplasias Cerebelosas/patología , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/clasificación , Neoplasias Cerebelosas/metabolismo , Masculino , Femenino
3.
Structure ; 32(8): 1174-1183.e5, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38776922

RESUMEN

Chemokine receptors belong to the large class of G protein-coupled receptors (GPCRs) and are involved in a number of (patho)physiological processes. Previous studies highlighted the importance of membrane lipids for modulating GPCR structure and function. However, the underlying mechanisms of how lipids regulate GPCRs are often poorly understood. Here, we report that anionic lipid bilayers increase the binding affinity of the chemokine CXCL12 for the atypical chemokine receptor 3 (ACKR3) by modulating the CXCL12 binding kinetics. Notably, the anionic bilayer favors CXCL12 over the more positively charged chemokine CXCL11, which we explained by bilayer interactions orienting CXCL12 but not CXCL11 for productive ACKR3 binding. Furthermore, our data suggest a stabilization of active ACKR3 conformations in anionic bilayers. Taken together, the described regulation of chemokine selectivity of ACKR3 by the lipid bilayer proposes an extended version of the classical model of chemokine binding including the lipid environment of the receptor.


Asunto(s)
Quimiocina CXCL12 , Membrana Dobles de Lípidos , Unión Proteica , Receptores CXCR , Membrana Dobles de Lípidos/metabolismo , Membrana Dobles de Lípidos/química , Humanos , Receptores CXCR/metabolismo , Receptores CXCR/química , Receptores CXCR/genética , Quimiocina CXCL12/metabolismo , Quimiocina CXCL12/química , Quimiocina CXCL11/metabolismo , Quimiocina CXCL11/química , Sitios de Unión , Ligandos , Cinética , Modelos Moleculares
4.
J Virol ; 98(5): e0159623, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38587378

RESUMEN

Following acute herpes simplex virus type 2 (HSV-2) infection, the virus undergoes an asymptomatic latent infection of sensory neurons of dorsal root ganglia (DRG). Chemical and physical stress cause intermittent virus reactivation from latently infected DRG and recurrent virus shedding in the genital mucosal epithelium causing genital herpes in symptomatic patients. While T cells appear to play a role in controlling virus reactivation from DRG and reducing the severity of recurrent genital herpes, the mechanisms for recruiting these T cells into DRG and the vaginal mucosa (VM) remain to be fully elucidated. The present study investigates the effect of CXCL9, CXCL10, and CXCL11 T-cell-attracting chemokines on the frequency and function of DRG- and VM-resident CD4+ and CD8+ T cells and its effect on the frequency and severity of recurrent genital herpes in the recurrent herpes guinea pig model. HSV-2 latent-infected guinea pigs were immunized intramuscularly with the HSV-2 ribonucleotide reductase 2 (RR2) protein (Prime) and subsequently treated intravaginally with the neurotropic adeno-associated virus type 8 expressing CXCL9, CXCL10, or CXCL11 chemokines to recruit CD4+ and CD8+ T cells into the infected DRG and VM (Pull). Compared to the RR2 therapeutic vaccine alone, the RR2/CXCL11 prime/pull therapeutic vaccine significantly increased the frequencies of functional tissue-resident and effector memory CD4+ and CD8+ T cells in both DRG and VM tissues. This was associated with less virus in the healed genital mucosal epithelium and reduced frequency and severity of recurrent genital herpes. These findings confirm the role of local DRG- and VM-resident CD4+ and CD8+ T cells in reducing virus shedding at the vaginal site of infection and the severity of recurrent genital herpes and propose the novel prime-pull vaccine strategy to protect against recurrent genital herpes.IMPORTANCEThe present study investigates the novel prime/pull therapeutic vaccine strategy to protect against recurrent genital herpes using the latently infected guinea pig model. In this study, we used the strategy that involves immunization of herpes simplex virus type 2-infected guinea pigs using a recombinantly expressed herpes tegument protein-ribonucleotide reductase 2 (RR2; prime), followed by intravaginal treatment with the neurotropic adeno-associated virus type 8 expressing CXCL9, CXCL10, or CXCL11 T-cell-attracting chemokines to recruit T cells into the infected dorsal root ganglia (DRG) and vaginal mucosa (VM) (pull). We show that the RR2/CXCL11 prime-pull therapeutic vaccine strategy elicited a significant reduction in virus shedding in the vaginal mucosa and decreased the severity and frequency of recurrent genital herpes. This protection was associated with increased frequencies of functional tissue-resident (TRM cells) and effector (TEM cells) memory CD4+ and CD8+ T cells infiltrating latently infected DRG tissues and the healed regions of the vaginal mucosa. These findings shed light on the role of tissue-resident and effector memory CD4+ and CD8+ T cells in DRG tissues and the VM in protection against recurrent genital herpes and propose the prime-pull therapeutic vaccine strategy in combating genital herpes.


Asunto(s)
Quimiocina CXCL11 , Herpes Genital , Herpesvirus Humano 2 , Ribonucleótido Reductasas , Animales , Femenino , Cobayas , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Quimiocina CXCL11/inmunología , Quimiocina CXCL11/metabolismo , Modelos Animales de Enfermedad , Ganglios Espinales/inmunología , Ganglios Espinales/virología , Herpes Genital/inmunología , Herpes Genital/prevención & control , Herpesvirus Humano 2/inmunología , Células T de Memoria/inmunología , Ribonucleótido Reductasas/metabolismo , Vacunación , Vagina/virología , Vagina/inmunología
5.
Cytokine ; 179: 156618, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38663252

RESUMEN

BACKGROUND: Pleural biomarkers represent potential diagnostic tools for tuberculous pleural effusion (TPE) due to their advantages of low cost, short turnaround time, and less invasiveness. This study evaluated the diagnostic accuracy of two CXCR3 ligands, C-X-C motif chemokine ligand 9 (CXCL9) and CXCL11, for TPE. In addition, we investigated the cellular origins and biological roles of CXCL9 and CXCL11 in the development of TPE. METHODS: This double-blind study prospectively enrolled patients with undiagnosed pleural effusion from two centers (Hohhot and Changshu) in China. Pleural fluid on admission was obtained and levels of CXCL9 and CXCL11 were measured by an enzyme-linked immunosorbent assay (ELISA). The receiver operating characteristic (ROC) curve and the decision curve analysis (DCA) were used to evaluate their diagnostic accuracy and net benefit, respectively. THP-1 cell-derived macrophages were treated with Bacillus Calmette-Guérin (BCG), and quantitative real-time PCR (qRT-PCR) and ELISA were used to determine the mRNA and protein levels of CXCL9 and CXCL11. The chemoattractant activities of CXCL9 and CXCL11 for T helper (Th) cells were analyzed by a transwell assay. RESULTS: One hundred and fifty-three (20 TPEs and 133 non-TPEs) patients were enrolled in the Hohhot Center, and 58 (13 TPEs and 45 non-TPEs) were enrolled in the Changshu Center. In both centers, we observed increased CXCL9 and CXCL11 in TPE patients. The areas under the ROC curves (AUCs) of pleural CXCL9 and CXCL11 in the Hohhot Center were 0.70 (95 % CI: 0.55-0.85) and 0.68 (95 % CI: 0.52-0.84), respectively. In the Changshu Center, the AUCs of CXCL9 and CXCL11 were 0.96 (95 % CI: 0.92-1.00) and 0.97 (95 % CI: 0.94-1.00), respectively. The AUCs of CXCL9 and CXCL11 decreased with the advancement of age. The decision curves of CXCL9 and CXCL11 showed net benefits in both centers. CXCL9 and CXCL11 were upregulated in BCG-treated macrophages. Pleural fluid from TPE and conditioned medium from BCG-treated macrophages were chemotactic for Th cells. Anti-CXCL9 or CXCL11 neutralizing antibodies could partly block the chemotactic activity. CONCLUSIONS: Pleural CXCL9 and CXCL11 are potential diagnostic markers for TPE, but their diagnostic accuracy is compromised in elderly patients. CXCL9 and CXCL11 can promote the migration of peripheral Th cells, thus representing a therapeutic target for the treatment of TPE.


Asunto(s)
Quimiocina CXCL11 , Quimiocina CXCL9 , Derrame Pleural , Receptores CXCR3 , Tuberculosis Pleural , Humanos , Quimiocina CXCL9/metabolismo , Quimiocina CXCL11/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Derrame Pleural/metabolismo , Derrame Pleural/diagnóstico , Receptores CXCR3/metabolismo , Tuberculosis Pleural/diagnóstico , Tuberculosis Pleural/metabolismo , Adulto , Ligandos , Método Doble Ciego , Células THP-1 , Biomarcadores/metabolismo , Macrófagos/metabolismo , Estudios Prospectivos , Anciano , Curva ROC
6.
Diabetes ; 73(7): 1112-1121, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38656918

RESUMEN

Obesity is associated with chronic inflammation and metabolic complications, including insulin resistance (IR). Immune cells drive inflammation through the rewiring of intracellular metabolism. However, the impact of obesity-related IR on the metabolism and functionality of circulating immune cells, like monocytes, remains poorly understood. To increase insight into the interindividual variation of immunometabolic signatures among individuals and their role in the development of IR, we assessed systemic and tissue-specific IR and circulating immune markers, and we characterized metabolic signatures and cytokine secretion of circulating monocytes from 194 individuals with a BMI ≥25 kg/m2. Monocyte metabolic signatures were defined using extracellular acidification rates (ECARs) to estimate glycolysis and oxygen consumption rates (OCRs) for oxidative metabolism. Although monocyte metabolic signatures and function based on cytokine secretion varied greatly among study participants, they were strongly associated with each other. The ECAR-to-OCR ratio, representing the balance between glycolysis and oxidative metabolism, was negatively associated with fasting insulin levels, systemic IR, and liver-specific IR. These results indicate that monocytes from individuals with IR were relatively more dependent on oxidative metabolism, whereas monocytes from more insulin-sensitive individuals were more dependent on glycolysis. Additionally, circulating CXCL11 was negatively associated with the degree of systemic IR and positively with the ECAR-to-OCR ratio in monocytes, suggesting that individuals with high IR and a monocyte metabolic dependence on oxidative metabolism also have lower levels of circulating CXCL11. Our findings suggest that monocyte metabolism is related to obesity-associated IR progression and deepen insights into the interplay between innate immune cell metabolism and IR development in humans.


Asunto(s)
Resistencia a la Insulina , Monocitos , Obesidad , Humanos , Resistencia a la Insulina/fisiología , Resistencia a la Insulina/inmunología , Obesidad/metabolismo , Obesidad/inmunología , Monocitos/metabolismo , Monocitos/inmunología , Femenino , Masculino , Adulto , Persona de Mediana Edad , Glucólisis , Quimiocina CXCL11/metabolismo , Quimiocina CXCL11/sangre , Citocinas/metabolismo , Citocinas/sangre , Consumo de Oxígeno
7.
Sci Rep ; 14(1): 8196, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589444

RESUMEN

In atherosclerotic lesions, monocyte-derived macrophages are major source of interferon gamma (IFN-γ), a pleotropic cytokine known to regulate the expression of numerous genes, including the antiviral gene RSAD2. While RSAD2 was reported to be expressed in endothelial cells of human carotid lesions, its significance for the development of atherosclerosis remains utterly unknown. Here, we harnessed publicly available human carotid atherosclerotic data to explore RSAD2 in lesions and employed siRNA-mediated gene-knockdown to investigate its function in IFN-γ-stimulated human aortic smooth muscle cells (hAoSMCs). Silencing RSAD2 in IFN-γ-stimulated hAoSMCs resulted in reduced expression and secretion of key CXCR3-chemokines, CXCL9, CXCL10, and CXCL11. Conditioned medium from RSAD2-deficient hAoSMCs exhibited diminished monocyte attraction in vitro compared to conditioned medium from control cells. Furthermore, RSAD2 transcript was elevated in carotid lesions where it was expressed by several different cell types, including endothelial cells, macrophages and smooth muscle cells. Interestingly, RSAD2 displayed significant correlations with CXCL10 (r = 0.45, p = 0.010) and CXCL11 (r = 0.53, p = 0.002) in human carotid lesions. Combining our findings, we uncover a novel role for RSAD2 in hAoSMCs, which could potentially contribute to monocyte recruitment in the context of atherosclerosis.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/genética , Interferones , Células Endoteliales/metabolismo , Medios de Cultivo Condicionados/farmacología , Quimiocinas/genética , Quimiocinas/metabolismo , Quimiocina CXCL11/genética , Quimiocina CXCL11/metabolismo , Quimiocina CXCL9/metabolismo , Interferón gamma/farmacología , Interferón gamma/metabolismo , Aterosclerosis/genética , Miocitos del Músculo Liso/metabolismo , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Receptores CXCR3/genética , Receptores CXCR3/metabolismo , Proteína Viperina
8.
Mol Pharmacol ; 105(4): 301-312, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38346795

RESUMEN

Atypical chemokine receptor 3 (ACKR3), formerly referred to as CXCR7, is considered to be an interesting drug target. In this study, we report on the synthesis, pharmacological characterization and radiolabeling of VUF15485, a new ACKR3 small-molecule agonist, that will serve as an important new tool to study this ß-arrestin-biased chemokine receptor. VUF15485 binds with nanomolar affinity (pIC50 = 8.3) to human ACKR3, as measured in [125I]CXCL12 competition binding experiments. Moreover, in a bioluminescence resonance energy transfer-based ß-arrestin2 recruitment assay VUF15485 acts as a potent ACKR3 agonist (pEC50 = 7.6) and shows a similar extent of receptor activation compared with CXCL12 when using a newly developed, fluorescence resonance energy transfer-based ACKR3 conformational sensor. Moreover, the ACKR3 agonist VUF15485, tested against a (atypical) chemokine receptor panel (agonist and antagonist mode), proves to be selective for ACKR3. VUF15485 labeled with tritium at one of its methoxy groups ([3H]VUF15485), binds ACKR3 saturably and with high affinity (K d = 8.2 nM). Additionally, [3H]VUF15485 shows rapid binding kinetics and consequently a short residence time (<2 minutes) for binding to ACKR3. The selectivity of [3H]VUF15485 for ACKR3, was confirmed by binding studies, whereupon CXCR3, CXCR4, and ACKR3 small-molecule ligands were competed for binding against the radiolabeled agonist. Interestingly, the chemokine ligands CXCL11 and CXCL12 are not able to displace the binding of [3H]VUF15485 to ACKR3. The radiolabeled VUF15485 was subsequently used to evaluate its binding pocket. Site-directed mutagenesis and docking studies using a recently solved cryo-EM structure propose that VUF15485 binds in the major and the minor binding pocket of ACKR3. SIGNIFICANCE STATEMENT: The atypical chemokine receptor atypical chemokine receptor 3 (ACKR3) is considered an interesting drug target in relation to cancer and multiple sclerosis. The study reports on new chemical biology tools for ACKR3, i.e., a new agonist that can also be radiolabeled and a new ACKR3 conformational sensor, that both can be used to directly study the interaction of ACKR3 ligands with the G protein-coupled receptor.


Asunto(s)
Quimiocina CXCL12 , Receptores CXCR4 , Humanos , Receptores CXCR4/metabolismo , Quimiocina CXCL12/metabolismo , Quimiocina CXCL11/metabolismo , Transducción de Señal , Ligandos , Unión Competitiva
9.
Placenta ; 140: 47-59, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37531749

RESUMEN

INTRODUCTION: Trophoblast cells play an important role in embryo recognition and localization, as well as placental development during embryo implantation. Dysfunction of trophoblastic cells causes pathological changes that lead to insufficient recognition, positioning, and adhesion during embryo implantation, ultimately leading to embryo development has stopped. METHODS: High-throughput sequencing was used to identify differentially expressed the mRNA and lncRNA in the villi tissue of pregnant women diagnosed with embryo cessation. In vitro implantation cell models, characteristic analysis, and bio information analysis confirmed that CLRN1-AS1 affected the adhesion function of trophoblast cells by influencing the chemokines CXCL10/CXCL11. RESULTS: High throughput sequencing technology was used to identify 438 differentially expressed mRNAs and 41 lncRNAs. The three lncRNAs, namely CLRN1-AS1, USP27X-AS1, and AC104809.4, were screened by the mRNA-lncRNA network. In vitro implantation model suggested that all three lncRNAs could affect the adhesion between trophoblast cells, among which CLRN1-AS1 had the most significant effect. Characteristic analysis and correlation analysis showed that CLRN1-AS1 was closely related to the expression of six adhesion-related genes, LAMA1, FGL2, ITGB2, FBN1, EMP2, and PODN. Cell experiments and re-sequencing confirmed that CLRN1-AS1 could affect the adhesion ability of trophoblast cells to the extracellular matrix, and its process was related to the chemokine CXCL10/CXCL11. DISCUSSION: These results constructed the network of mRNA-lncRNA and enrichment when embryonic development has stopped and found CLRN1-AS1 highly correlated to failure of embryo implantation, and revealed that CLRN1-AS1 modulates the adhesion ability of trophoblast cells to the extracellular matrix via the chemokines CXCL10/CXCL11 during the early stage of embryo implantation.


Asunto(s)
ARN Largo no Codificante , Trofoblastos , Humanos , Embarazo , Femenino , Trofoblastos/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Placenta/metabolismo , Implantación del Embrión/genética , ARN Mensajero/metabolismo , Proteínas de la Membrana/metabolismo , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Quimiocina CXCL11/metabolismo , Glicoproteínas de Membrana/metabolismo , Fibrinógeno/metabolismo
10.
Med Sci (Basel) ; 11(2)2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37218983

RESUMEN

Chemokines are a group of cytokines involved in the mobilization of leukocytes, which play a role in host defense and a variety of pathological conditions, including cancer. Interferon (IFN)-inducible chemokines C-X-C motif ligand 9 (CXCL), CXCL10, and CXCL11 are anti-tumor chemokines; however, the differential anti-tumor effects of IFN-inducible chemokines are not completely understood. In this study, we investigated the anti-tumor effects of IFN-inducible chemokines by transferring chemokine expression vectors into a mouse squamous cell carcinoma cell line, SCCVII, to generate a cell line stably expressing chemokines and transplanted it into nude mice. The results showed that CXCL9- and CXCL11-expressing cells markedly inhibited tumor growth, whereas CXCL10-expressing cells did not inhibit growth. The NH2-terminal amino acid sequence of mouse CXCL10 contains a cleavage sequence by dipeptidyl peptidase 4 (DPP4), an enzyme that cleaves the peptide chain of chemokines. IHC staining indicated DPP4 expression in the stromal tissue, suggesting CXCL10 inactivation. These results suggest that the anti-tumor effects of IFN-inducible chemokines are affected by the expression of chemokine-cleaving enzymes in tumor tissues.


Asunto(s)
Carcinoma de Células Escamosas , Quimiocina CXCL10 , Quimiocina CXCL11 , Quimiocina CXCL9 , Animales , Ratones , Línea Celular , Quimiocina CXCL10/metabolismo , Dipeptidil Peptidasa 4 , Interferón gamma/farmacología , Ratones Desnudos , Quimiocina CXCL9/metabolismo , Quimiocina CXCL11/metabolismo
11.
Cell Immunol ; 384: 104663, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36638767

RESUMEN

Accumulation of T lymphocytes and neutrophils shows inversed association with the prognosis of cancer patients, suggesting infiltration of neutrophils and T cells might be differently regulated in tumor tissue. In this study, we stimulated neutrophils with PMA or LPS to produce neutrophil extracellular traps (NETs) and examined the effects on chemotactic migration of activated T cells to a representative T cell chemokine, CXCL11. Migration of the activated T cells was totally abrogated by PMA-stimulated neutrophils placed either in upper or lower chamber, which was mostly canceled by pretreatment with Catalase. Although LPS-stimulated neutrophils also inhibited T cell migration, depletion of NETs by ultracentrifugation or degradation of NETs with DNAse I restored T cell migration. Western blots showed that LPS-stimulated neutrophils thoroughly degraded CXCL11 with NETs dependent manner. Activated neutrophils inhibit T cell chemotaxis via multiple mechanisms including the release of H2O2 and chemokine degradation by NETs, which may suppress adaptive immunity.


Asunto(s)
Trampas Extracelulares , Neutrófilos , Linfocitos T , Humanos , Quimiocina CXCL11/metabolismo , Quimiocinas/metabolismo , Trampas Extracelulares/metabolismo , Peróxido de Hidrógeno/metabolismo , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo
12.
Clin Transl Oncol ; 25(1): 160-172, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36129606

RESUMEN

PURPOSE: Colorectal cancer (CRC) is a malignant tumor. Oxaliplatin (OXA) can inhibit cancer-associated fibroblasts (CAFs)-induced cancer progression. This study sought to explore the mechanism of OXA in CAFs-induced CRC development. METHODS: CRC cell lines (Caco-2, SW620), normal fibroblasts (NFs), and CAFs were treated with OXA. NFs and CAFs were cultured. CAFs were treated with/without OXA (0.4 mM), and the supernatant was extracted as the conditioned medium (CM) to culture CRC cells. Cell malignant episodes, E-cadherin and Vimentin levels, CXCL1, CXCL2, CXCL3, CXCL8, and CXCL11 mRNA levels, CXCL11 protein level, and extracellular release were assessed. CAFs were transfected with interfering RNA sh-CXCL11 to silence CXCL11 or transfected with CXCL11 overexpression plasmids and treated with OXA to explore the role of CXCL11 in OXA-mediated CRC cells through CAFs. CXCL11 receptor CXCR3 levels in CRC cells and the PI3K/AKT pathway changes were examined. The xenogeneic tumor was transplanted in nude mice. CXCL11 and CXCR3 levels in tumor tissues, tumor volume, shape, size, weight, and Ki67 positive expressions were assessed. RESULTS: CRC cell growths and epithelial-mesenchymal transformation were stimulated after culture with CAFs-CM, while OXA averted these trends. CXCL11 mRNA level was elevated most significantly, and its protein and extracellular secretion levels were raised, while OXA diminished the levels. CXCL11 silencing weakened the effects of CAFs-CM on promoting CRC proliferation and malignant episodes and CXCL11 overexpression averted OXA property on inhibiting CAFs-promoted CRC cell growth. CXCR3 and PI3K and AKT1 phosphorylation levels were raised in the CAFs-CM group but diminished by OXA. CXCL11 overexpression in CAFs averted OXA property on inhibiting CAFs-activated CXCR3/PI3K/AKT in CRC cells. OXA also inhibited the progression of xenograft tumors by limiting CAFs-secreted CXCL11. CONCLUSIONS: OXA repressed CRC progression by inhibiting CAFs-secreted CXCL11 and the CXCR3/PI3K/AKT pathway.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias Colorrectales , Animales , Ratones , Humanos , Oxaliplatino/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones Desnudos , Células CACO-2 , Línea Celular Tumoral , Fibroblastos/metabolismo , Neoplasias Colorrectales/genética , Proliferación Celular , Movimiento Celular/genética , Quimiocina CXCL11/metabolismo , Quimiocina CXCL11/farmacología , Receptores CXCR3/metabolismo
13.
Cytokine ; 162: 156106, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36512935

RESUMEN

BACKGROUND: Through microarray results, we found that the C-X-C motif chemokine ligand 11 (CXCL11) was negatively regulated by mediator complex subunit 19 (MED19), a protumour factor. However, the biological role and potential mechanism of CXCL11 need to be explored in breast cancer (BRCA). METHODS: The BRCA dataset was obtained from the Cancer Genome Atlas (TCGA) dataset. Our microarray data and the BRCA dataset of TCGA were analysed and visualized using the R software package. The mRNA and protein levels were measured by qRT-PCR and western blotting. RESULTS: Inhibition of MED19 in MDA-MB-231 cells caused CXCL11 upregulation. The relative positive regulation of cytokine pathways was enriched after MED19 knockdown. High CXCL11 was determined to be positively correlated with immune response activation, increased antitumour immune cell infiltration, immune checkpoint molecule expression, and enhanced sensitivity to immunotherapy and chemotherapy. Collectively, CXCL11 promoted antitumour immunity and was regulated by MED19 in BRCA. Clarifying the prognostic value and underlying mechanism of CXCL11 in BRCA could provide a theoretical basis to find new diagnostic and therapeutic targets.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Proliferación Celular/genética , Pronóstico , Quimiocina CXCL11/genética , Quimiocina CXCL11/metabolismo , Complejo Mediador/genética , Complejo Mediador/metabolismo
14.
BMC Cancer ; 22(1): 1335, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36539774

RESUMEN

BACKGROUND: The chemokines, CXCL12 and CXCL11, are upregulated in tumors from many organs and control their progression. CXCL12 and CXCL11 affect tumor cell functions by either binding their prime receptors, CXCR4 and CXCR3, respectively, and/or CXCR7 as a common second chemokine receptor. In humans, CXCR3 exists in the functional splice variants, CXCR3A and CXCR3B, which either have pro- or anti-tumor activity, respectively. Despite the intimate crosstalk between the CXCL12- and CXCL11-system, the impact of a combination of CXCL12 and CXCL11 on tumor progression remains vague. METHODS: In the present work, we have analyzed CXCL12 and CXCL11 for combined effects on migration, invasion, proliferation, and cytostatic-induced apoptosis of the human tumor cells, A549, A767, A772, DLD-1, and MDA-MB-231. RESULTS: We demonstrate that the mode of interaction differs with respect to cell type and function and allows for either potentiation, attenuation or no changes of cellular responses. The divergent responses are not the result of the distinct use of different CXCL12- and CXCL11-receptors by the respective tumor cells, but in case of cell migration seem to be associated with the activation of p38 signaling pathways. CONCLUSIONS: Our findings point to therapeutic limitations of ongoing efforts to selectively target CXCR3, CXCR4, or CXCR7 in cancer patients, and rather favor individualized targeting strategies.


Asunto(s)
Neoplasias , Receptores CXCR , Humanos , Receptores CXCR/genética , Receptores CXCR/metabolismo , Neoplasias/genética , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Quimiocina CXCL12/metabolismo , Transducción de Señal , Movimiento Celular , Apoptosis , Quimiocina CXCL11/genética , Quimiocina CXCL11/metabolismo
15.
Cell Oncol (Dordr) ; 45(6): 1435-1449, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36435866

RESUMEN

BACKGROUND: CXCL11 has been reported to be up-regulated in hepatocellular carcinoma (HCC) tissues and cancer-associated fibroblasts (CAFs), and CAF-secreted CXCL11 has been found to promote HCC cell proliferation and migration. Knowledge on how CAFs promote HCC progression is imperative for the future design of anti-tumor drugs addressing the high rates of disease recurrence. Herein, we propose a mechanism by which LINC00152 positively regulates CXCL11 expression and, subsequently, HCC cell phenotypes and growth characteristics via miR-205-5p in CAFs. METHODS: The expression of LINC00152, miR-205-5p in HCC/non-cancerous tissues, CAFs/NFs and HCC cell lines was determined by RT-qPCR. The CXCL11 expression and secretion were determined by westernblot and ELISA. Different expressions of LINC00152, CXCL11 and miR-205-5p in CAFs were achieved by transfection with corresponding overexpression/knockdown vectors or mimics/inhibitor. The interactions among LINC00152, miR-205-5p and CXCL11 were confirmed by FISH, luciferase, AGO2 and RNA-pulldown assays. Transwell, colony formation and MTT assays were performed to assess the role of CAFs conditioned medium (CM) in HCC cell phenotype. BALB/c nude mice xenografts were used to determine the role of CAFs on HCC growth in vivo. RESULTS: We found that in vitro, CM from CAFs transfected with sh-LINC00152 dramatically suppressed HCC cell viability, colony formation and migration, and that CM from CAFs transfected with miR-205-5p inhibitor (CAF-CM (miR-205-5p inhibitor)) exerted opposite effects on HCC cell phenotypes. Exogenous overexpression of CXCL11 in CAFs or CAF-CM (miR-205-5p inhibitor) could partially attenuate the effects of LINC00152 knockdown. In contrast, CM from CAFs transfected with LINC00152 dramatically increased HCC cell viability, colony formation and migration, and CM from CAFs transfected with miR-205-5p mimics (CAF-CM (miR-205-5p mimics)) exerted opposite effects on HCC cell phenotypes. Knockdown of CXCL11 in CAFs or CAF-CM (miR-205-5p mimics) could partially attenuate the effects of LINC00152 overexpression. In vivo, LINC00152 knockdown in CAFs inhibited tumor growth in a mouse model, which could be reversed by CXCL11 overexpression in CAFs. Mechanistically, we found that LINC00152 could act as a ceRNA to counteract miR-205-5p-mediated suppression on CXCL11 by directly binding to miR-205-5p and the 3'UTR of CXCL11. CONCLUSION: Our data indicate that a LINC00152/miR-205-5p/CXCL11 axis in HCC CAFs can affect the proliferative and migrative abilities of HCC cells in vitro and HCC tumor growth in vivo.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma Hepatocelular , Quimiocina CXCL11 , Neoplasias Hepáticas , MicroARNs , ARN Largo no Codificante , Animales , Humanos , Ratones , Fibroblastos Asociados al Cáncer/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/genética , Quimiocina CXCL11/genética , Quimiocina CXCL11/metabolismo , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas/patología , Ratones Desnudos , MicroARNs/genética , MicroARNs/metabolismo , Fenotipo , ARN Largo no Codificante/genética
16.
Front Immunol ; 13: 951247, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935945

RESUMEN

Background: Immunotherapy has achieved great success in cancer. Nevertheless, many patients cannot benefit from immune checkpoint blockade therapy because of the scantiness of CD8+ T cell infiltration in the tumor microenvironment (TME). CXCL11 is known as a regulator that influences T-cell infiltration into tumors. However, the role of CXCL11 in pan-cancer is still unclear. Methods: In this study, we investigated the expression and function of CXCL11 across 33 types of cancers based on datasets from The Cancer Genome Atlas (TCGA) database and the Genotype-Tissue Expression (GTEx) database. We analyzed the CXCL11 differential expression in tumor tissue and nontumoral tissue and in different stages of cancers. Moreover, the correlations among CXCL11 expression, prognosis, mismatch repair, tumor mutation burden (TMB), microsatellite instability (MSI), tumor microenvironment, and immune-related genes were evaluated. Results: CXCL11 expression was significantly higher in tumoral tissue than in nontumoral tissue for most types of cancer. Improved CXCL11 expression was related to an inconsistent prognosis in different cancers. CXCL11 was positively associated with CD8+ T cells and T follicular helper cells in the TME. High expression of CXCL11 was positively related to TMB in BLCA, BRCA, CESC, COAD, LGG, LUAD, OV, SKCM, STAD, THYM, and UCEC. A positive correlation between CXCL11 and MSI was found in COAD and UVM. Moreover, functional analysis of CXCL11 showed that high CXCL11 expression was significantly related to immune-relevant pathways. Conclusions: CXCL11 might function as a prognostic and immunotherapy marker across cancers. Further investigation into CXCL11 might provide promising insights to improve cancer therapy.


Asunto(s)
Quimiocina CXCL11/metabolismo , Inmunoterapia , Neoplasias , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Linfocitos T CD8-positivos , Quimiocina CXCL11/genética , Humanos , Factores Inmunológicos , Inestabilidad de Microsatélites , Neoplasias/genética , Neoplasias/patología , Neoplasias/terapia , Pronóstico , Microambiente Tumoral
17.
Front Immunol ; 13: 868579, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720349

RESUMEN

The chemokine receptor CXCR3 plays a critical role in immune cell recruitment and activation. CXCR3 exists as two main isoforms, CXCR3-A and CXCR3-B, resulting from alternative splicing. Although the two isoforms differ only by the presence of an N-terminal extension in CXCR3-B, they have been attributed divergent functional effects on cell migration and proliferation. CXCR3-B is the more enigmatic isoform and the mechanisms underlying its function and signaling remain elusive. We therefore undertook an in-depth cellular and molecular comparative study of CXCR3-A and CXCR3-B, investigating their activation at different levels of the signaling cascades, including G protein coupling, ß-arrestin recruitment and modulation of secondary messengers as well as their downstream gene response elements. We also compared the subcellular localization of the two isoforms and their trafficking under resting and stimulated conditions along with their ability to internalize CXCR3-related chemokines. Here, we show that the N-terminal extension of CXCR3-B drastically affects receptor features, modifying its cellular localization and preventing G protein coupling, while preserving ß-arrestin recruitment and chemokine uptake capacities. Moreover, we demonstrate that gradual truncation of the N terminus leads to progressive recovery of surface expression and G protein coupling. Our study clarifies the molecular basis underlying the divergent effects of CXCR3 isoforms, and emphasizes the ß-arrestin-bias and the atypical nature of CXCR3-B.


Asunto(s)
Quimiocinas , Transducción de Señal , Empalme Alternativo , Quimiocina CXCL11/metabolismo , Quimiocinas/metabolismo , beta-Arrestinas/metabolismo , beta-Arrestinas/farmacología
18.
Free Radic Biol Med ; 184: 135-147, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35381326

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is a common kidney malignancy that is characterized by poor prognosis. RNA-binding motif protein 15 (RBM15) has been identified as an oncogene in multiple tumors. Nevertheless, the function and mechanism of RBM15 in ccRCC are not clear. In this study, RBM15 was found to be upregulated in ccRCC cells and tissues. RBM15 enhanced the proliferation, clone formation, migration, invasion and epithelial-interstitial transition of ccRCC cells. Enhanced RBM15 was caused by the abundant histone 3 acetylation modification of the RBM15 promoter induced by EP300/CBP. RBM15 enhanced the stability of CXCL11 mRNA in an m6A-dependent manner. Moreover, RBM15 was found to promote macrophage infiltration and M2 polarization by promoting the secretion of CXCL11 in ccRCC cells in vitro and in vivo. Our findings highlight the function of RBM15 in ccRCC and reveal a novel identified EP300/CBP-RBM15-CXCL11 signaling axis, which promotes ccRCC progression and provides new insight into ccRCC therapy.


Asunto(s)
Carcinoma de Células Renales , Quimiocina CXCL11 , Neoplasias Renales , Proteínas de Unión al ARN , Carcinoma de Células Renales/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Quimiocina CXCL11/genética , Quimiocina CXCL11/metabolismo , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Renales/metabolismo , Macrófagos/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
19.
Exp Cell Res ; 416(2): 113139, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35390315

RESUMEN

BACKGROUND: Breast cancer is the most common malignancy in women populations. METHODS: RAMP2-AS1 and CXCL11 expression in breast cancer tissues and cells were determined using RT-qPCR or Western blot. RIP analysis confirmed the interaction between DNMT1, DNMT3B and RAMP2-AS1. ChIP assay verified that RAMP2-AS1 recruited DNMT1 and DNMT3B to the promoter region of CXCL11. FISH detected the sub-localization of RAMP2-AS1 in breast cancer cells. Bisulfite sequencing PCR (BSP) tested the methylation level of CXCL11. The cell viability, proliferation, migration and apoptosis were assessed by CCK-8, colony formation, transwell and flow cytometry assays, respectively. IHC was performed to evaluate the expression of Ki67, CXCL11, MMP2 in tumor tissues. RESULTS: The level of RAMP2-AS1 was decreased in breast cancer tissues and cells, whereas CXCL11 was highly expressed. Patients with decreased RAMP2-AS1 had a poor prognosis. RAMP2-AS1 inhibited breast cancer cell malignant phenotype. Besides, RAMP2-AS1 regulated the methylation of CXCL11 by recruiting DNMT1 and DNMT3B to the promoter region of CXCL11. RAMP2-AS1 overexpression suppressed the malignant phenotype through CXCL11 and inhibited tumor growth in vivo. CONCLUSION: RAMP2-AS1 suppresses breast cancer malignant phenotype via DNMT1 and DNMT3B mediated inhibition of CXCL11.


Asunto(s)
Neoplasias de la Mama , Quimiocina CXCL11 , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas , ARN Largo no Codificante , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Quimiocina CXCL11/genética , Quimiocina CXCL11/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Fenotipo , ARN Largo no Codificante/genética , Proteína 2 Modificadora de la Actividad de Receptores/genética , Proteína 2 Modificadora de la Actividad de Receptores/metabolismo , ADN Metiltransferasa 3B
20.
J Interferon Cytokine Res ; 42(4): 180-190, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35438529

RESUMEN

We explored the biological functions, signaling pathways, potential inflammation, and immune biomarkers involved in ulcerative cutaneous tuberculosis (UCT). Mycobacterium tuberculosis-infected tissues from UCT patients and patients with noncutaneous tuberculous ulcers (NCTUs) were studied using transcriptomic analysis. Functional enrichment determined using the Gene Ontology database and enrichment of signaling pathways was ascertained using the Kyoto Encyclopedia of Genes and Genomes database. Protein-protein interaction (PPI) networks were analyzed to determine the hub genes. A total of 4,396 differentially expressed genes (DEGs) were identified. DEGs were enriched in CXCR3 chemokine receptor binding, chemokine activity, and cytokine-cytokine receptor interaction and other aspects. Analyses of PPI networks identified 15 hub genes. Expression of chemokine (C-X-C motif) ligand 9 (CXCL9)/10/11 messenger RNA (mRNA) and C-X-C motif chemokine receptor 3 (CXCR3) mRNA in the lesions of patients with UCT increased compared with that in NCTU cases. Expression of CXCL9 mRNA and CXCL10 mRNA in plasma also increased, which was consistent with other test results. We discovered a novel plasma CXC chemokine signature that could be used to differentiate UCT from NCTU. Our study (1) provides a reference for UCT diagnosis and selection of diagnostic markers and (2) lays the foundation for further elucidation of UCT pathogenesis.


Asunto(s)
Biología Computacional , Úlcera , Quimiocina CXCL10/metabolismo , Quimiocina CXCL11/metabolismo , Quimiocina CXCL9/genética , Biología Computacional/métodos , Perfilación de la Expresión Génica , Ontología de Genes , Humanos , ARN Mensajero , Receptores CXCR3/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA