Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.077
Filtrar
1.
Front Immunol ; 15: 1345381, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736890

RESUMEN

Sjögren's syndrome (SS) is a chronic systemic autoimmune disease that typically presents with lymphocyte, dendritic cell, and macrophage infiltration of exocrine gland ducts and the formation of ectopic germinal centers. The interactions of lymphocyte homing receptors and addressins and chemokines and their receptors, such as α4ß7/MAdCAM-1, LFA-1/ICAM-1, CXCL13/CXCR5, CCL25/CCR9, CX3CL1/CX3CR1, play important roles in the migration of inflammatory cells to the focal glands and the promotion of ectopic germinal center formation in SS. A variety of molecules have been shown to be involved in lymphocyte homing, including tumor necrosis factor-α, interferon (IFN)-α, IFN-ß, and B cell activating factor. This process mainly involves the Janus kinase-signal transducer and activator of transcription signaling pathway, lymphotoxin-ß receptor pathway, and nuclear factor-κB signaling pathway. These findings have led to the development of antibodies to cell adhesion molecules, antagonists of chemokines and their receptors, compounds interfering with chemokine receptor signaling, and gene therapies targeting chemokines and their receptors, providing new targets for the treatment of SS in humans. The aim of this study was to explore the relationship between lymphocyte homing and the pathogenesis of SS, and to provide a review of recent studies addressing lymphocyte homing in targeted therapy for SS.


Asunto(s)
Quimiocinas , Síndrome de Sjögren , Síndrome de Sjögren/inmunología , Síndrome de Sjögren/metabolismo , Humanos , Quimiocinas/metabolismo , Quimiocinas/inmunología , Transducción de Señal , Animales , Receptores Mensajeros de Linfocitos/metabolismo , Linfocitos/inmunología , Linfocitos/metabolismo , Receptores de Quimiocina/metabolismo , Receptores de Quimiocina/inmunología
2.
Protein Sci ; 33(6): e4999, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723106

RESUMEN

Ticks produce chemokine-binding proteins, known as evasins, in their saliva to subvert the host's immune response. Evasins bind to chemokines and thereby inhibit the activation of their cognate chemokine receptors, thus suppressing leukocyte recruitment and inflammation. We recently described subclass A3 evasins, which, like other class A evasins, exclusively target CC chemokines but appear to use a different binding site architecture to control target selectivity among CC chemokines. We now describe the structural basis of chemokine recognition by the class A3 evasin EVA-ACA1001. EVA-ACA1001 binds to almost all human CC chemokines and inhibits receptor activation. Truncation mutants of EVA-ACA1001 showed that, unlike class A1 evasins, both the N- and C-termini of EVA-ACA1001 play minimal roles in chemokine binding. To understand the structural basis of its broad chemokine recognition, we determined the crystal structure of EVA-ACA1001 in complex with the human chemokine CCL16. EVA-ACA1001 forms backbone-backbone interactions with the CC motif of CCL16, a conserved feature of all class A evasin-chemokine complexes. A hydrophobic pocket in EVA-ACA1001, formed by several aromatic side chains and the unique disulfide bond of class A3 evasins, accommodates the residue immediately following the CC motif (the "CC + 1 residue") of CCL16. This interaction is shared with EVA-AAM1001, the only other class A3 evasins characterized to date, suggesting it may represent a common mechanism that accounts for the broad recognition of CC chemokines by class A3 evasins.


Asunto(s)
Modelos Moleculares , Humanos , Animales , Garrapatas/química , Garrapatas/metabolismo , Cristalografía por Rayos X , Sitios de Unión , Proteínas de Artrópodos/química , Proteínas de Artrópodos/metabolismo , Proteínas de Artrópodos/genética , Unión Proteica , Quimiocinas/química , Quimiocinas/metabolismo , Proteínas y Péptidos Salivales/química , Proteínas y Péptidos Salivales/metabolismo
3.
Sci Rep ; 14(1): 10610, 2024 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-38719857

RESUMEN

Histone lysine methylation is thought to play a role in the pathogenesis of rheumatoid arthritis (RA). We previously reported aberrant expression of the gene encoding mixed-lineage leukemia 1 (MLL1), which catalyzes methylation of histone H3 lysine 4 (H3K4), in RA synovial fibroblasts (SFs). The aim of this study was to elucidate the involvement of MLL1 in the activated phenotype of RASFs. SFs were isolated from synovial tissues obtained from patients with RA or osteoarthritis (OA) during total knee joint replacement. MLL1 mRNA and protein levels were determined after stimulation with tumor necrosis factor α (TNFα). We also examined changes in trimethylation of H3K4 (H3K4me3) levels in the promoters of RA-associated genes (matrix-degrading enzymes, cytokines, and chemokines) and the mRNA levels upon small interfering RNA-mediated depletion of MLL1 in RASFs. We then determined the levels of H3K4me3 and mRNAs following treatment with the WD repeat domain 5 (WDR5)/MLL1 inhibitor MM-102. H3K4me3 levels in the gene promoters were also compared between RASFs and OASFs. After TNFα stimulation, MLL1 mRNA and protein levels were higher in RASFs than OASFs. Silencing of MLL1 significantly reduced H3K4me3 levels in the promoters of several cytokine (interleukin-6 [IL-6], IL-15) and chemokine (C-C motif chemokine ligand 2 [CCL2], CCL5, C-X-C motif chemokine ligand 9 [CXCL9], CXCL10, CXCL11, and C-X3-C motif chemokine ligand 1 [CX3CL1]) genes in RASFs. Correspondingly, the mRNA levels of these genes were significantly decreased. MM-102 significantly reduced the promoter H3K4me3 and mRNA levels of the CCL5, CXCL9, CXCL10, and CXCL11 genes in RASFs. In addition, H3K4me3 levels in the promoters of the IL-6, IL-15, CCL2, CCL5, CXCL9, CXCL10, CXCL11, and CX3CL1 genes were significantly higher in RASFs than OASFs. Our findings suggest that MLL1 regulates the expression of particular cytokines and chemokines in RASFs and is associated with the pathogenesis of RA. These results could lead to new therapies for RA.


Asunto(s)
Artritis Reumatoide , Quimiocinas , Citocinas , Fibroblastos , N-Metiltransferasa de Histona-Lisina , Histonas , Proteína de la Leucemia Mieloide-Linfoide , Membrana Sinovial , Humanos , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Artritis Reumatoide/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Fibroblastos/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/genética , Citocinas/metabolismo , Membrana Sinovial/metabolismo , Membrana Sinovial/patología , Histonas/metabolismo , Quimiocinas/metabolismo , Quimiocinas/genética , Regulación de la Expresión Génica , Factor de Necrosis Tumoral alfa/metabolismo , Regiones Promotoras Genéticas , Femenino , Masculino , Células Cultivadas , Persona de Mediana Edad , ARN Mensajero/metabolismo , ARN Mensajero/genética , Osteoartritis/metabolismo , Osteoartritis/patología , Osteoartritis/genética , Anciano
4.
J Exp Med ; 221(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38713202

RESUMEN

A method to precisely determine which cells respond to chemokines in vivo is currently lacking. A novel class of dual fluorescence reporter mice could help identify cells that produce and/or sense a given chemokine in vitro and in vivo (Rodrigo et al. 2024. J. Exp. Med.https://doi.org/10.1084/jem.20231814).


Asunto(s)
Quimiocinas , Animales , Ratones , Quimiocinas/metabolismo , Modelos Animales
5.
Sci Rep ; 14(1): 10201, 2024 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702399

RESUMEN

The importance of neuroinflammation during the ischemic stroke has been extensively studied. The role of CD4+CD25+ regulatory T (Treg) cells during the recovery phase have shown infarct size reduction and functional improvement, possibly through the mitigation of inflammatory immune responses. We aimed to investigate the molecular factors involved in microglia-Treg cell communication that result in Treg trafficking. First, we observed the migration patterns of CD8+ (cytotoxic) T cells and Treg cells and then searched for chemokines released by activated microglia in an oxygen-glucose deprivation (OGD) model. The transwell migration assay showed increased migration into OGD media for both cell types, in agreement with the increase in chemokines involved in immune cell trafficking from the mouse chemokine profiling array. MSCV retrovirus was transduced to overexpress CCR4 in Treg cells. CCR4-overexpressed Treg cells were injected into the mouse transient middle cerebral artery occlusion (tMCAO) model to evaluate the therapeutic potential via the tetrazolium chloride (TTC) assay and behavioral tests. A general improvement in the prognosis of animals after tMCAO was observed. Our results suggest the increased mobility of CCR4-overexpressed Treg cells in response to microglia-derived chemokines in vitro and the therapeutic potential of Treg cells with increased mobility in cellular therapy.


Asunto(s)
Movimiento Celular , Modelos Animales de Enfermedad , Infarto de la Arteria Cerebral Media , Accidente Cerebrovascular Isquémico , Receptores CCR4 , Linfocitos T Reguladores , Animales , Receptores CCR4/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Ratones , Accidente Cerebrovascular Isquémico/inmunología , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Infarto de la Arteria Cerebral Media/inmunología , Infarto de la Arteria Cerebral Media/metabolismo , Subunidad alfa del Receptor de Interleucina-2/metabolismo , Microglía/metabolismo , Microglía/inmunología , Masculino , Ratones Endogámicos C57BL , Quimiocinas/metabolismo
6.
Nat Immunol ; 25(5): 802-819, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38684922

RESUMEN

Sepsis induces immune alterations, which last for months after the resolution of illness. The effect of this immunological reprogramming on the risk of developing cancer is unclear. Here we use a national claims database to show that sepsis survivors had a lower cumulative incidence of cancers than matched nonsevere infection survivors. We identify a chemokine network released from sepsis-trained resident macrophages that triggers tissue residency of T cells via CCR2 and CXCR6 stimulations as the immune mechanism responsible for this decreased risk of de novo tumor development after sepsis cure. While nonseptic inflammation does not provoke this network, laminarin injection could therapeutically reproduce the protective sepsis effect. This chemokine network and CXCR6 tissue-resident T cell accumulation were detected in humans with sepsis and were associated with prolonged survival in humans with cancer. These findings identify a therapeutically relevant antitumor consequence of sepsis-induced trained immunity.


Asunto(s)
Macrófagos , Neoplasias , Sepsis , Humanos , Sepsis/inmunología , Macrófagos/inmunología , Femenino , Neoplasias/inmunología , Neoplasias/terapia , Masculino , Receptores CXCR6/metabolismo , Animales , Linfocitos T/inmunología , Receptores CCR2/metabolismo , Persona de Mediana Edad , Ratones , Anciano , Quimiocinas/metabolismo , Adulto
7.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38673732

RESUMEN

Adipose tissue is an active endocrine gland, synthesizing and secreting multiple signaling molecules termed adipokines. Following the detection of adipokines and their receptors in the mammary tissue of various species, it is indicated that adipokines play a role in the development of the mammary gland. The aim of the present study was to determine the concentration-dependent influence of three adipokines, leptin, adiponectin, and chemerin, on the viability, apoptosis, and secretory activity of BME-UV1 bovine mammary epithelial cells. The study confirmed that BME-UV1 cells contain the leptin receptor (Ob-R) protein, and express transcripts of adiponectin (ADIPOR1 and ADIPOR2) and chemerin (CMLKR1 and GPR1) receptors. Regardless of the administered dose, none of the three tested adipokines had an effect on the viability of BME-UV1 cells, and the number of apoptotic cells remained unchanged. However, chemerin (100 ng/mL) stimulated BME-UV1 cells to synthesize and secrete αS1-casein, the major protein component of milk. These results indicate that chemerin may be a potent regulator of the bovine mammary epithelial cells' functional differentiation, contributing, along with the major systemic hormones and local growth factors, to the development of the bovine mammary gland.


Asunto(s)
Apoptosis , Quimiocinas , Células Epiteliales , Glándulas Mamarias Animales , Animales , Bovinos , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/citología , Quimiocinas/metabolismo , Femenino , Supervivencia Celular/efectos de los fármacos , Línea Celular , Receptores de Adiponectina/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Caseínas/metabolismo , Adiponectina/metabolismo
8.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38673909

RESUMEN

Recruitment and accumulation of reactive astrocytes around senile plaques are common pathological features of Alzheimer's disease (AD), with unclear mechanisms. Chemerin, an adipokine implicated in neuroinflammation, acts through its receptor, chemokine-like receptor 1 (CMKLR1), which also functions as a receptor for amyloid ß (Aß). The impact of the chemerin/CMKLR1 axis on astrocyte migration towards Aß plaques is unknown. Here we investigated the effect of CMKLR1 on astrocyte migration around Aß deposition in APP/PS1 mice with Cmklr1 knockout (APP/PS1-Cmklr1-/-). CMKLR1-expressed astrocytes were upregulated in the cortices and hippocampi of 9-month-old APP/PS1 mice. Chemerin mainly co-localized with neurons, and its expression was reduced in the brains of APP/PS1 mice, compared to WT mice. CMKLR1 deficiency decreased astrocyte colocalization with Aß plaques in APP/PS1-Cmklr1-/- mice, compared to APP/PS1 mice. Activation of the chemerin/CMKLR1 axis promoted the migration of primary cultured astrocytes and U251 cells, and reduced astrocyte clustering induced by Aß42. Mechanistic studies revealed that chemerin/CMKLR1 activation induced STING phosphorylation. Deletion of STING attenuated the promotion of the chemerin/CMKLR1 axis relative to astrocyte migration and abolished the inhibitory effect of chemerin on Aß42-induced astrocyte clustering. These findings suggest the involvement of the chemerin/CMKLR1/STING pathway in the regulation of astrocyte migration and recruitment to Aß plaques/Aß42.


Asunto(s)
Enfermedad de Alzheimer , Astrocitos , Quimiocinas , Péptidos y Proteínas de Señalización Intercelular , Placa Amiloide , Receptores de Quimiocina , Animales , Astrocitos/metabolismo , Quimiocinas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones , Receptores de Quimiocina/metabolismo , Receptores de Quimiocina/genética , Placa Amiloide/metabolismo , Placa Amiloide/patología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Humanos , Péptidos beta-Amiloides/metabolismo , Ratones Noqueados , Movimiento Celular , Transducción de Señal , Ratones Transgénicos , Ratones Endogámicos C57BL
9.
Int Immunopharmacol ; 133: 112047, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38631221

RESUMEN

BACKGROUND: Glioma is a primary tumor originating from the central nervous system, and despite ongoing efforts to improve treatment, its overall survival rate remains low. There are a limited number of reports regarding the clinical grading, prognostic impact, and utility of chemokines. Therefore, conducting a meta-analysis is necessary to obtain convincing and conclusive results. METHODS: A comprehensive literature search was conducted using various databases, including PubMed, Web of Science, The Cochrane Library, Embase, Ovid Medline, CNKI, Wanfang Database, VIP, and CBM. The search encompassed articles published from the inception of the databases until March 2024. The estimated odds ratio (ORs), standard mean difference (SMDs), and hazard ratio (HR) with their corresponding 95% confidence intervals (95% CI) were calculated to assess the predictive value of chemokine and receptor levels in glioma risk. Additionally, heterogeneity tests and bias tests were performed to evaluate the reliability of the findings. RESULTS: This meta-analysis included a total of 36 studies, involving 2,480 patients diagnosed with glioma. The results revealed a significant association between the expression levels of CXCR4 (n = 8; OR = 22.28; 95 % CI = 11.47-43.30; p = 0.000), CXCL12 (n = 4; OR = 10.69; 95 % CI = 7.03-16.24; p = 0.000), CCL2 (n = 6; SMD = -0.83; 95 % CI = -0.98--0.67; p = 0.000), CXCL8 (n = 3; SMD = 0.75; 95 % CI = 0.47-1.04; p = 0.000), CXCR7 (n = 3; OR = 20.66; 95 % CI = 10.20-41.82; p = 0.000), CXCL10 (n = 2; SMD = 3.27; 95 % CI = 2.91-3.62; p = 0.000) and the risk of glioma. Additionally, a significant correlation was observed between CXCR4 (n = 8; OR = 4.39; 95 % CI = 3.04-6.32; p = 0.000), (n = 6; SMD = 1.37; 95 % CI = 1.09-1.65; p = 0.000), CXCL12 (n = 6; OR = 6.30; 95 % CI = 3.87-10.25; p = 0.000), (n = 5; ES = 2.25; 95 % CI = 1.15-3.34; p = 0.041), CCL2 (n = 3; OR = 9.65; 95 % CI = 4.55-20.45; p = 0.000), (n = 4; SMD = -1.47; 95 % CI = -1.68--1.26; p = 0.000), and CCL18 (n = 3; SMD = 1.62; 95 % CI = 1.30-1.93; p = 0.000) expression levels and high-grade glioma (grades 3-4). Furthermore, CXCR4 (HR = 2.38, 95 % CI = 1.66-3.40; p = 0.000) exhibited a strong correlation with poor overall survival (OS) rates in glioma patients. CONCLUSION: The findings of this study showed a robust association between elevated levels of CXCR4, CXCL12, CCL2, CXCL8, CXCL10 and CXCR7 with a higher risk of glioma. Furthermore, the WHO grading system was validated by the strong correlation shown between higher expression of CXCR4, CXCL12, CCL2, and CCL18 and WHO high-grade gliomas (grades 3-4). Furthermore, the results of the meta-analysis suggested that CXCR4 might be a helpful biomarker for predicting the worse prognosis of glioma patients.


Asunto(s)
Neoplasias Encefálicas , Glioma , Humanos , Glioma/mortalidad , Glioma/inmunología , Glioma/metabolismo , Pronóstico , Neoplasias Encefálicas/mortalidad , Neoplasias Encefálicas/inmunología , Biomarcadores de Tumor/metabolismo , Quimiocinas/metabolismo , Receptores de Quimiocina/metabolismo , Receptores CXCR4/metabolismo
10.
Dig Dis Sci ; 69(5): 1562-1570, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38580886

RESUMEN

Esophageal carcinoma (ESCA) is an aggressive solid tumor. The 5-year survival rate for patients with ESCA is estimated to be less than 20%, mainly due to tumor invasion and metastasis. Therefore, it is urgent to improve early diagnostic tools and effective treatments for ESCA patients. Tumor microenvironment (TME) enhances the ability of tumor cells to proliferate, migrate, and escape from the immune system, thus promoting the occurrence and development of tumor. TME contains chemokines. Chemokines consist of four major families, which are mainly composed of CC and CXC families. The main purpose of this review is to understand the CC and CXC chemokines and their receptors in ESCA, to improve the understanding of tumorigenesis of ESCA and determine new biomarkers for the diagnosis and prognosis of ESCA. We reviewed the literature on CC and CXC chemokines and their receptors in ESCA identified by PubMed database. This article introduces the general structures and functions of CC, CXC chemokines and their receptors in TME, as well as their roles in the progress of ESCA. Chemokines are involved in the development of ESCA, such as cancer cell invasion, metastasis, angiogenesis, and radioresistance, and are key determinants of disease progression, which have a great impact on patient prognosis and treatment response. In addition, a full understanding of their mechanism of action is essential to further verify that these chemokines and their receptors may serve as biomarkers or therapeutic targets of ESCA.


Asunto(s)
Quimiocinas , Neoplasias Esofágicas , Microambiente Tumoral , Humanos , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/inmunología , Quimiocinas/metabolismo , Receptores de Quimiocina/metabolismo , Biomarcadores de Tumor/metabolismo , Pronóstico
11.
Int J Biol Macromol ; 268(Pt 1): 131679, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38641274

RESUMEN

Over the past few decades, significant strides have been made in understanding the pivotal roles that chemokine networks play in tumor biology. These networks, comprising chemokines and their receptors, wield substantial influence over cancer immune regulation and therapeutic outcomes. As a result, targeting these chemokine systems has emerged as a promising avenue for cancer immunotherapy. However, therapies targeting chemokines face significant challenges in solid tumor treatment, due to the complex and fragile of the chemokine networks. A nuanced comprehension of the complicacy and functions of chemokine networks, and their impact on the tumor microenvironment, is essential for optimizing their therapeutic utility in oncology. This review elucidates the ways in which chemokine networks interact with cancer immunity and tumorigenesis. We particularly elaborate on recent innovations in manipulating these networks for cancer treatment. The review also highlights future challenges and explores potential biomaterial strategies for clinical applications.


Asunto(s)
Quimiocinas , Neoplasias , Microambiente Tumoral , Humanos , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Quimiocinas/metabolismo , Animales , Inmunoterapia/métodos , Portadores de Fármacos/química , Nanopartículas/química , Nanopartículas/uso terapéutico , Receptores de Quimiocina/metabolismo
12.
PLoS One ; 19(4): e0293680, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38652715

RESUMEN

Universal and early recognition of pathogens occurs through recognition of evolutionarily conserved pathogen associated molecular patterns (PAMPs) by innate immune receptors and the consequent secretion of cytokines and chemokines. The intrinsic complexity of innate immune signaling and associated signal transduction challenges our ability to obtain physiologically relevant, reproducible and accurate data from experimental systems. One of the reasons for the discrepancy in observed data is the choice of measurement strategy. Immune signaling is regulated by the interplay between pathogen-derived molecules with host cells resulting in cellular expression changes. However, these cellular processes are often studied by the independent assessment of either the transcriptome or the proteome. Correlation between transcription and protein analysis is lacking in a variety of studies. In order to methodically evaluate the correlation between transcription and protein expression profiles associated with innate immune signaling, we measured cytokine and chemokine levels following exposure of human cells to the PAMP lipopolysaccharide (LPS) from the Gram-negative pathogen Pseudomonas aeruginosa. Expression of 84 messenger RNA (mRNA) transcripts and 69 proteins, including 35 overlapping targets, were measured in human lung epithelial cells. We evaluated 50 biological replicates to determine reproducibility of outcomes. Following pairwise normalization, 16 mRNA transcripts and 6 proteins were significantly upregulated following LPS exposure, while only five (CCL2, CSF3, CXCL5, CXCL8/IL8, and IL6) were upregulated in both transcriptomic and proteomic analysis. This lack of correlation between transcription and protein expression data may contribute to the discrepancy in the immune profiles reported in various studies. The use of multiomic assessments to achieve a systems-level understanding of immune signaling processes can result in the identification of host biomarker profiles for a variety of infectious diseases and facilitate countermeasure design and development.


Asunto(s)
Biomarcadores , Células Epiteliales , Lipopolisacáridos , Pseudomonas aeruginosa , Humanos , Lipopolisacáridos/farmacología , Células Epiteliales/metabolismo , Células Epiteliales/inmunología , Pseudomonas aeruginosa/inmunología , Biomarcadores/metabolismo , Pulmón/metabolismo , Pulmón/inmunología , Transcriptoma , Citocinas/metabolismo , Perfilación de la Expresión Génica , Inmunidad Innata , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética/efectos de los fármacos , Quimiocinas/metabolismo , Quimiocinas/genética
13.
PLoS One ; 19(4): e0298418, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38625857

RESUMEN

The chemokines of the immune system act as first responders by operating as chemoattractants, directing immune cells to specific locations of inflamed tissues. This promiscuous network is comprised of 50 ligands and 18 receptors where the ligands may interact with the receptors in various oligomeric states i.e., monomers, homodimers, and heterodimers. Chemokine receptors are G-protein coupled receptors (GPCRs) present in the membrane of immune cells. The migration of immune cells occurs in response to a concentration gradient of the ligands. Chemotaxis of neutrophils is directed by CXC-ligand (CXCL) activation of the membrane bound CXC chemokine receptor 2 (CXCR2). CXCR2 plays an important role in human health and is linked to disorders such as autoimmune disorders, inflammation, and cancer. Yet, despite their important role, little is known about the biophysical characteristics controlling ligand:ligand and ligand:receptor interaction essential for biological activity. In this work, we study the homodimers of three of the CXCR2 cognate ligands, CXCL1, CXCL5, and CXCL8. The ligands share high structural integrity but a low sequence identity. We show that the sequence diversity has evolved different binding affinities and stabilities for the CXC-ligands resulting in diverse agonist/antagonist behavior. Furthermore, CXC-ligands fold through a three-state mechanism, populating a folded monomeric state before associating into an active dimer.


Asunto(s)
Interleucina-8 , Receptores de Interleucina-8B , Humanos , Receptores de Interleucina-8B/genética , Ligandos , Interleucina-8/metabolismo , Quimiocinas/metabolismo , Quimiocina CXCL1 , Factores Quimiotácticos/metabolismo , Quimiotaxis
14.
Sci Rep ; 14(1): 8379, 2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600116

RESUMEN

Macrophage responses to activation are fluid and dynamic in their ability to respond appropriately to challenges, a role integral to host defence. While bacteria can influence macrophage differentiation and polarization into pro-inflammatory and alternatively activated phenotypes through direct interactions, many questions surround indirect communication mechanisms mediated through secretomes derived from gut bacteria, such as lactobacilli. We examined effects of secretome-mediated conditioning on THP-1 human monocytes, focusing on the ability of the Lacticaseibacillus rhamnosus R0011 secretome (LrS) to drive macrophage differentiation and polarization and prime immune responses to subsequent challenge with lipopolysaccharide (LPS). Genome-wide transcriptional profiling revealed increased M2-associated gene transcription in response to LrS conditioning in THP-1 cells. Cytokine and chemokine profiling confirmed these results, indicating increased M2-associated chemokine and cytokine production (IL-1Ra, IL-10). These cells had increased cell-surface marker expression of CD11b, CD86, and CX3CR1, coupled with reduced expression of the M1 macrophage-associated marker CD64. Mitochondrial substrate utilization assays indicated diminished reliance on glycolytic substrates, coupled with increased utilization of citric acid cycle intermediates, characteristics of functional M2 activity. LPS challenge of LrS-conditioned THP-1s revealed heightened responsiveness, indicative of innate immune priming. Resting stage THP-1 macrophages co-conditioned with LrS and retinoic acid also displayed an immunoregulatory phenotype with expression of CD83, CD11c and CD103 and production of regulatory cytokines. Secretome-mediated conditioning of macrophages into an immunoregulatory phenotype is an uncharacterized and potentially important route through which lactic acid bacteria and the gut microbiota may train and shape innate immunity at the gut-mucosal interface.


Asunto(s)
Lacticaseibacillus rhamnosus , Monocitos , Humanos , Monocitos/metabolismo , Secretoma , Lipopolisacáridos , Citocinas/metabolismo , Quimiocinas/metabolismo , Inmunidad
15.
Sci Rep ; 14(1): 8196, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589444

RESUMEN

In atherosclerotic lesions, monocyte-derived macrophages are major source of interferon gamma (IFN-γ), a pleotropic cytokine known to regulate the expression of numerous genes, including the antiviral gene RSAD2. While RSAD2 was reported to be expressed in endothelial cells of human carotid lesions, its significance for the development of atherosclerosis remains utterly unknown. Here, we harnessed publicly available human carotid atherosclerotic data to explore RSAD2 in lesions and employed siRNA-mediated gene-knockdown to investigate its function in IFN-γ-stimulated human aortic smooth muscle cells (hAoSMCs). Silencing RSAD2 in IFN-γ-stimulated hAoSMCs resulted in reduced expression and secretion of key CXCR3-chemokines, CXCL9, CXCL10, and CXCL11. Conditioned medium from RSAD2-deficient hAoSMCs exhibited diminished monocyte attraction in vitro compared to conditioned medium from control cells. Furthermore, RSAD2 transcript was elevated in carotid lesions where it was expressed by several different cell types, including endothelial cells, macrophages and smooth muscle cells. Interestingly, RSAD2 displayed significant correlations with CXCL10 (r = 0.45, p = 0.010) and CXCL11 (r = 0.53, p = 0.002) in human carotid lesions. Combining our findings, we uncover a novel role for RSAD2 in hAoSMCs, which could potentially contribute to monocyte recruitment in the context of atherosclerosis.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Humanos , Placa Aterosclerótica/genética , Interferones , Células Endoteliales/metabolismo , Medios de Cultivo Condicionados/farmacología , Quimiocinas/genética , Quimiocinas/metabolismo , Quimiocina CXCL11/genética , Quimiocina CXCL11/metabolismo , Quimiocina CXCL9/metabolismo , Interferón gamma/farmacología , Interferón gamma/metabolismo , Aterosclerosis/genética , Miocitos del Músculo Liso/metabolismo , Quimiocina CXCL10/genética , Quimiocina CXCL10/metabolismo , Receptores CXCR3/genética , Receptores CXCR3/metabolismo , Proteína Viperina
16.
ACS Chem Neurosci ; 15(8): 1712-1727, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38581382

RESUMEN

Short-chain fatty acids (SCFAs) are gut microbial metabolic derivatives produced during the fermentation of ingested complex carbohydrates. SCFAs have been widely regarded to have a potent anti-inflammatory and neuro-protective role and have implications in several disease conditions, such as, inflammatory bowel disease, type-2 diabetes, and neurodegenerative disorders. Japanese encephalitis virus (JEV), a neurotropic flavivirus, is associated with life threatening neuro-inflammation and neurological sequelae in infected hosts. In this study, we hypothesize that SCFAs have potential in mitigating JEV pathogenesis. Postnatal day 10 BALB/c mice were intraperitoneally injected with either a SCFA mixture (acetate, propionate, and butyrate) or PBS for a period of 7 days, followed by JEV infection. All mice were observed for onset and progression of symptoms. The brain tissue was collected upon reaching terminal illness for further analysis. SCFA-supplemented JEV-infected mice (SCFA + JEV) showed a delayed onset of symptoms, lower hindlimb clasping score, and decreased weight loss and increased survival by 3 days (p < 0.0001) upon infection as opposed to the PBS-treated JEV-infected animals (JEV). Significant downregulation of inflammatory cytokines TNF-α, MCP-1, IL-6, and IFN-Υ in the SCFA + JEV group relative to the JEV-infected control group was observed. Inflammatory mediators, phospho-NF-kB (P-NF-kB) and iba1, showed 2.08 ± 0.1 and 3.132 ± 0.43-fold upregulation in JEV versus 1.19 ± 0.11 and 1.31 ± 0.11-fold in the SCFA + JEV group, respectively. Tissue section analysis exhibited reduced glial activation (JEV group─42 ± 2.15 microglia/ROI; SCFA + JEV group─27.07 ± 1.8 microglia/ROI) in animals that received SCFA supplementation prior to infection as seen from the astrocytic and microglial morphometric analysis. Caspase-3 immunoblotting showed 4.08 ± 1.3-fold upregulation in JEV as compared to 1.03 ± 0.14-fold in the SCFA + JEV group and TUNEL assay showed a reduced cellular death post-JEV infection (JEV-6.4 ± 1.5 cells/ROI and SCFA + JEV-3.7 ± 0.73 cells/ROI). Our study critically contributes to the increasing evidence in support of SCFAs as an anti-inflammatory and neuro-protective agent, we further expand its scope as a potential supplementary intervention in JEV-mediated neuroinflammation.


Asunto(s)
Encefalitis Japonesa , Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Enfermedades Neuroinflamatorias , Microbioma Gastrointestinal/fisiología , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/microbiología , Microglía/efectos de los fármacos , Microglía/inmunología , Encefalitis Japonesa/tratamiento farmacológico , Encefalitis Japonesa/inmunología , Encefalitis Japonesa/microbiología , Encefalitis Japonesa/prevención & control , Encefalitis Japonesa/virología , Ácidos Grasos Volátiles/farmacología , Ácidos Grasos Volátiles/uso terapéutico , Virus de la Encefalitis Japonesa (Subgrupo)/efectos de los fármacos , Virus de la Encefalitis Japonesa (Subgrupo)/inmunología , Virus de la Encefalitis Japonesa (Subgrupo)/patogenicidad , Análisis de Supervivencia , Quimiocinas/inmunología , Quimiocinas/metabolismo , Mediadores de Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Síndrome de Liberación de Citoquinas/inmunología , Síndrome de Liberación de Citoquinas/metabolismo , Síndrome de Liberación de Citoquinas/prevención & control , Humanos , Femenino , Animales , Ratones , Apoptosis/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/virología , Carga Viral/efectos de los fármacos , Factores de Tiempo
17.
Nat Immunol ; 25(4): 644-658, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38503922

RESUMEN

The organization of immune cells in human tumors is not well understood. Immunogenic tumors harbor spatially localized multicellular 'immunity hubs' defined by expression of the T cell-attracting chemokines CXCL10/CXCL11 and abundant T cells. Here, we examined immunity hubs in human pre-immunotherapy lung cancer specimens and found an association with beneficial response to PD-1 blockade. Critically, we discovered the stem-immunity hub, a subtype of immunity hub strongly associated with favorable PD-1-blockade outcome. This hub is distinct from mature tertiary lymphoid structures and is enriched for stem-like TCF7+PD-1+CD8+ T cells, activated CCR7+LAMP3+ dendritic cells and CCL19+ fibroblasts as well as chemokines that organize these cells. Within the stem-immunity hub, we find preferential interactions between CXCL10+ macrophages and TCF7-CD8+ T cells as well as between mature regulatory dendritic cells and TCF7+CD4+ and regulatory T cells. These results provide a picture of the spatial organization of the human intratumoral immune response and its relevance to patient immunotherapy outcomes.


Asunto(s)
Neoplasias Pulmonares , Humanos , Linfocitos T CD8-positivos , Receptor de Muerte Celular Programada 1 , Quimiocinas/metabolismo , Inmunoterapia/métodos , Microambiente Tumoral
18.
Microbiol Immunol ; 68(5): 185-195, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38462687

RESUMEN

Guanylate-binding proteins (GBPs) are a family of interferon (IFN)-inducible GTPases and play a pivotal role in the host immune response to microbial infections. These are upregulated in immune cells after recognizing the lipopolysaccharides (LPS), the major membrane component of Gram-negative bacteria. In the present study, the expression pattern of GBP1-7 was initially mapped in phorbol 12-myristate 13-acetate-differentiated human monocytes THP-1 and mouse macrophages RAW 264.7 cell lines stimulated with LPS. A time-dependent significant expression of GBP1-7 was observed in these cells. Moreover, among the various GBPs, GBP1 has emerged as a central player in regulating innate immunity and inflammation. Therefore, to study the specific role of GBP1 in LPS-induced inflammation, knockdown of the Gbp1 gene was carried out in both cells using small interfering RNA interference. Altered levels of different cytokines (interleukin [IL]-4, IL-10, IL-12ß, IFN-γ, tumor necrosis factor-α), inducible nitric oxide synthase, histocompatibility 2, class II antigen A, protein kinase R, and chemokines (chemokine (C-X-C motif) ligand 9 [CXCL9], CXCL10, and CXCL11) in GBP1 knockdown cells were reported compared to control cells. Interestingly, the extracellular-signal-regulated kinase 1/2 mitogen-activated protein (MAP) kinases and signal transducer and activator of transcription 1 (STAT1) transcription factor levels were considerably induced in knockdown cells compared to the control cells. However, no change in the level of phosphorylated nuclear factor-kB, c-Jun, and p38 transcription factors was observed in GBP1 knockdown cells compared to the control cells. This study concludes that GBP1 may alter the expression of cytokines, chemokines, and effector molecules mediated by MAP kinases and STAT1 transcription factors.


Asunto(s)
Quimiocinas , Citocinas , Proteínas de Unión al GTP , Lipopolisacáridos , Macrófagos , Factor de Transcripción STAT1 , Animales , Humanos , Ratones , Quimiocinas/metabolismo , Citocinas/metabolismo , Técnicas de Silenciamiento del Gen , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/inmunología , Macrófagos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Células RAW 264.7 , ARN Interferente Pequeño/genética , Transducción de Señal , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT1/genética , Células THP-1
19.
Immunol Rev ; 323(1): 241-256, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38553621

RESUMEN

The discovery of toll-like receptors (TLRs) and the subsequent recognition that endogenous nucleic acids (NAs) could serve as TLR ligands have led to essential insights into mechanisms of healthy immune responses as well as pathogenic mechanisms relevant to systemic autoimmune and inflammatory diseases. In systemic lupus erythematosus, systemic sclerosis, and rheumatoid arthritis, NA-containing immune complexes serve as TLR ligands, with distinct implications depending on the additional immune stimuli available. Plasmacytoid dendritic cells (pDCs), the robust producers of type I interferon (IFN-I), are providing critical insights relevant to TLR-mediated healthy immune responses and tissue repair, as well as generation of inflammation, autoimmunity and fibrosis, processes central to the pathogenesis of many autoimmune diseases. In this review, we describe recent data characterizing the role of platelets and NA-binding chemokines in modulation of TLR signaling in pDCs, as well as implications for how the IFN-I products of pDCs contribute to the generation of inflammation and wound healing responses by monocyte/macrophages. Chemokine modulators of TLR-mediated B cell tolerance mechanisms and interactions between TLR signaling and metabolic pathways are also considered. The modulators of TLR signaling and their contribution to the pathogenesis of systemic autoimmune diseases suggest new opportunities for identification of novel therapeutic targets.


Asunto(s)
Enfermedades Autoinmunes , Autoinmunidad , Células Dendríticas , Inflamación , Interferón Tipo I , Transducción de Señal , Receptores Toll-Like , Humanos , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Animales , Inflamación/inmunología , Receptores Toll-Like/metabolismo , Enfermedades Autoinmunes/inmunología , Interferón Tipo I/metabolismo , Plaquetas/inmunología , Plaquetas/metabolismo , Linfocitos B/inmunología , Linfocitos B/metabolismo , Tolerancia Inmunológica , Inmunomodulación , Quimiocinas/metabolismo
20.
Front Immunol ; 15: 1374506, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38529271

RESUMEN

Pulmonary hypertension (PH) is a malignant disease with progressive increase of pulmonary vascular pressure, which eventually leads to right heart failure. More and more evidences show that immune cells and inflammation play an important role in the occurrence and development of PH. In the context of pulmonary vascular diseases, immune cells migrate into the walls of the pulmonary vascular system. This leads to an increase in the levels of cytokines and chemokines in both the bloodstream and the surrounding tissues of the pulmonary vessels. As a result, new approaches such as immunotherapy and anti-inflammatory treatments are being considered as potential strategies to halt or potentially reverse the progression of PH. We reviewed the potential mechanisms of immune cells, cytokines and chemokines in PH development. The potential relationship of vascular cells or bone morphogenetic protein receptor 2 (BMPR2) in immune regulation was also expounded. The clinical application and future prospect of immunotherapy were further discussed.


Asunto(s)
Hipertensión Pulmonar , Humanos , Hipertensión Pulmonar/terapia , Hipertensión Pulmonar/metabolismo , Pulmón/patología , Inflamación/metabolismo , Citocinas/metabolismo , Quimiocinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA