RESUMEN
Immunotherapy has emerged as a promising approach for cancer treatment, with oncolytic adenoviruses showing power as immunotherapeutic agents. In this study, we investigated the immunotherapeutic potential of an adenovirus construct expressing CXCL9, CXCL10, or IL-15 in clear cell renal cell carcinoma (ccRCC) tumor models. Our results demonstrated robust cytokine secretion upon viral treatment, suggesting effective transgene expression. Subsequent analysis using resistance-based transwell migration and microfluidic chip assays demonstrated increased T-cell migration in response to chemokine secretion by infected cells in both 2D and 3D cell models. Flow cytometry analysis revealed CXCR3 receptor expression across T-cell subsets, with the highest percentage found on CD8+ T-cells, underscoring their key role in immune cell migration. Alongside T-cells, we also detected NK-cells in the tumors of immunocompromised mice treated with cytokine-encoding adenoviruses. Furthermore, we identified potential immunogenic antigens that may enhance the efficacy and specificity of our armed oncolytic adenoviruses in ccRCC. Overall, our findings using ccRCC cell line, in vivo humanized mice, physiologically relevant PDCs in 2D and patient-derived organoids (PDOs) in 3D suggest that chemokine-armed adenoviruses hold promise for enhancing T-cell migration and improving immunotherapy outcomes in ccRCC. Our study contributes to the development of more effective ccRCC treatment strategies by elucidating immune cell infiltration and activation mechanisms within the tumor microenvironment (TME) and highlights the usefulness of PDOs for predicting clinical relevance and validating novel immunotherapeutic approaches. Overall, our research offers insights into the rational design and optimization of viral-based immunotherapies for ccRCC.
Asunto(s)
Adenoviridae , Carcinoma de Células Renales , Neoplasias Renales , Carcinoma de Células Renales/inmunología , Carcinoma de Células Renales/terapia , Carcinoma de Células Renales/patología , Carcinoma de Células Renales/genética , Humanos , Animales , Neoplasias Renales/inmunología , Neoplasias Renales/terapia , Neoplasias Renales/patología , Neoplasias Renales/genética , Ratones , Adenoviridae/genética , Adenoviridae/inmunología , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Viroterapia Oncolítica/métodos , Inmunoterapia/métodos , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Quimiocina CXCL9/inmunología , Movimiento Celular , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Quimiocina CXCL10/inmunología , Citocinas/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Interleucina-15/genética , Interleucina-15/metabolismo , Interleucina-15/inmunología , Receptores CXCR3/metabolismo , Receptores CXCR3/genética , Virus Oncolíticos/genética , Virus Oncolíticos/inmunología , Linfocitos T CD8-positivos/inmunologíaRESUMEN
BACKGROUND Rejection is the main cause of kidney allograft failure, and kidney biopsy is the criterion standard method to diagnose it. However, non-invasive techniques to detect kidney transplant rejection are necessary. This study aimed to evaluate urinary chemokines CXCL9 and CXCL10 as potential biomarkers of kidney transplant rejection and to analyze chemokine association with allograft prognosis. MATERIAL AND METHODS We collected 117 urine samples from kidney transplant recipients undergoing allograft biopsy. CXCL9 and CXCL10 levels were measured by ELISA and the ratio to urine creatinine was calculated. Histology and other clinical data were collected from medical records. RESULTS The diagnostic performance of urinary CXCL9/cre in discriminating rejection from all other histological groups showed an ROC AUC value of 0.728 (95% CI 0.632-0.824, p<0.001), and a cut-off value 0.11 ng/mmol had the best sensitivity (76.9%) and specificity (73.1%). The ability of CXCL10/cre to discriminate transplant rejection from all other histological groups had ROC AUC value 0.73 (95% CI 0.63-0.84, P<0.001), the cut-off value 0.42 ng/mmol with best sensitivity (71.4%) and specificity (84.6%). CXCL9 and CXCL10 levels were also increased in patients with polyoma BK virus, recurrent AA amyloidosis, and thrombotic microangiopathy. Patients with higher CXCL9/cre (≥0.11 ng/mmol) and CXCL10/cre (≥0.42 ng/mmol) levels were at increased risk of transplant progression to ESRD (HR 3.25, 95% CI=1.27-8.36, P=0.01), irrespective of serum creatinine at the time of biopsy. CONCLUSIONS Urinary CXCL9/cre and CXCL10/cre were able to distinguished between patients with transplant rejection and those without rejection. High levels of urinary CXCL9/cre and CXCL10/cre were associated with worse allograft survival.
Asunto(s)
Biomarcadores , Quimiocina CXCL10 , Quimiocina CXCL9 , Rechazo de Injerto , Trasplante de Riñón , Trasplante de Riñón/efectos adversos , Humanos , Quimiocina CXCL10/orina , Rechazo de Injerto/orina , Rechazo de Injerto/diagnóstico , Quimiocina CXCL9/orina , Femenino , Biomarcadores/orina , Masculino , Persona de Mediana Edad , AdultoRESUMEN
CXCR3 is a chemokine receptor with three ligands: CXCL9, CXCL10 and CXCL11. We report that in addition to attracting CXCR3+ T cells to tumor sites a key role of CXCL9 and CXCL10 is in inducing a self-feeding feedback loop that accelerates effector/cytotoxic activities of both CD4+ and CD8+ T cells while downregulating immunoregulatory protein TIM3. CXCR3KO mice displayed a markedly reduced response to anti-PD-1 and anti-CTLA-4 therapy. Results from a panel of in vivo and ex vivo 3D tumor models imply that, beyond driving CD8+ T cells into T-cell exhaustion, a major role of PD-1 and CTLA-4 is in limiting the CXCR3-based self-feeding mechanism of T cell potentiation. This may explain why patients that are CXCL9/CXCL10high tend to respond well to anti-PD-1 therapy, as opposed to patients that are CXCL9/CXCL10low. It also suggests a therapeutic role for CXCL9-Fc or CXCL10-Fc therapy; herein we demonstrate significant anti-tumor activity in multiple murine tumor models with such agents.
Asunto(s)
Antígeno CTLA-4 , Quimiocina CXCL10 , Quimiocina CXCL9 , Interferón gamma , Ratones Noqueados , Receptor de Muerte Celular Programada 1 , Receptores CXCR3 , Animales , Receptores CXCR3/metabolismo , Receptores CXCR3/genética , Quimiocina CXCL9/metabolismo , Quimiocina CXCL9/genética , Ratones , Quimiocina CXCL10/metabolismo , Quimiocina CXCL10/genética , Receptor de Muerte Celular Programada 1/metabolismo , Antígeno CTLA-4/metabolismo , Interferón gamma/metabolismo , Ratones Endogámicos C57BL , Retroalimentación Fisiológica , Humanos , Línea Celular Tumoral , Linfocitos T CD8-positivos/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacologíaRESUMEN
High ferritin is an important and sensitive biomarker for the various forms of hemophagocytic lymphohistiocytosis (HLH), a diverse and deadly group of cytokine storm syndromes. Early action to prevent immunopathology in HLH often includes empiric immunomodulation, which can complicate etiologic work-up and prevent collection of early/pre-treatment research samples. To address this, we instituted an alert system at UPMC Children's Hospital where serum ferritin > 1000 ng/mL triggered real-time chart review, assessment of whether the value reflected "inflammatory hyperferritnemia (IHF)", and biobanking of remnant samples from consenting IHF patients. We extracted relevant clinical data; periodically measured serum total IL-18, IL-18 binding protein (IL-18BP), and CXCL9; retrospectively classified patients by etiology into infectious, rheumatic, or immune dysregulation; and subjected a subgroup of samples to a 96-analyte biomarker screen. 180 patients were identified, 30.5% of which had IHF. Maximum ferritin levels were significantly higher in patients with IHF than with either hemoglobinopathy or transplant, and highly elevated total IL-18 levels were distinctive to patients with Stills Disease and/or Macrophage Activation Syndrome (MAS). Multi-analyte analysis showed elevation in proteins associated with cytotoxic lymphocytes in all IHF samples when compared to healthy controls and depression of proteins such as ANGPT1 and VEGFR2 in samples from hyperferritinemic sepsis patients relative to non-sepsis controls. This real-time IFH screen proved feasible and efficient, validated prior observations about the specificity of IL-18, enabled early sample collection from a complex population, suggested a unique vascular biomarker signature in hyperferritinemic sepsis, and expanded our understanding of IHF heterogeneity.
Asunto(s)
Biomarcadores , Ferritinas , Hiperferritinemia , Interleucina-18 , Linfohistiocitosis Hemofagocítica , Humanos , Linfohistiocitosis Hemofagocítica/diagnóstico , Linfohistiocitosis Hemofagocítica/sangre , Linfohistiocitosis Hemofagocítica/inmunología , Biomarcadores/sangre , Femenino , Interleucina-18/sangre , Masculino , Hiperferritinemia/diagnóstico , Hiperferritinemia/sangre , Niño , Ferritinas/sangre , Preescolar , Lactante , Adolescente , Diagnóstico Diferencial , Péptidos y Proteínas de Señalización Intercelular/sangre , Quimiocina CXCL9/sangre , Inflamación/diagnóstico , Inflamación/sangre , Inflamación/inmunología , Estudios RetrospectivosRESUMEN
In kidney transplant recipients, urine CXCL9 and CXCL10 (uCXCL9/10) chemokines have reached a sufficiently high level of evidence to be recommended by the European Society of Organ Transplantation for the monitoring of immune quiescence. To assess the risk of acute rejection (AR), the advantage of uCXCL9/10 is their cost-effectiveness and their high diagnostic performance. Here, we evaluated the feasibility of a next-generation immunoassay for quantifying uCXCL9/10 levels. It demonstrated high efficiency with minimal workflow and a 90-min time to result. Preanalytical studies indicated stability of uCXCL9/10 levels and analytical studies confirmed excellent linearity and precision. In a cohort of 1048 samples collected at biopsy, the results correlated significantly with ELISA quantification and were integrated into a previously validated 8-parameter urine chemokine model. The next generation immunoassay achieved an accuracy of 0.84 for AR diagnosis. This study validates this technology as a robust, locally available and unexpensive platform and marks a significant step towards the widespread implementation of uCXCL9/10, for immune quiescence monitoring. Therefore, we developed an open-access web application using uCXCL9/10 to calculate AR risk and improve clinical decision-making to perform biopsy, ushering in a new era in kidney transplantation, where personalized, data-driven care becomes the norm.
Asunto(s)
Quimiocina CXCL10 , Quimiocina CXCL9 , Rechazo de Injerto , Trasplante de Riñón , Trasplante de Riñón/efectos adversos , Quimiocina CXCL10/orina , Humanos , Quimiocina CXCL9/orina , Rechazo de Injerto/orina , Rechazo de Injerto/diagnóstico , Masculino , Femenino , Persona de Mediana Edad , Biomarcadores/orina , Adulto , Anciano , Inmunoensayo/métodosRESUMEN
Chemokines are cytokines that mediate leukocyte traffic between the lymphoid organs, the bloodstream, and the site of tissue damage, which is essential for an efficient immune response. In particular, the gamma interferon (IFN- γ) inducible chemokines CXCL9, CXCL10, and CXCL11, and their receptor CXCR3, are involved in T cell and macrophage recruitment to the site of infection. The nature and function of these chemokines and their receptor are well-known in mammals, but further research is needed to achieve a similar level of understanding in fish immunity. Thus, in this study, we seek to identify the genes encoding the components of the Atlantic salmon (Salmo salar) CXCL9, CXCL10, CXCL11/CXCR3 axis (CXCL9-11/CXCR3), predict the protein structure from the amino acid sequence, and explore the regulation of gene expression as well as the response of these chemokines and their receptor to viral infections. The cxcl9, cxcl10, cxcl11, and cxcr3 gene sequences were retrieved from the databases, and the phylogenetic analysis was conducted to determine the evolutionary relationships. The study revealed an interesting pattern of clustering and conservation among fish and mammalian species. The salmon chemokine sequences clustered with orthologs from other fish species, while the mammalian sequences formed separate clades. This indicates a divergent evolution of chemokines between mammals and fish, possibly due to different evolutionary pressures. While the structural analysis of the chemokines and the CXCR3 receptor showed the conservation of critical motifs and domains, suggesting preserved functions and stability throughout evolution. Regarding the regulation of gene expression, some components of the CXCL9-11/CXCR3 axis are induced by recombinant gamma interferon (rIFN-γ) and by Infectious pancreatic necrosis virus (IPNV) infection in Atlantic salmon cells. Further studies are needed to explore the role of Atlantic salmon CXCL9-11 chemokines in regulating immune cell migration and endothelial activation, as seen in mammals. To the best of our knowledge, there have been no functional studies of chemokines to understand these effects in Atlantic salmon.
Asunto(s)
Quimiocina CXCL9 , Filogenia , Receptores CXCR3 , Salmo salar , Animales , Salmo salar/inmunología , Salmo salar/genética , Receptores CXCR3/genética , Receptores CXCR3/metabolismo , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Quimiocina CXCL9/inmunología , Regulación de la Expresión Génica , Quimiocina CXCL11/genética , Quimiocina CXCL11/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/metabolismo , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Virus de la Necrosis Pancreática Infecciosa/inmunologíaRESUMEN
BACKGROUND: Tuberculosis (TB) remains a persistent threat to global public health and traditional treatment monitoring approaches are limited by their potential for contamination and need for timely evaluation. Therefore, new biomarkers are urgently required for monitoring the treatment efficacy of TB. METHODS: This study aimed to elucidate the levels of CXCL10 and CXCL9 in pulmonary TB patients who underwent anti-TB treatment. The data was acquired from five databases, including PubMed, Ovid, Web of Science, Embase, and the Cochrane Library. A meta-analysis of CXCL10 data from all time points was conducted. Furthermore, a trend meta-analysis of temporal data of CXCL10 and CXCL9 from multiple time points was also performed. RESULTS: It was revealed that patients who responded poorly to anti-TB treatment had higher serum levels relative to those who responded well (SMD: 1.23, 95% CI: -0.37-2.84) at the end of intensive treatment (2 months). Furthermore, heterogeneity was observed in these results, which might be because patients with a prior history of TB and different treatment monitoring methods than those selected in this study were also included. The analysis of alterations in CXCL10 and CXCL9 levels since the last collection time points indicated that their levels reduced with time. CONCLUSION: In summary, the study revealed that reductions in CXCL10 levels during the first two months of anti-TB treatment are correlated with treatment responses. Furthermore, decreasing levels of CXCL9 during the treatment suggest that it may also serve as a biomarker with a similar value to CXCL10. Future in-depth studies are thus warranted to further probe the relevance of CXCL10 and CXCL9 in monitoring the treatment efficacy of TB.
Asunto(s)
Antituberculosos , Biomarcadores , Quimiocina CXCL10 , Quimiocina CXCL9 , Tuberculosis Pulmonar , Humanos , Quimiocina CXCL10/sangre , Quimiocina CXCL9/sangre , Biomarcadores/sangre , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/sangre , Antituberculosos/uso terapéutico , Resultado del TratamientoRESUMEN
Plasma cytokine levels were quantified among 30 persons with HIV (PWH) identified as elite controllers (15 transient controllers [studied a median of 1.38 years before losing viral control] and 15 persistent controllers). Thirty antiretroviral therapy (ART)-naive PWH, 30 ART-treated PWH with undetectable viremia, and 30 HIV-uninfected controls also were studied. Higher levels of cytokines were recognized among PWH than among controls, with EC displaying the highest levels. Elevated levels of IP-10 and MIG were identified among transient controllers as predictors of the loss of viral control. These findings offer feasible biomarkers for predicting virologic outcome and loss of control in EC.
Asunto(s)
Biomarcadores , Quimiocina CXCL10 , Quimiocina CXCL9 , Infecciones por VIH , Humanos , Infecciones por VIH/inmunología , Infecciones por VIH/sangre , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Masculino , Quimiocina CXCL10/sangre , Femenino , Biomarcadores/sangre , Adulto , Persona de Mediana Edad , Quimiocina CXCL9/sangre , Carga Viral , VIH-1/inmunología , Sobrevivientes de VIH a Largo PlazoRESUMEN
The pathogenesis of the murine model of autoimmune pancreatitis associated with IgG4-related disease (AIP/IgG4-RD) induced by administration of polyinosinic-polycytidylic acid (poly[I:C]) is incompletely understood. While it is known that murine and human AIP/IgG4-RD is driven by plasmacytoid dendritic cells (pDCs) producing IFN-α, the origin of these cells and their relation to effector T cells is not known. Here, we show that murine AIP was initiated by TLR3-bearing conventional DCs in the uninflamed pancreas whose activation by the TLR3 ligand poly(I:C) caused IFN-α, CXCL9, and CXCL10 secretion. This, in turn, induced pancreatic recruitment of CXCR3+ T cells and these T cells, via their secretion of CCL25, facilitated migration of pDCs bearing CCR9 into the pancreas. This established a feedback loop anchored by the now dominant pDC production of IFN-α and the continued CXCR3+ T cell facilitation of pDC migration. Remarkably, the interaction between CXCR3+ T cells and pDCs also existed at the functional level since this interaction enhanced the production of CCL25 and IFN-α by CXCR3+ T cells and pDCs, respectively. Evidence presented here that a similar disease mechanism was present in human AIP/IgG4-RD creates new avenues of disease treatment.
Asunto(s)
Pancreatitis Autoinmune , Células Dendríticas , Modelos Animales de Enfermedad , Enfermedad Relacionada con Inmunoglobulina G4 , Receptores CXCR3 , Animales , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Ratones , Pancreatitis Autoinmune/inmunología , Enfermedad Relacionada con Inmunoglobulina G4/inmunología , Enfermedad Relacionada con Inmunoglobulina G4/patología , Humanos , Receptores CXCR3/metabolismo , Interferón-alfa/metabolismo , Interferón-alfa/inmunología , Poli I-C/farmacología , Poli I-C/inmunología , Citocinas/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Quimiocina CXCL10/metabolismo , Quimiocina CXCL10/inmunología , Inmunoglobulina G/inmunología , Inmunoglobulina G/metabolismo , Quimiocina CXCL9/metabolismo , Quimiocina CXCL9/inmunología , Quimiocinas/metabolismo , Ratones Endogámicos C57BL , Páncreas/inmunología , Páncreas/patología , Femenino , Retroalimentación FisiológicaRESUMEN
BACKGROUND AND AIMS: Endosialin, also known as tumor endothelial marker1 or CD248, is a transmembrane glycoprotein that is mainly expressed in cancer-associated fibroblasts (CAFs) in hepatocellular carcinoma (HCC). Our previous study has found that endosialin-positive CAFs could recruit and induce the M2 polarization of macrophages in HCC. However, whether they may regulate other types of immune cells to promoting HCC progression is not known. APPROACH AND RESULTS: The growth of both subcutaneous and orthotopic HCC tumors was significantly inhibited in endosialin knockout (ENKO) mice. Single-cell sequencing and flow cytometry analysis showed that tumor tissues from ENKO mice had increased CD8+ T cell infiltration. Mixed HCC tumor with Hepa1-6 cells and endosialin knockdown fibroblasts also showed inhibited growth and increased CD8+ T cell infiltration. Data from in vitro co-culture assay, chemokine array and antibody blocking assay, RNA-seq and validation experiments showed that endosialin inhibits the phosphorylation and nuclear translocation of STAT1 in CAFs. This inhibition leads to a decrease in CXCL9/10 expression and secretion, resulting in the suppression of CD8+ T cell infiltration. High level of endosialin protein expression was correlated with low CD8+ T infiltration in the tumor tissue of HCC patients. The combination therapy of endosialin antibody and PD-1 antibody showed synergistic antitumor effect compared with either antibody used individually. CONCLUSIONS: Endosialin could inhibit CD8+ T cell infiltration by inhibiting the expression and secretion of CXCL9/10 in CAFs, thus promote HCC progression. Combination therapy with endosialin antibody could increase the antitumor effect of PD-1 antibody in HCC, which may overcome the resistance to PD-1 blockade.
Asunto(s)
Linfocitos T CD8-positivos , Fibroblastos Asociados al Cáncer , Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/metabolismo , Animales , Ratones , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Humanos , Fibroblastos Asociados al Cáncer/metabolismo , Antígenos CD/metabolismo , Progresión de la Enfermedad , Línea Celular Tumoral , Quimiocina CXCL9/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Ratones Noqueados , Microambiente Tumoral , Factor de Transcripción STAT1/metabolismo , Quimiocina CXCL10/metabolismo , Masculino , Antígenos de Neoplasias , Proteínas de NeoplasiasRESUMEN
Chronic inflammation is believed as the main culprit of the link between cardiovascular disease (CVD) and rheumatoid arthritis (RA). Interleukin-6 (IL-6) is a pro-inflammatory cytokine with a key role in RA pathophysiology and also correlates with joint destruction and disease activity. This study evaluates the association between IL-6 plasma level and cardiac biomarker NT-proBNP, HS-CRP, CVD predictor algorithms, Framingham Risk Score (FRS) and Systematic Coronary Risk Evaluation (SCORE), as well as with CXCL9 and its receptor, CXCR3 in RA patients compared to the controls. Sixty RA patients (30 early and 30 late) and 30 healthy persons were included in this study. IL-6 and NT-proBNP plasma levels were measured by the ELISA. Also, HS-CRP plasma levels were quantified using the immunoturbidimetric assay. The CVD risk was assessed by the FRS and SCORE. IL-6 plasma levels were significantly higher in the early and late RA patients compared to the controls (p < 0.001). There was a positive correlation between IL-6 with DAS-28 (p = 0.007, r = 0.346), BPS (p = 0.002, r = 0.396), BPD (p = 0.046, r = 0.259), SCORE (p < 0.001, r = 0.472), and FRS (p < 0.001, r = 0.553), and a negative association with HDL (p = 0.037, r = -0.270), in the patients. Also, IL-6 plasma level positively correlated with HS-CRP (p = 0.021, r = 0.297) and NT-proBNP (p = 0.045, r = 0.260) in the patients. Furthermore, a positive association was found between IL-6 plasma levels and CXCL9 (p = 0.002, r = 0.386), and CXCR3 (p = 0.018, r = 0.304) in the patients. Given the interesting association between IL-6 with various variables of CVD, IL-6 may be considered a biomarker for assessing the risk for future cardiovascular events in RA patients.
Asunto(s)
Algoritmos , Artritis Reumatoide , Biomarcadores , Proteína C-Reactiva , Enfermedades Cardiovasculares , Interleucina-6 , Péptido Natriurético Encefálico , Fragmentos de Péptidos , Humanos , Artritis Reumatoide/sangre , Artritis Reumatoide/complicaciones , Biomarcadores/sangre , Femenino , Masculino , Interleucina-6/sangre , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/etiología , Persona de Mediana Edad , Péptido Natriurético Encefálico/sangre , Proteína C-Reactiva/metabolismo , Fragmentos de Péptidos/sangre , Quimiocina CXCL9/sangre , Adulto , Estudios de Casos y Controles , Anciano , Factores de Riesgo , Receptores CXCR3RESUMEN
BACKGROUND: The aim of this study was to analyze the clinical significance of cerebrospinal fluid (CSF) cytokines in hemophagocytic lymphohistiocytosis associated with central nervous system (CNS-HLH). METHODS: CSF cytokine levels, including interferon (IFN)-γ, soluble CD25 (sCD25), interleukin (IL)-6, IL-10, IL-18, and CXCL9 were measured at disease onset and during the treatment. Five newly diagnosed patients with demyelination disease were enrolled for comparison. RESULTS: Sixty-five samples from 36 patients (13 in the CNS group and 23 in the non-CNS group) were detected. Levels of CSF IFN-γ, sCD25, IL-10, IL-18, and CXCL9 in the CNS group were higher than those in the non-CNS group ( P =0.038, <0.001, <0.001, 0.005, and <0.001), and levels of CSF sCD25, IL-10, IL-18, and CXCL9 in the CNS group were higher than those in the demyelination group ( P =0.001, 0.008, 0.004, and 0.003). There was no significant difference in IL-6 levels among the 3 groups ( P =0.339). CSF IFN-γ, sCD25, IL-10, IL-18, and CXCL9 could assist in diagnosing CNS-HLH. The diagnostic efficiency of CSF sCD25, IL-10, and CXCL9 was better, with a cutoff value of 154.64, 1.655, and 19.54 pg/mL, respectively. The area under the curve was >0.9, with sensitivity and specificity >80%. Correlation analysis suggested that in the CNS group, IFN-γ levels in CSF and serum correlated positively ( R =0.459, P =0.007), while there was no correlation between CSF CXCL9 and serum IFN-γ ( P =0.915). CONCLUSIONS: CSF IFN-γ, sCD25, IL-10, IL-18, and CXCL9 levels were significantly higher in HLH patients with CNS involvement than those without and could predict HLH patients with CNS involvement. CSF CXCL9 might be a more sensitive biomarker to CNS-HLH than IFN-γ, while CSF IL-6 does not seem to play a vital role.
Asunto(s)
Biomarcadores , Linfohistiocitosis Hemofagocítica , Humanos , Linfohistiocitosis Hemofagocítica/sangre , Linfohistiocitosis Hemofagocítica/líquido cefalorraquídeo , Linfohistiocitosis Hemofagocítica/diagnóstico , Masculino , Femenino , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Niño , Preescolar , Lactante , Adolescente , Estudios de Cohortes , Citocinas/sangre , Citocinas/líquido cefalorraquídeo , Enfermedades del Sistema Nervioso Central/líquido cefalorraquídeo , Enfermedades del Sistema Nervioso Central/sangre , Enfermedades del Sistema Nervioso Central/diagnóstico , Quimiocina CXCL9/sangre , Quimiocina CXCL9/líquido cefalorraquídeo , Interferón gamma/sangre , Interferón gamma/líquido cefalorraquídeoRESUMEN
Background: Carotid endarterectomy (CEA) for the prevention of upcoming vascular and cerebral events is necessary in patients with high-grade stenosis (≥70%). In the framework of the Italian National project Age.It, a pilot study was proposed aiming at the discovery of a molecular signature with predictive potential of carotid stenosis comparing 65+ asymptomatic and symptomatic inpatients. Methods: A total of 42 inpatients have been enrolled, including 26 men and 16 women, with a mean age of 74 ± 6 years. Sixteen symptomatic and 26 asymptomatic inpatients with ≥70% carotid stenosis underwent CEA, according to the recommendations of the European Society for Vascular Surgery and the Society for Vascular Surgeons. Plaque biopsies and peripheral blood samples from the same individuals were obtained. Hematobiochemical analyses were conducted on all inpatients, and plasma cytokines/molecules, such as microRNAs (miRs), IL-6, sIL-6Ralpha, sgp130, myostatin (GDF8), follistatin, activin A, CXCL9, FGF21, and fibronectin, were measured using the ELISA standard technique. MiR profiles were obtained in the discovery phase including four symptomatic and four asymptomatic inpatients (both plasma and plaque samples), testing 734 miRs. MiRs emerging from the profiling comparison were validated through RT-qPCR analysis in the total cohort. Results and conclusion: The two groups of inpatients differ in the expression levels of blood c-miRs-126-5p and -1271-5p (but not in their plaques), which are more expressed in symptomatic subjects. Three cytokines were significant between the two groups: IL-6, GDF8, and CXCL9. Using receiver operating characteristic (ROC) analysis with a machine learning-based approach, the most significant blood molecular signature encompasses albumin, C-reactive protein (CRP), the percentage of monocytes, and CXCL9, allowing for the distinction of the two groups (AUC = 0.83, 95% c.i. [0.85, 0.81], p = 0.0028). The potential of the molecular signature will be tested in a second cohort of monitored patients, allowing the application of a predictive model and the final evaluation of cost/benefit for an assessable screening test.
Asunto(s)
Biomarcadores , Proteína C-Reactiva , Quimiocina CXCL9 , Monocitos , Humanos , Masculino , Femenino , Proyectos Piloto , Anciano , Proteína C-Reactiva/metabolismo , Proteína C-Reactiva/análisis , Biomarcadores/sangre , Quimiocina CXCL9/sangre , Monocitos/metabolismo , Estenosis Carotídea/sangre , Endarterectomía Carotidea , Enfermedades de las Arterias Carótidas/sangre , Anciano de 80 o más Años , Comorbilidad , Albúmina Sérica/análisis , Albúmina Sérica/metabolismoRESUMEN
BACKGROUND: Ovarian cancer (OV) is a heterogeneous disease but has traditionally been treated as an immunologically cold malignancy. The relationship between the immune-active cancer phenotype typified by a T helper 1 (Th-1) immune response and clinical outcome in OV remains uncertain. METHODS: A cohort-scale compendium of transcriptomic data from 2850 OV samples from 19 individual datasets was compiled for integrative immuno-transcriptomic analysis. The immunological constant of rejection was used as a metric to assess the Th-1/cytotoxic response orientation and investigate the clinical-biological significance of immune polarization towards a Th-1 immune response. Single-cell RNA sequencing data from 39 OV samples were analyzed to elucidate the variability of the immune microenvironment, and immunohistochemical validation was performed on 39 samples from the Harbin Medical University Cancer Hospital. RESULTS: Our results demonstrated the prognostic significance of a Th-1/cytotoxic immune profile within the tumor microenvironment (TME) using the immunological constant of rejection classification to OV samples. Specifically, patients with tumors expressing high levels of ICR markers showed significantly improved survival. A gene panel consisting of four chemokines (CXCL9, CXCL10, CXCL11 and CXCL13) was identified as critical players in mediating the establishment of an active T-cell-inflamed antitumor phenotype. This 4-chemokine signature, which was extensively validated in external multicenter cohorts through transcriptomic profiling and in an independent in-house cohort through immunohistochemistry, introduced a novel immune classification in OV and identified a chemokine-dominated subtype associated with an active antitumor immune phenotype and favorable prognosis. Single-cell transcriptomic analysis revealed that chemokine-dominated tumors increase CXCR3 + NK and T cell recruitment to the TME primarily through the overexpression of macrophage-derived CXCL9/10/11. CONCLUSIONS: This study provides new insights into understanding immune heterogeneity within the TME and paves the way for tailoring appropriate therapeutic interventions for patients with differing immune profiles.
Asunto(s)
Quimiocina CXCL11 , Perfilación de la Expresión Génica , Neoplasias Ováricas , Microambiente Tumoral , Humanos , Femenino , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Pronóstico , Quimiocina CXCL11/genética , Quimiocina CXCL10/genética , Quimiocina CXCL13/genética , Quimiocina CXCL9/genética , Transcriptoma , Fenotipo , Análisis de la Célula Individual , Células TH1/inmunología , Biomarcadores de Tumor/genética , Regulación Neoplásica de la Expresión GénicaRESUMEN
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal malignancy with an urgent unmet clinical need for new therapies. Using a combination of in vitro assays and in vivo preclinical models we demonstrate that therapeutic inhibition of the IGF signalling axis promotes the accumulation of CD8+ cytotoxic T cells within the tumour microenvironment of PDAC tumours. Mechanistically, we show that IGF blockade promotes macrophage and fibroblast production of the chemokines CXCL9 and CXCL10 to facilitate CD8+ T cell recruitment and trafficking towards the PDAC tumour. Exploring this pathway further, we show that IGF inhibition leads to increased STAT1 transcriptional activity, correlating with a downregulation of the AKT/STAT3 signalling axis, in turn promoting Cxcl9 and Cxcl10 gene transcription. Using patient derived tumour explants, we also demonstrate that our findings translate into the human setting. PDAC tumours are frequently described as "immunologically cold", therefore bolstering CD8+ T cell recruitment to PDAC tumours through IGF inhibition may serve to improve the efficacy of immune checkpoint inhibitors which rely on the presence of CD8+ T cells in tumours.
Asunto(s)
Carcinoma Ductal Pancreático , Quimiocina CXCL10 , Quimiocina CXCL9 , Macrófagos , Neoplasias Pancreáticas , Microambiente Tumoral , Quimiocina CXCL9/metabolismo , Humanos , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Animales , Microambiente Tumoral/inmunología , Quimiocina CXCL10/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Ratones , Somatomedinas/metabolismo , Línea Celular Tumoral , Linfocitos T Citotóxicos/inmunología , Factor de Transcripción STAT1/metabolismo , Linfocitos T CD8-positivos/inmunología , Transducción de Señal , Fibroblastos/metabolismo , Fibroblastos/inmunología , Péptidos Similares a la InsulinaRESUMEN
Lichen planus (LP) is a chronic, debilitating, inflammatory disease of the skin and mucous membranes that affects 1%-2% of Americans. Its molecular pathogenesis remains poorly understood, and there are no FDA-approved treatments. We performed single-cell RNA sequencing on paired blood and skin samples (lesional and nonlesional tissue) from 7 patients with LP. We discovered that LP keratinocytes and fibroblasts specifically secrete a combination of CXCL9, CXCL10, and CCL19 cytokines. Using an in vitro migration assay with primary human T cells, we demonstrated that CCL19 in combination with either of the other 2 cytokines synergistically enhanced recruitment of CD8+ T cells more than any individual cytokine. Moreover, exhausted T cells in lesional LP skin secreted CXCL13, which, along with CCL19, also enhanced recruitment of T cells, suggesting a feed-forward loop in LP. Finally, LP blood revealed decreased circulating naive CD8+ T cells compared with that in healthy volunteers, consistent with recruitment to skin. Molecular analysis of LP skin and blood samples increased our understanding of disease pathogenesis and identified CCL19 as a new therapeutic target for treatment.
Asunto(s)
Linfocitos T CD8-positivos , Quimiocina CCL19 , Quimiocina CXCL10 , Quimiocina CXCL9 , Liquen Plano , Piel , Humanos , Quimiocina CCL19/metabolismo , Liquen Plano/inmunología , Liquen Plano/patología , Liquen Plano/metabolismo , Quimiocina CXCL10/metabolismo , Piel/inmunología , Piel/patología , Piel/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Quimiocina CXCL9/metabolismo , Quimiocina CXCL9/genética , Queratinocitos/metabolismo , Queratinocitos/inmunología , Femenino , Masculino , Persona de Mediana Edad , Adulto , Fibroblastos/metabolismo , Fibroblastos/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismoRESUMEN
Aortic aneurysm and dissection (AD) represent a critical cardiovascular emergency with an alarmingly high mortality rate. Recent research has spotlighted the overexpression of genes associated with the m6A modification in AD patients, linking them to the presence of inflammatory M1-type macrophages. Moreover, glycolysis is widely recognized as a key feature of inflammatory M1-type macrophages, but biomarkers linking glycolysis and macrophage function to promote disease progression in AD have not been reported. We conducted an analysis of aortic immune cell infiltration, macrophages, and m6A-related biomarkers in AD patients using bioinformatics techniques. Subsequently, we employed a combination of RT-PCR, WB, and immunofluorescence assays to elucidate the alterations in the expression of M1- and M2-type macrophages, as well as markers of glycolysis, following the overexpression of key biomarkers. These findings were further validated in vivo through the creation of a rat model of AD with knockdown of the aforementioned key biomarkers. The findings revealed that the m6A-modified related gene RBM15 exhibited heightened expression in AD samples and was correlated with macrophage polarization. Upon overexpression of RBM15 in macrophages, there was an observed increase in the expression of M1-type macrophage markers CXCL9 and CXCL10, alongside a decrease in the expression of M2-type macrophage markers CCL13 and MRC1. Furthermore, there was an elevation in the expression of glycolytic enzymes GLUT1 and Hexokinase, as well as HIF1α, GAPDH, and PFKFB3 after RBM15 overexpression. Moreover, in vivo knockdown of RBM15 led to an amelioration of aortic aneurysm in the rat AD model. This knockdown also resulted in a reduction of the M1-type macrophage marker iNOS, while significantly increasing the expression of the M2-type macrophage marker CD206. In conclusion, our findings demonstrate that RBM15 upregulates glycolysis in macrophages, thus contributing to the progression of AD through the promotion of M1-type macrophage polarization. Conversely, downregulation of RBM15 suppresses M1-type macrophage polarization, thereby decelerating the advancement of AD. These results unveil potential novel targets for the treatment of AD.
Asunto(s)
Aneurisma de la Aorta , Disección Aórtica , Progresión de la Enfermedad , Glucólisis , Macrófagos , Proteínas de Unión al ARN , Glucólisis/genética , Humanos , Animales , Macrófagos/metabolismo , Macrófagos/inmunología , Ratas , Disección Aórtica/patología , Disección Aórtica/genética , Disección Aórtica/metabolismo , Aneurisma de la Aorta/metabolismo , Aneurisma de la Aorta/genética , Aneurisma de la Aorta/patología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Masculino , Modelos Animales de Enfermedad , Quimiocina CXCL10/metabolismo , Quimiocina CXCL10/genética , Biomarcadores/metabolismo , Quimiocina CXCL9/metabolismo , Quimiocina CXCL9/genética , Femenino , Adenosina/análogos & derivadosRESUMEN
Doxorubicin, the most prescribed chemotherapeutic drug, causes dose-dependent cardiotoxicity and heart failure. However, our understanding of the immune response elicited by doxorubicin is limited. Here we show that an aberrant CD8+ T cell immune response following doxorubicin-induced cardiac injury drives adverse remodeling and cardiomyopathy. Doxorubicin treatment in non-tumor-bearing mice increased circulating and cardiac IFNγ+CD8+ T cells and activated effector CD8+ T cells in lymphoid tissues. Moreover, doxorubicin promoted cardiac CD8+ T cell infiltration and depletion of CD8+ T cells in doxorubicin-treated mice decreased cardiac fibrosis and improved systolic function. Doxorubicin treatment induced ICAM-1 expression by cardiac fibroblasts resulting in enhanced CD8+ T cell adhesion and transformation, contact-dependent CD8+ degranulation and release of granzyme B. Canine lymphoma patients and human patients with hematopoietic malignancies showed increased circulating CD8+ T cells after doxorubicin treatment. In human cancer patients, T cells expressed IFNγ and CXCR3, and plasma levels of the CXCR3 ligands CXCL9 and CXCL10 correlated with decreased systolic function.
Asunto(s)
Modelos Animales de Enfermedad , Doxorrubicina , Fibrosis , Interferón gamma , Linfocitos T Citotóxicos , Animales , Doxorrubicina/efectos adversos , Fibrosis/inducido químicamente , Humanos , Perros , Linfocitos T Citotóxicos/efectos de los fármacos , Linfocitos T Citotóxicos/inmunología , Interferón gamma/metabolismo , Antibióticos Antineoplásicos/efectos adversos , Antibióticos Antineoplásicos/toxicidad , Ratones Endogámicos C57BL , Cardiotoxicidad/etiología , Receptores CXCR3/metabolismo , Quimiocina CXCL10/metabolismo , Masculino , Granzimas/metabolismo , Cardiomiopatías/inducido químicamente , Cardiomiopatías/patología , Cardiomiopatías/inmunología , Miocardio/patología , Miocardio/metabolismo , Miocardio/inmunología , Degranulación de la Célula/efectos de los fármacos , Quimiocina CXCL9/metabolismo , Función Ventricular Izquierda/efectos de los fármacos , Sístole/efectos de los fármacos , Ratones , Femenino , Células Cultivadas , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Adhesión Celular/efectos de los fármacos , Activación de Linfocitos/efectos de los fármacosRESUMEN
The application of CAR-T cells in solid tumors poses several challenges, including poor T cell homing ability, limited infiltration of T cells and an immunosuppressive tumor environment. In this study, we developed a novel approach to address these obstacles by designing GPC3-specific CAR-T cell that co-express IL-21 and CXCL9 (21 × 9 GPC3 CAR-T cells) and blocking the PD-1 expression on it. The proliferation, cell phenotype, cytokine secretion and cell migration of indicated CAR-T cells were evaluated in vitro. The cytotoxic activities of genetically engineered CAR-T cells were accessed in vitro and in vivo. Compared to conventional GPC3 CAR-T cells, the 21 × 9 GPC3 CAR-T cells demonstrated superior proliferation, cytokine secretion and chemotaxis capabilities in vitro. Furthermore, when combined with PD-1 blockade, the 21 × 9 GPC3 CAR-T cells exhibited enhanced proliferation, cytokine secretion and enrichment of effector T cells such as CTL, NKT and TEM cells. In xenograft tumor models, the PD-1 blocked 21 × 9 GPC3 CAR-T cells effectively suppressed HCC xenograft growth and increased T cell infiltration. Overall, our study successfully generated GPC3 CAR-T cells expressing both IL-21 and CXCL9, demonstrated that combining PD-1 blockade can further enhance CAR-T cell function by promoting proliferation, cytokine secretion, chemotaxis and antitumor activity. These findings present a hopeful and potentially effective strategy for GPC3-positive HCC patients.
Asunto(s)
Carcinoma Hepatocelular , Quimiocina CXCL9 , Glipicanos , Inmunoterapia Adoptiva , Interleucinas , Neoplasias Hepáticas , Receptor de Muerte Celular Programada 1 , Receptores Quiméricos de Antígenos , Glipicanos/inmunología , Glipicanos/metabolismo , Glipicanos/antagonistas & inhibidores , Glipicanos/genética , Interleucinas/metabolismo , Interleucinas/genética , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/tratamiento farmacológico , Animales , Humanos , Inmunoterapia Adoptiva/métodos , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Ratones , Quimiocina CXCL9/metabolismo , Quimiocina CXCL9/genética , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Proliferación Celular , Línea Celular TumoralRESUMEN
STUDY DESIGN: Lupus nephritis (LN) is an autoimmune disease as a complication of systemic lupus erythematosus (SLE). LN is typically diagnosed through a combination of clinical evaluation as index scoring, and kidney biopsy as a more accurate but invasive examination. In the current study, we assessed serological markers including IFN-γ-inducible chemokines C-X-C motif chemokine ligand (CXCL)9, CXCL10, and CXCL11 in diagnosing LN. METHODS: A retrospective analysis was conducted on 160 SLE patients with and without LN. Fasting venous blood was collected from the study subjects for measuring serum levels of CXCL9, CXCL10, and CXCL11. The assessment of clinical disease activity in SLE was conducted using the SLE Disease Activity Index (SLEDAI)-2000 scoring system. LN disease activity was conducted using the Austin scoring system. LN was further confirmed following kidney biopsy, and data were compared by receiver operating characteristic (ROC) analysis. RESULTS: SLE patients with LN showed longer SLE duration, enhanced SLEDAI scores, lower serum anti-ds-DNA antibody levels when compared to SLE patients without LN. Specifically, these patients had significantly higher serum levels of CXCL9, CXCL10 and CXCL11. CXCL9, CXCL10, and CXCL11 showed positive correlation with SLE disease activity in SLE patients with LN. ROC analysis of CXCL9, CXCL10, and CXCL11 showed substantial enhancement of sensitivity and specificity for the diagnosis of LN in the patients with SLE. CONCLUSIONS: Serum CXCL9, CXCL10, and CXCL11 levels may improve the sensitivity and specificity for the diagnosis of LN in SLE patients.