Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
1.
Front Immunol ; 15: 1323199, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742112

RESUMEN

Background: Hepatocellular carcinoma (HCC) is one of the most lethal malignancies worldwide. PANoptosis is a recently unveiled programmed cell death pathway, Nonetheless, the precise implications of PANoptosis within the context of HCC remain incompletely elucidated. Methods: We conducted a comprehensive bioinformatics analysis to evaluate both the expression and mutation patterns of PANoptosis-related genes (PRGs). We categorized HCC into two clusters and identified differentially expressed PANoptosis-related genes (DEPRGs). Next, a PANoptosis risk model was constructed using LASSO and multivariate Cox regression analyses. The relationship between PRGs, risk genes, the risk model, and the immune microenvironment was studies. In addition, drug sensitivity between high- and low-risk groups was examined. The expression profiles of these four risk genes were elucidate by qRT-PCR or immunohistochemical (IHC). Furthermore, the effect of CTSC knock down on HCC cell behavior was verified using in vitro experiments. Results: We constructed a prognostic signature of four DEPRGs (CTSC, CDCA8, G6PD, and CXCL9). Receiver operating characteristic curve analyses underscored the superior prognostic capacity of this signature in assessing the outcomes of HCC patients. Subsequently, patients were stratified based on their risk scores, which revealed that the low-risk group had better prognosis than those in the high-risk group. High-risk group displayed a lower Stromal Score, Immune Score, ESTIMATE score, and higher cancer stem cell content, tumor mutation burden (TMB) values. Furthermore, a correlation was noted between the risk model and the sensitivity to 56 chemotherapeutic agents, as well as immunotherapy efficacy, in patient with. These findings provide valuable guidance for personalized clinical treatment strategies. The qRT-PCR analysis revealed that upregulated expression of CTSC, CDCA8, and G6PD, whereas downregulated expression of CXCL9 in HCC compared with adjacent tumor tissue and normal liver cell lines. The knockdown of CTSC significantly reduced both HCC cell proliferation and migration. Conclusion: Our study underscores the promise of PANoptosis-based molecular clustering and prognostic signatures in predicting patient survival and discerning the intricacies of the tumor microenvironment within the context of HCC. These insights hold the potential to advance our comprehension of the therapeutic contribution of PANoptosis plays in HCC and pave the way for generating more efficacious treatment strategies.


Asunto(s)
Biomarcadores de Tumor , Carcinoma Hepatocelular , Biología Computacional , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , Microambiente Tumoral , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/mortalidad , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Humanos , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Biología Computacional/métodos , Pronóstico , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Quimiocina CXCL9/genética , Perfilación de la Expresión Génica , Masculino , Femenino , Transcriptoma
2.
Respir Med ; 227: 107658, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38704051

RESUMEN

Pulmonary hypertension (PH) in chronic obstructive pulmonary disease (COPD) is associated with worse clinical outcomes and decreased survival rates. In absence of disease specific diagnostic/therapeutic targets and unclear pathophysiology, there is an urgent need for the identification of potential genetic/molecular markers and disease associated pathways. The present study aims to use a bioinformatics approach to identify and validate hypoxia-associated gene signatures in COPD-PH patients. Additionally, hypoxia-related inflammatory profile is also explored in these patients. Microarray dataset obtained from the Gene Expression Omnibus repository was used to identify differentially expressed genes (DEGs) in a hypoxic PH mice model. The top three hub genes identified were further validated in COPD-PH patients, with chemokine (C-X-C motif) ligand 9 (CXCL9) and CXCL12 showing significant changes in comparison to healthy controls. Furthermore, multiplexed analysis of 10 inflammatory cytokines, tumor necrosis factor alpha (TNF-α), transforming growth factor ß (TGF-ß), interleukin 1-beta (IL-1ß), IL-4, IL-5, IL-6, IL-13, IL-17, IL-18 and IL-21 was also performed. These markers showed significant changes in COPD-PH patients as compared to controls. They also exhibited the ability to differentially diagnose COPD-PH patients in comparison to COPD. Additionally, IL-6 and IL-17 showed significant positive correlation with systolic pulmonary artery pressure (sPAP). This study is the first report to assess the levels of CXCL9 and CXCL12 in COPD-PH patients and also explores their link with the inflammatory profile of these patients. Our findings could be extended to better understand the underlying disease mechanism and possibly used for tailoring therapies exclusive for the disease.


Asunto(s)
Quimiocina CXCL12 , Biología Computacional , Citocinas , Hipertensión Pulmonar , Hipoxia , Enfermedad Pulmonar Obstructiva Crónica , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Citocinas/metabolismo , Citocinas/genética , Biología Computacional/métodos , Humanos , Hipoxia/genética , Hipoxia/metabolismo , Animales , Ratones , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Hipertensión Pulmonar/genética , Quimiocina CXCL9/genética , Perfilación de la Expresión Génica , Masculino , Femenino , Modelos Animales de Enfermedad , Inflamación/genética , Inflamación/metabolismo , Persona de Mediana Edad
3.
Biomed Pharmacother ; 173: 116427, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38484558

RESUMEN

Uncertainty exists regarding the mechanisms by which hypoxia-inducible factors (HIFs) control CD8+T-cell migration into tumor microenvironments. Here, we found that HIF-1α knockdown or overexpression resulted in increased or decreased CXCL9, -10, and -11 expression in vitro, respectively. Gene Set Variation Analysis revealed that elevated HIF-1α levels correlated with a poor prognosis, severe pathological stage, and an absence of CD8+ T cells in the tumor microenvironment in colorectal cancer (CRC) patients. HIF-1α was inversely associated with pathways beneficial to anti-tumor immunotherapy and cytokine/chemokine function. In vivo, inhibiting HIF-1α or its upstream regulator BIRC2 significantly suppressed tumor growth and promoted CD8+ T-cell infiltration. CXCR3 neutralizing antibodies reversed these effects, implicating the involvement of CXCL9, -10, and -11/CXCR3 axis. The presence of HIF-1α weakened the upregulation of CXCL9, -10, and -11 by bleomycin and doxorubicin. Combining HIF-1α inhibition with bleomycin promoted CD8+ T-cell infiltration and tumor suppression in vivo. Moreover, doxorubicin could upregulate CXCL9, -10 and -11 by suppressing HIF-1α. Our findings highlight the potential of HIF-1α inhibition to improve CRC microenvironments and increase chemotherapy sensitivity.


Asunto(s)
Neoplasias Colorrectales , Resistencia a Antineoplásicos , Subunidad alfa del Factor 1 Inducible por Hipoxia , Humanos , Bleomicina , Linfocitos T CD8-positivos , Línea Celular Tumoral , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/metabolismo , Citocinas , Doxorrubicina/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Microambiente Tumoral
4.
Adv Sci (Weinh) ; 11(15): e2309026, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38342608

RESUMEN

Tumor-associated macrophages (TAM) are a diverse population of myeloid cells that are often abundant and immunosuppressive in human cancers. CXCL9Hi TAM has recently been described to have an antitumor phenotype and is linked to immune checkpoint response. Despite the emerging understanding of the unique antitumor TAM phenotype, there is a lack of TAM-specific therapeutics to exploit this new biological understanding. Here, the discovery and characterization of multiple small-molecule enhancers of chemokine ligand 9 (CXCL9) and their targeted delivery in a TAM-avid systemic nanoformulation is reported. With this strategy, it is efficient encapsulation and release of multiple drug loads that can efficiently induce CXCL9 expression in macrophages, both in vitro and in vivo in a mouse tumor model. These observations provide a window into the molecular features that define TAM-specific states, an insight a novel therapeutic anticancer approach is used to discover.


Asunto(s)
Neoplasias , Macrófagos Asociados a Tumores , Animales , Humanos , Ratones , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Macrófagos/metabolismo , Neoplasias/patología , Fenotipo
5.
Arthritis Res Ther ; 26(1): 26, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38229121

RESUMEN

BACKGROUND: Primary Sjögren's syndrome (pSS) is an autoimmune condition that causes harm to exocrine glands and also has extra-glandular manifestations (EGM). pSS patients with EGM have a worse prognosis than those with only sicca symptoms. Previous studies have shown that the minor salivary glands (MSG) of pSS patients exhibit a unique profile of cytokines and chemokines compared to healthy controls. However, there is a lack of research comparing pSS with EGM (pSS-EGM) and pSS without EGM (pSS-non-EGM). This study aims to explore potential biomarkers associated with pSS, particularly pSS with EGM. METHODS: By utilizing RNA sequencing, we conducted an analysis on the gene expression profiles of MSG in 63 patients diagnosed with pSS, as well as 12 non-pSS individuals. Furthermore, we also investigated the MSG of pSS patients, both with and without EGM. Through bioinformatics analysis, we identified genes with differential expression (DEGs) and determined the core hub genes using PPI network. We then analyzed the top 20 DEGs and their correlation with the patients' clinical characteristics, and validated our findings using peripheral blood plasma. RESULTS: A total of 725 differentially expressed genes (DEGs) were identified in the comparison between pSS and non-pSS groups, and 727 DEGs were observed between pSS-EGM and pSS-non-EGM. It is noteworthy that the expression levels of CXCL9 were higher in both pSS patients and pSS-EGM when compared to the control group. Taking into consideration the significance of the top 20 DEGs in relation to clinical parameters and the central hub genes, we ultimately chose CXCL9. In comparison to the non-pSS group, pSS patients exhibited notably greater expression of the CXCL9 gene in the MSG, as well as higher levels of CXCL9 protein in their plasma (p < 0.001). Furthermore, the expression of the CXCL9 gene and levels of CXCL9 protein were notably higher in pSS patients accompanied by EGM and those with SSA antibodies. Additionally, a correlation was found between the expression of the CXCL9 gene and the EULAR Sjogren's Syndrome Disease Activity Index (ESSDAI), as well as with immunoglobulin G (IgG) levels and erythrocyte sedimentation rate (ESR). Meanwhile, the protein levels of CXCL9 were found to be correlated with IgG levels and ESSDAI. CONCLUSION: CXCL9 proves to be a valuable biomarker in pSS, specifically due to its strong ability to differentiate between pSS patients with EGM and those without EGM. There is a significant correlation between CXCL9 and various clinical parameters both at the gene and protein level. Therefore, CXCL9 could be a potential target for future treatment of pSS.


Asunto(s)
Enfermedades Autoinmunes , Síndrome de Sjögren , Humanos , Síndrome de Sjögren/diagnóstico , Síndrome de Sjögren/genética , Síndrome de Sjögren/complicaciones , Enfermedades Autoinmunes/complicaciones , Biomarcadores , Transcriptoma , Inmunoglobulina G/genética , Quimiocina CXCL9/genética , Quimiocina CXCL9/uso terapéutico
6.
Mol Ther ; 32(2): 469-489, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38098230

RESUMEN

Macrophages play a crucial role in shaping the immune state within the tumor microenvironment (TME) and are often influenced by tumors to hinder antitumor immunity. However, the underlying mechanisms are still elusive. Here, we observed abnormal expression of complement 5a receptor (C5aR) in human ovarian cancer (OC), and identified high levels of C5aR expression on tumor-associated macrophages (TAMs), which led to the polarization of TAMs toward an immunosuppressive phenotype. C5aR knockout or inhibitor treatment restored TAM antitumor response and attenuated tumor progression. Mechanistically, C5aR deficiency reprogrammed macrophages from a protumor state to an antitumor state, associating with the upregulation of immune response and stimulation pathways, which in turn resulted in the enhanced antitumor response of cytotoxic T cells in a manner dependent on chemokine (C-X-C motif) ligand 9 (CXCL9). The pharmacological inhibition of C5aR also improved the efficacy of immune checkpoint blockade therapy. In patients, C5aR expression associated with CXCL9 production and infiltration of CD8+ T cells, and a high C5aR level predicted poor clinical outcomes and worse benefits from anti-PD-1 therapy. Thus, our study sheds light on the mechanisms underlying the modulation of TAM antitumor immune response by the C5a-C5aR axis and highlights the potential of targeting C5aR for clinical applications.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Humanos , Quimiocina CXCL9/genética , Inmunidad , Neoplasias/patología , Receptor de Anafilatoxina C5a/genética , Microambiente Tumoral , Macrófagos Asociados a Tumores/metabolismo , Femenino
7.
J Biol Chem ; 299(10): 105230, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37689116

RESUMEN

Macrophages must respond appropriately to pathogens and other pro-inflammatory stimuli in order to perform their roles in fighting infection. One way in which inflammatory stimuli can vary is in their dynamics-that is, the amplitude and duration of stimulus experienced by the cell. In this study, we performed long-term live cell imaging in a microfluidic device to investigate how the pro-inflammatory genes IRF1, CXCL10, and CXCL9 respond to dynamic interferon-gamma (IFNγ) stimulation. We found that IRF1 responds to low concentration or short duration IFNγ stimulation, whereas CXCL10 and CXCL9 require longer or higherconcentration stimulation to be expressed. We also investigated the heterogeneity in the expression of each gene and found that CXCL10 and CXCL9 have substantial cell-to-cell variability. In particular, the expression of CXCL10 appears to be largely stochastic with a subpopulation of nonresponding cells across all the stimulation conditions tested. We developed both deterministic and stochastic models for the expression of each gene. Our modeling analysis revealed that the heterogeneity in CXCL10 can be attributed to a slow chromatin-opening step that is on a similar timescale to that of adaptation of the upstream signal. In this way, CXCL10 expression in individual cells can remain stochastic in response to each pulse of repeated stimulation, which we also validated by experiments. Together, we conclude that pro-inflammatory genes in the same signaling pathway can respond to dynamic IFNγ stimulus with very different response features and that upstream signal adaptation can contribute to shaping heterogeneous gene expression.


Asunto(s)
Quimiocina CXCL10 , Quimiocina CXCL9 , Regulación de la Expresión Génica , Factor 1 Regulador del Interferón , Macrófagos , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Interferón gamma/farmacología , Macrófagos/metabolismo , Transducción de Señal/genética , Células RAW 264.7 , Animales , Ratones , Factor 1 Regulador del Interferón/genética , Factor 1 Regulador del Interferón/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/inmunología , Simulación por Computador , Análisis de la Célula Individual , Adyuvantes Inmunológicos/farmacología
8.
J Ovarian Res ; 16(1): 180, 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37644593

RESUMEN

BACKGROUND: C-X-C motif chemokine ligand 9 (CXCL9), which is involved in the pathological processes of various human cancers, has become a hot topic in recent years. We developed a radiomic model to identify CXCL9 status in ovarian cancer (OC) and evaluated its prognostic significance. METHODS: We analyzed enhanced CT scans, transcriptome sequencing data, and corresponding clinical characteristics of CXCL9 in OC using the TCIA and TCGA databases. We used the repeat least absolute shrinkage (LASSO) and recursive feature elimination(RFE) methods to determine radiomic features after extraction and normalization. We constructed a radiomic model for CXCL9 prediction based on logistic regression and internal tenfold cross-validation. Finally, a 60-month overall survival (OS) nomogram was established to analyze survival data based on Cox regression. RESULTS: CXCL9 mRNA levels and several other genes involving in T-cell infiltration were significantly relevant to OS in OC patients. The radiomic score (rad_score) of our radiomic model was calculated based on the five features for CXCL9 prediction. The areas under receiver operating characteristic (ROC) curves (AUC-ROC) for the training cohort was 0.781, while that for the validation cohort was 0.743. Patients with a high rad_score had better overall survival (P < 0.001). In addition, calibration curves and decision curve analysis (DCA) showed good consistency between the prediction and actual observations, demonstrating the clinical utility of our model. CONCLUSION: In patients with OC, the radiomics signature(RS) of CT scans can distinguish the level of CXCL9 expression and predict prognosis, potentially fulfilling the ultimate purpose of precision medicine.


Asunto(s)
Neoplasias Ováricas , Humanos , Femenino , Neoplasias Ováricas/diagnóstico por imagen , Neoplasias Ováricas/genética , Bases de Datos Factuales , Nomogramas , Medicina de Precisión , ARN Mensajero , Quimiocina CXCL9/genética
9.
J Clin Invest ; 133(13)2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37395276

RESUMEN

BackgroundAcute tubulointerstitial nephritis (AIN) is one of the few causes of acute kidney injury with diagnosis-specific treatment options. However, due to the need to obtain a kidney biopsy for histological confirmation, AIN diagnosis can be delayed, missed, or incorrectly assumed. Here, we identify and validate urinary CXCL9, an IFN-γ-induced chemokine involved in lymphocyte chemotaxis, as a diagnostic biomarker for AIN.MethodsIn a prospectively enrolled cohort with pathologist-adjudicated histological diagnoses, termed the discovery cohort, we tested the association of 180 immune proteins measured by an aptamer-based assay with AIN and validated the top protein, CXCL9, using sandwich immunoassay. We externally validated these findings in 2 cohorts with biopsy-confirmed diagnoses, termed the validation cohorts, and examined mRNA expression differences in kidney tissue from patients with AIN and individuals in the control group.ResultsIn aptamer-based assay, urinary CXCL9 was 7.6-fold higher in patients with AIN than in individuals in the control group (P = 1.23 × 10-5). Urinary CXCL9 measured by sandwich immunoassay was associated with AIN in the discovery cohort (n = 204; 15% AIN) independently of currently available clinical tests for AIN (adjusted odds ratio for highest versus lowest quartile: 6.0 [1.8-20]). Similar findings were noted in external validation cohorts, where CXCL9 had an AUC of 0.94 (0.86-1.00) for AIN diagnosis. CXCL9 mRNA expression was 3.9-fold higher in kidney tissue from patients with AIN (n = 19) compared with individuals in the control group (n = 52; P = 5.8 × 10-6).ConclusionWe identified CXCL9 as a diagnostic biomarker for AIN using aptamer-based urine proteomics, confirmed this association using sandwich immunoassays in discovery and external validation cohorts, and observed higher expression of this protein in kidney biopsies from patients with AIN.FundingThis study was supported by National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) awards K23DK117065 (DGM), K08DK113281 (KM), R01DK128087 (DGM), R01DK126815 (DGM and LGC), R01DK126477 (KNC), UH3DK114866 (CRP, DGM, and FPW), R01DK130839 (MES), and P30DK079310 (the Yale O'Brien Center). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.


Asunto(s)
Nefritis Intersticial , Humanos , Nefritis Intersticial/diagnóstico , Nefritis Intersticial/inducido químicamente , Nefritis Intersticial/patología , Riñón/patología , Biomarcadores , ARN Mensajero , Quimiocina CXCL9/genética , Quimiocina CXCL9/efectos adversos
10.
Curr Microbiol ; 80(6): 201, 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37140634

RESUMEN

Brucella spp. can replicate in human endothelial cells, inducing an inflammatory response with increased expression of chemokines. Although Brucella infects humans, its ability to induce the production of chemokines by lung cells is unknown. Therefore, the current investigation was designed to examine the association between brucellosis and CXCL9, 10, and 11 chemokines. The patient group included 71 patients suffering from Brucella infection and the control group consisted of 50 healthy ranchers from the same geographical area. Serum levels of CXCL9, CXCL10, and CXCL11 were analyzed by ELISA. The fold changes of CXCR3 expression against ß-actin were determined by real-time-PCR technique. Western blotting analysis was also applied for evaluating the expression of CXCR3 at protein level. The results of this study showed that the serum levels of CXCL9, CXCL10, and CXCL11 are significantly increased in acute brucellosis patients in comparison to control as indicated by ELISA test, mRNA levels of CXCR3 by Real-time PCR as well as protein levels of CXCR3 by Western blot analysis. According to findings, these chemokines have the potential to serve as markers for brucellosis patients. Taken together, cytokine/chemokine network was active in acute brucellosis patients, and it is suggested to evaluate other cytokines in future studies.


Asunto(s)
Brucelosis , Quimiocina CXCL10 , Humanos , Quimiocina CXCL10/genética , Leucocitos Mononucleares/metabolismo , Células Endoteliales/metabolismo , Ensayo de Inmunoadsorción Enzimática , Quimiocina CXCL9/genética , Quimiocina CXCL11/genética , Receptores CXCR3/genética , Receptores CXCR3/metabolismo
11.
Front Immunol ; 14: 1095195, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37006314

RESUMEN

Renal cell carcinoma (RCC) is frequently infiltrated by immune cells, a process which is governed by chemokines. CD8+ T cells in the RCC tumor microenvironment (TME) may be exhausted which most likely influence therapy response and survival. The aim of this study was to evaluate chemokine-driven T cell recruitment, T cell exhaustion in the RCC TME, as well as metabolic processes leading to their functional anergy in RCC. Eight publicly available bulk RCC transcriptome collectives (n=1819) and a single cell RNAseq dataset (n=12) were analyzed. Immunodeconvolution, semi-supervised clustering, gene set variation analysis and Monte Carlo-based modeling of metabolic reaction activity were employed. Among 28 chemokine genes available, CXCL9/10/11/CXCR3, CXCL13/CXCR5 and XCL1/XCR1 mRNA expression were significantly increased in RCC compared to normal kidney tissue and also strongly associated with tumor-infiltrating effector memory and central memory CD8+ T cells in all investigated collectives. M1 TAMs, T cells, NK cells as well as tumor cells were identified as the major sources of these chemokines, whereas T cells, B cells and dendritic cells were found to predominantly express the cognate receptors. The cluster of RCCs characterized by high chemokine expression and high CD8+ T cell infiltration displayed a strong activation of IFN/JAK/STAT signaling with elevated expression of multiple T cell exhaustion-associated transcripts. Chemokinehigh RCCs were characterized by metabolic reprogramming, in particular by downregulated OXPHOS and increased IDO1-mediated tryptophan degradation. None of the investigated chemokine genes was significantly associated with survival or response to immunotherapy. We propose a chemokine network that mediates CD8+ T cell recruitment and identify T cell exhaustion, altered energy metabolism and high IDO1 activity as key mechanisms of their suppression. Concomitant targeting of exhaustion pathways and metabolism may pose an effective approach to RCC therapy.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Linfocitos T CD8-positivos , Agotamiento de Células T , Quimiocinas/genética , Quimiocina CXCL9/genética , Microambiente Tumoral
12.
J Invest Dermatol ; 143(7): 1138-1146.e12, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36708947

RESUMEN

Morphea is characterized by initial inflammation followed by fibrosis of the skin and soft tissue. Despite its substantial morbidity, the pathogenesis of morphea is poorly studied. Previous work showed that CXCR3 ligands CXCL9 and CXCL10 are highly upregulated in the sera and lesional skin of patients with morphea. We found that an early inflammatory subcutaneous bleomycin mouse model of dermal fibrosis mirrors the clinical, histological, and immune dysregulation observed in human morphea. We used this model to examine the role of the CXCR3 chemokine axis in the pathogenesis of cutaneous fibrosis. Using the REX3 (Reporting the Expression of CXCR3 ligands) mice, we characterized which cells produce CXCR3 ligands over time. We found that fibroblasts contribute the bulk of CXCL9-RFP and CXCL10-BFP by percentage, whereas macrophages produce high amounts on a per-cell basis. To determine whether these chemokines are mechanistically involved in pathogenesis, we treated Cxcl9-, Cxcl10-, or Cxcr3-deficient mice with bleomycin and found that fibrosis is dependent on CXCL9 and CXCR3. Addition of recombinant CXCL9 but not CXCL10 to cultured mouse fibroblasts induced Col1a1 mRNA expression, indicating that the chemokine itself contributes to fibrosis. Taken together, our studies provide evidence that CXCL9 and its receptor CXCR3 are functionally required for inflammatory fibrosis.


Asunto(s)
Dermatitis , Esclerodermia Localizada , Humanos , Animales , Ratones , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Regulación hacia Arriba , Ligandos , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Fibrosis , Inflamación , Fibroblastos/metabolismo , Bleomicina/toxicidad , Receptores CXCR3/genética , Receptores CXCR3/metabolismo
13.
J Mol Neurosci ; 72(12): 2413-2424, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36449138

RESUMEN

In this study, we intend to identify key immune-related genes (IRGs) in gliomas using the TCGA and GTEx databases. Following collection of the RNA-seq data of lower-grade glioma (LGG) and glioblastoma (GBM) patients from the TCGA and GTEx databases, the differentially expressed IRGs (DE-IRGs) were screened. The ESTIMATE algorithm was utilized to evaluate StromalScore and ImmuneScore of LGG and GBM samples and a multifactorial Cox risk model was constructed to identify the related risk genes. The core IRGs of LGG and GBM were screened through a PPI network, followed by exploration of their correlation with glioma prognosis. The relationship between IRGs and immune cells in LGG and GBM was detected. In vitro assays were performed to detect the effect of CXCL9 on glioma cell development. We screened 403 and 492 DE-IRGs in LGG and GBM. StromalScore and ImmuneScore were related to overall survival in LGG, but not in GBM. CXCL9 was identified as a core gene in LGG and GBM and shared association with the prognosis of gliomas. Furthermore, a correlation was found between CXCL9 and immune infiltration of LGG and GBM. Glioma cell proliferation and invasion could be inhibited by silencing of CXCL9. Overall, CXCL9 is correlated to the prognosis of glioma patients and may accelerate glioma development via immune regulation.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioma/genética , Glioblastoma/genética , Algoritmos , Diferenciación Celular , Proliferación Celular , Neoplasias Encefálicas/genética , Quimiocina CXCL9/genética
14.
J Interferon Cytokine Res ; 42(4): 180-190, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35438529

RESUMEN

We explored the biological functions, signaling pathways, potential inflammation, and immune biomarkers involved in ulcerative cutaneous tuberculosis (UCT). Mycobacterium tuberculosis-infected tissues from UCT patients and patients with noncutaneous tuberculous ulcers (NCTUs) were studied using transcriptomic analysis. Functional enrichment determined using the Gene Ontology database and enrichment of signaling pathways was ascertained using the Kyoto Encyclopedia of Genes and Genomes database. Protein-protein interaction (PPI) networks were analyzed to determine the hub genes. A total of 4,396 differentially expressed genes (DEGs) were identified. DEGs were enriched in CXCR3 chemokine receptor binding, chemokine activity, and cytokine-cytokine receptor interaction and other aspects. Analyses of PPI networks identified 15 hub genes. Expression of chemokine (C-X-C motif) ligand 9 (CXCL9)/10/11 messenger RNA (mRNA) and C-X-C motif chemokine receptor 3 (CXCR3) mRNA in the lesions of patients with UCT increased compared with that in NCTU cases. Expression of CXCL9 mRNA and CXCL10 mRNA in plasma also increased, which was consistent with other test results. We discovered a novel plasma CXC chemokine signature that could be used to differentiate UCT from NCTU. Our study (1) provides a reference for UCT diagnosis and selection of diagnostic markers and (2) lays the foundation for further elucidation of UCT pathogenesis.


Asunto(s)
Biología Computacional , Úlcera , Quimiocina CXCL10/metabolismo , Quimiocina CXCL11/metabolismo , Quimiocina CXCL9/genética , Biología Computacional/métodos , Perfilación de la Expresión Génica , Ontología de Genes , Humanos , ARN Mensajero , Receptores CXCR3/genética
15.
Br J Cancer ; 126(10): 1470-1480, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35314795

RESUMEN

BACKGROUND: Response to immune checkpoint blockade (ICB) in ovarian cancer remains disappointing. Several studies have identified the chemokine CXCL9 as a robust prognosticator of improved survival in ovarian cancer and a characteristic of the immunoreactive subtype, which predicts ICB response. However, the function of CXCL9 in ovarian cancer has been poorly studied. METHODS: Impact of Cxcl9 overexpression in the murine ID8-Trp53-/- and ID8-Trp53-/-Brca2-/- ovarian cancer models on survival, cellular immune composition, PD-L1 expression and anti-PD-L1 therapy. CXCL9 expression analysis in ovarian cancer subtypes and correlation to reported ICB response. RESULTS: CXCL9 overexpression resulted in T-cell accumulation, delayed ascites formation and improved survival, which was dependent on adaptive immune function. In the ICB-resistant mouse model, the chemokine was sufficient to enable a successful anti-PD-L1 therapy. In contrast, these effects were abrogated in Brca2-deficient tumours, most likely due to an already high intrinsic chemokine expression. Finally, in ovarian cancer patients, the clear-cell subtype, known to respond best to ICB, displayed a significantly higher proportion of CXCL9high tumours than the other subtypes. CONCLUSIONS: CXCL9 is a driver of successful ICB in preclinical ovarian cancer. Besides being a feasible predictive biomarker, CXCL9-inducing agents thus represent attractive combination partners to improve ICB in this cancer entity.


Asunto(s)
Antígeno B7-H1 , Quimiocina CXCL9 , Inhibidores de Puntos de Control Inmunológico , Neoplasias Ováricas , Animales , Antígeno B7-H1/antagonistas & inhibidores , Quimiocina CXCL9/genética , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Ratones , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética
16.
Immunol Cell Biol ; 100(5): 312-322, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35233830

RESUMEN

The chemokine receptor CXCR3 is expressed on immune cells to co-ordinate lymphocyte activation and migration. CXCR3 binds three chemokine ligands, CXCL9, CXCL10 and CXCL11. These ligands display distinct expression patterns and ligand signaling biases; however, how each ligand functions individually and collaboratively is incompletely understood. CXCL9 and CXCL10 are considered pro-inflammatory chemokines during viral infection, while CXCL11 may induce a tolerizing state. The investigation of the individual role of CXCL11 in vivo has been hampered as C57BL/6 mice carry several mutations that result in a null allele. Here, CRISPR/Cas9 was used to correct these mutations on a C57BL/6 background. It was validated that CXCL11KI mice expressed CXCL11 protein in dendritic cells, spleen and lung. CXCL11KI mice were largely phenotypically indistinguishable from C57BL/6 mice, both at steady-state and during two models of viral infection. While CXCL11 expression did not modify acute antiviral responses, this study provides a new tool to understand the role of CXCL11 in other experimental settings.


Asunto(s)
Quimiocina CXCL10 , Quimiocina CXCL11/metabolismo , Virosis , Animales , Quimiocina CXCL10/genética , Quimiocina CXCL11/genética , Quimiocina CXCL9/genética , Quimiocina CXCL9/metabolismo , Inmunidad , Ligandos , Ratones , Ratones Endogámicos C57BL
17.
Sci Rep ; 12(1): 2817, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35181719

RESUMEN

CXCL chemokines (CXCLs) are small cytokines or signal proteins secreted by cells that have been proven to be linked to the occurrence and development of many kinds of cancer. However, the expression and diagnostic and prognostic value of CXCLs in diffuse large B-cell lymphoma (DLBCL) remain to be further studied. We obtained CXCL transcription and survival data of patients with DLBCL from Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), The Cancer Genome Atlas (TCGA), TIMER and cBioPortal databases. R software, STRING and EXCEL were used to process the data. This study discovered that the expression levels of CXCL9-14 in DLBCL were higher than those in normal tissues, while CXCL4, CXCL7 and CXCL8 were lower in tumor than in normal tissues. The expression levels of CXCL2, CXCL10 and CXCL11 were related to tumor stage. CXCL9-14 could be used as an auxiliary molecular marker for the diagnosis of DLBCL. CXCL17 might be a potential prognostic marker of DLBCL.


Asunto(s)
Biomarcadores de Tumor/genética , Quimiocinas CXC/genética , Linfoma de Células B Grandes Difuso/genética , Quimiocina CXCL10/genética , Quimiocina CXCL11/genética , Quimiocina CXCL2/genética , Quimiocina CXCL9/genética , Supervivencia sin Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Interleucina-8/genética , Linfoma de Células B Grandes Difuso/patología , Masculino , Factor Plaquetario 4/genética , Pronóstico , Microambiente Tumoral/genética , beta-Tromboglobulina/genética
18.
Nat Commun ; 13(1): 97, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013216

RESUMEN

For many solid tumors, immune checkpoint blockade therapy has become first line treatment, yet a large proportion of patients with immunologically cold tumors do not benefit due to the paucity of tumor infiltrating lymphocytes. Here we show that the orphan G Protein-Coupled Receptor 182 (GPR182) contributes to immunotherapy resistance in cancer via scavenging chemokines that are important for lymphocyte recruitment to tumors. GPR182 is primarily upregulated in melanoma-associated lymphatic endothelial cells (LECs) during tumorigenesis, and this atypical chemokine receptor endocytoses chemokines promiscuously. In GPR182-deficient mice, T cell infiltration into transplanted melanomas increases, leading to enhanced effector T cell function and improved antitumor immunity. Ablation of GPR182 leads to increased intratumoral concentrations of multiple chemokines and thereby sensitizes poorly immunogenic tumors to immune checkpoint blockade and adoptive cellular therapies. CXCR3 blockade reverses the improved antitumor immunity and T cell infiltration characteristic of GPR182-deficient mice. Our study thus identifies GPR182 as an upstream regulator of the CXCL9/CXCL10/CXCR3 axis that limits antitumor immunity and as a potential therapeutic target in immunologically cold tumors.


Asunto(s)
Quimiocina CXCL10/genética , Quimiocina CXCL9/genética , Melanoma Experimental/genética , Melanoma/genética , Receptores CXCR3/genética , Receptores Acoplados a Proteínas G/genética , Neoplasias Cutáneas/genética , Animales , Movimiento Celular , Quimiocina CXCL10/inmunología , Quimiocina CXCL9/inmunología , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunoterapia/métodos , Linfocitos Infiltrantes de Tumor/citología , Linfocitos Infiltrantes de Tumor/inmunología , Melanoma/inmunología , Melanoma/mortalidad , Melanoma/terapia , Melanoma Experimental/inmunología , Melanoma Experimental/mortalidad , Melanoma Experimental/terapia , Ratones , Ratones Noqueados , Unión Proteica , Receptores CXCR3/inmunología , Receptores Acoplados a Proteínas G/inmunología , Transducción de Señal , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/mortalidad , Neoplasias Cutáneas/terapia , Análisis de Supervivencia , Linfocitos T Citotóxicos/citología , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/trasplante , Carga Tumoral , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología
19.
Front Immunol ; 12: 770852, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868029

RESUMEN

Autoimmune thyroiditis (AIT) is the most prevalent autoimmune endocrine disease, with a higher incidence in women than in men. Immunological abnormalities may lead to the impairment of ovarian folliculogenesis; however, whether the presence of AIT affects immunological microenvironment in follicles remains controversial. We performed a cross-sectional study including 122 patients, aged 20-40 years, who underwent IVF/ICSI treatment owing to isolated male or tube factor infertility. Patients were divided into AIT and control groups according to clinical presentation, thyroid function, and thyroid autoantibody measurements. Follicular fluid was collected and the distribution of cytokines/chemokines in follicular fluid was measured by flow cytometry using multiplex bead assays between the two groups. Based on differences in levels of intrafollicular chemokines and cytokines between the AIT and control groups, the relevant inflammatory cascade was further demonstrated. Among the 12 chemokines analyzed, three (CXCL9, CXCL10, and CXCL11) showed significantly elevated levels in the follicular fluid of patients with AIT. Among the 11 cytokines detected, compared with those in the control group, significantly higher levels of IFNγ were observed in patients with AIT. IFNγ dose-dependently stimulated the expression and secretion of CXCL9/10/11 in cultured primary granulosa cells. The percentage of CXCR3+ T lymphocytes was significantly elevated in the follicular microenvironment of patients with AIT. We concluded that the IFNγ-CXCL9/10/11-CXCR3+ T lymphocyte inflammatory cascade is activated in the follicular microenvironment of patients with AIT. These findings indicate that a considerable immune imbalance occurred in the follicular microenvironment of patients with AIT.


Asunto(s)
Microambiente Celular/inmunología , Citocinas/inmunología , Líquido Folicular/inmunología , Tiroiditis Autoinmune/inmunología , Adulto , Células Cultivadas , Microambiente Celular/genética , Quimiocina CXCL10/genética , Quimiocina CXCL10/inmunología , Quimiocina CXCL10/metabolismo , Quimiocina CXCL11/genética , Quimiocina CXCL11/inmunología , Quimiocina CXCL11/metabolismo , Quimiocina CXCL9/genética , Quimiocina CXCL9/inmunología , Quimiocina CXCL9/metabolismo , Citocinas/genética , Citocinas/metabolismo , Femenino , Fertilización In Vitro , Citometría de Flujo , Líquido Folicular/metabolismo , Humanos , Masculino , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Inyecciones de Esperma Intracitoplasmáticas , Tiroiditis Autoinmune/genética , Tiroiditis Autoinmune/metabolismo
20.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34884512

RESUMEN

Gaucher disease is a lysosomal storage disease, which happens due to mutations in GBA1/Gba1 that encodes the enzyme termed as lysosomal acid ß-glucosidase. The major function of this enzyme is to catalyze glucosylceramide (GC) into glucose and ceramide. The deficiency of this enzyme and resultant abnormal accumulation of GC cause altered function of several of the innate and adaptive immune cells. For example, augmented infiltration of T cells contributes to the increased production of pro-inflammatory cytokines, (e.g., IFNγ, TNFα, IL6, IL12p40, IL12p70, IL23, and IL17A/F). This leads to tissue damage in a genetic mouse model (Gba19V/-) of Gaucher disease. The cellular mechanism(s) by which increased tissue infiltration of T cells occurs in this disease is not fully understood. Here, we delineate role of the CXCR3 receptor and its exogenous C-X-C motif chemokine ligand 9 (CXCL9) in induction of increased tissue recruitment of CD4+ T and CD8+ T cells in Gaucher disease. Intracellular FACS staining of macrophages (Mϕs) and dendritic cells (DCs) from Gba19V/- mice showed elevated production of CXCL9. Purified CD4+ T cells and the CD8+ T cells from Gba19V/- mice showed increased expression of CXCR3. Ex vivo and in vivo chemotaxis experiments showed CXCL9 involvement in the recruitment of Gba19V/- T cells. Furthermore, antibody blockade of the CXCL9 receptor (CXCR3) on T cells caused marked reduction in CXCL9- mediated chemotaxis of T cells in Gba19V/- mice. These data implicate abnormalities of the CXCL9-CXCR3 axis leading to enhanced tissue recruitment of T cells in Gaucher disease. Such results provide a rationale for blockade of the CXCL9/CXCR3 axis as potential new therapeutic targets for the treatment of inflammation in Gaucher disease.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Quimiocina CXCL9/metabolismo , Modelos Animales de Enfermedad , Enfermedad de Gaucher/inmunología , Glucosilceramidasa/fisiología , Inflamación/inmunología , Receptores CXCR3/metabolismo , Animales , Linfocitos T CD8-positivos/patología , Quimiocina CXCL9/genética , Enfermedad de Gaucher/metabolismo , Enfermedad de Gaucher/patología , Inflamación/metabolismo , Inflamación/patología , Ligandos , Macrófagos/inmunología , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores CXCR3/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA