Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
1.
J Chem Inf Model ; 63(23): 7487-7498, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38016288

RESUMEN

Calmodulin (CaM) is a universal regulatory protein that modulates numerous cellular processes by using calcium (Ca2+) as the signal. In smooth muscle cells (SMC), one major target of CaM is myosin light chain kinase (MLCK), a kinase that phosphorylates the myosin regulatory light chain and thereby regulates cell contraction. In the absence of CaM, MLCK remains inhibited by its autoinhibitory domain (AID). While it is well established that CaM activates MLCK, the molecular interactions between these two proteins remain elusive due to the lack of structural data. In this work, we constructed a molecular model of mammalian CaM (mCaM) in complex with MLCK leveraging AlphaFold, published biochemical data, and protein-protein docking. The model, along with a strategic set of CaM mutants including a inhibitory variant soybean CaM isoform 4 (sCaM-4), was subject to molecular dynamics (MD) simulations. Using principal component analysis (PCA), we mapped out the transition path for the removal of the AID from the MLCK kinase domain to provide molecular basis of MLCK activation. Additionally, we established MLCK conformations that correspond to the active and inactive states of the kinase. We showed that mCaM and sCaM-4 cause MLCK to undergo the transition to the active and inactive states, respectively. Using two structural metrics, we computed the probabilities of MLCK activation by different CaM variants, which were in good agreement with the experimental data. Distributions along these metrics revealed that different inhibitory CaM variants impair MLCK activation through unique mechanisms. We finally identified molecular contacts that contribute to the MLCK activation by CaM. Overall, we report a de novo molecular model of CaM-MLCK that provides insights into the molecular mechanism of MLCK activation by CaM. The mechanism requires effective removal of the AID while preserving an active configuration of the kinase domain. This mechanism may be shared by other MLCK isoforms and potentially other structurally similar kinases with CaM-mediated regulatory domains.


Asunto(s)
Calmodulina , Quinasa de Cadena Ligera de Miosina , Animales , Calcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Quinasa de Cadena Ligera de Miosina/genética , Quinasa de Cadena Ligera de Miosina/química , Quinasa de Cadena Ligera de Miosina/metabolismo , Fosforilación , Isoformas de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional
2.
J Biol Chem ; 298(6): 102054, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35598826

RESUMEN

Myosins belong to a large superfamily of actin-dependent molecular motors. Nonmuscle myosin II (NM II) is involved in the morphology and function of neurons, but little is known about how NM II activity is regulated. Brain-derived neurotrophic factor (BDNF) is a prevalent neurotrophic factor in the brain that encourages growth and differentiation of neurons and synapses. In this study, we report that BDNF upregulates the phosphorylation of myosin regulatory light chain (MLC2), to increases the activity of NM II. The role of BDNF on modulating the phosphorylation of MLC2 was validated by using Western blotting in primary cultured hippocampal neurons. This result was confirmed by injecting BDNF into the dorsal hippocampus of mice and detecting the phosphorylation level of MLC2 by Western blotting. We further perform coimmunoprecipitation assay to confirm that this process depends on the activation of the LYN kinase through binding with tyrosine kinase receptor B, the receptor of BDNF, in a kinase activity-dependent manner. LYN kinase subsequently phosphorylates MLCK, further promoting the phosphorylation of MLC2. Taken together, our results suggest a new molecular mechanism by which BDNF regulates MLC2 activity, which provides a new perspective for further understanding the functional regulation of NM II in the nervous system.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Cadenas Ligeras de Miosina , Miosina Tipo II , Quinasa de Cadena Ligera de Miosina , Familia-src Quinasas , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Células Cultivadas , Hipocampo/metabolismo , Ratones , Cadenas Ligeras de Miosina/metabolismo , Miosina Tipo II/metabolismo , Quinasa de Cadena Ligera de Miosina/química , Neuronas/metabolismo , Fosforilación , Familia-src Quinasas/metabolismo
3.
Mol Oncol ; 16(13): 2558-2574, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35278271

RESUMEN

Salt-inducible kinase 2 (SIK2; also known as serine/threonine-protein kinase SIK2) is overexpressed in several cancers and has been implicated in cancer progression. However, the mechanisms by which SIK2 regulates cancer cell motility, migration and metastasis in ovarian cancer have not been fully discovered. Here, we identify that SIK2 promotes ovarian cancer cell motility, migration and metastasis in vitro and in vivo. Mechanistically, SIK2 regulated cancer cell motility and migration by myosin light chain kinase, smooth muscle (MYLK)-meditated phosphorylation of myosin light chain 2 (MYL2). SIK2 directly phosphorylated MYLK at Ser343 and activated its downstream effector MYL2, promoting ovarian cancer cell motility and metastasis. In addition, we found that adipocytes induced SIK2 phosphorylation at Ser358 and MYLK phosphorylation at Ser343, enhancing ovarian cancer cell motility. Moreover, SIK2 protein expression was positively correlated with the expression of MYLK-pS343 in ovarian cancer cell lines and tissues. The co-expression of SIK2 and MYLK-pS343 was associated with reduced median overall survival in human ovarian cancer samples. Taken together, SIK2 positively regulates ovarian cancer motility, migration and metastasis, suggesting that SIK2 is a potential candidate for ovarian cancer treatment.


Asunto(s)
Proteínas de Unión al Calcio , Quinasa de Cadena Ligera de Miosina , Neoplasias Ováricas , Proteínas Serina-Treonina Quinasas , Proteínas de Unión al Calcio/química , Movimiento Celular , Femenino , Humanos , Quinasa de Cadena Ligera de Miosina/química , Metástasis de la Neoplasia , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Fosforilación , Proteínas Serina-Treonina Quinasas/genética
4.
J Am Chem Soc ; 142(50): 21220-21232, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33280387

RESUMEN

Calmodulin (CaM) mediates a wide range of biological responses to changes in intracellular Ca2+ concentrations through its calcium-dependent binding affinities to numerous target proteins. Binding of two Ca2+ ions to each of the two four-helix-bundle domains of CaM results in major conformational changes that create a potential binding site for the CaM binding domain of a target protein, which also undergoes major conformational changes to form the complex with CaM. Details of the molecular mechanism of complex formation are not well established, despite numerous structural, spectroscopic, thermodynamic, and kinetic studies. Here, we report a study of the process by which the 26-residue peptide M13, which represents the CaM binding domain of skeletal muscle myosin light chain kinase, forms a complex with CaM in the presence of excess Ca2+ on the millisecond time scale. Our experiments use a combination of selective 13C labeling of CaM and M13, rapid mixing of CaM solutions with M13/Ca2+ solutions, rapid freeze-quenching of the mixed solutions, and low-temperature solid state nuclear magnetic resonance (ssNMR) enhanced by dynamic nuclear polarization. From measurements of the dependence of 2D 13C-13C ssNMR spectra on the time between mixing and freezing, we find that the N-terminal portion of M13 converts from a conformationally disordered state to an α-helix and develops contacts with the C-terminal domain of CaM in about 2 ms. The C-terminal portion of M13 becomes α-helical and develops contacts with the N-terminal domain of CaM more slowly, in about 8 ms. The level of structural order in the CaM/M13/Ca2+ complexes, indicated by 13C ssNMR line widths, continues to increase beyond 27 ms.


Asunto(s)
Calmodulina/metabolismo , Quinasa de Cadena Ligera de Miosina/química , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/metabolismo , Calmodulina/química , Cinética , Simulación del Acoplamiento Molecular , Fragmentos de Péptidos/química , Dominios Proteicos
5.
J Biol Chem ; 295(14): 4398-4410, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32086378

RESUMEN

Heart muscle contractility and performance are controlled by posttranslational modifications of sarcomeric proteins. Although myosin regulatory light chain (RLC) phosphorylation has been studied extensively in vitro and in vivo, the precise role of cardiac myosin light chain kinase (cMLCK), the primary kinase acting upon RLC, in the regulation of cardiomyocyte contractility remains poorly understood. In this study, using recombinantly expressed and purified proteins, various analytical methods, in vitro and in situ kinase assays, and mechanical measurements in isolated ventricular trabeculae, we demonstrate that human cMLCK is not a dedicated kinase for RLC but can phosphorylate other sarcomeric proteins with well-characterized regulatory functions. We show that cMLCK specifically monophosphorylates Ser23 of human cardiac troponin I (cTnI) in isolation and in the trimeric troponin complex in vitro and in situ in the native environment of the muscle myofilament lattice. Moreover, we observed that human cMLCK phosphorylates rodent cTnI to a much smaller extent in vitro and in situ, suggesting species-specific adaptation of cMLCK. Although cMLCK treatment of ventricular trabeculae exchanged with rat or human troponin increased their cross-bridge kinetics, the increase in sensitivity of myofilaments to calcium was significantly blunted by human TnI, suggesting that human cTnI phosphorylation by cMLCK modifies the functional consequences of RLC phosphorylation. We propose that cMLCK-mediated phosphorylation of TnI is functionally significant and represents a critical signaling pathway that coordinates the regulatory states of thick and thin filaments in both physiological and potentially pathophysiological conditions of the heart.


Asunto(s)
Contracción Miocárdica/fisiología , Miocardio/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , Troponina I/metabolismo , Animales , Calcio/metabolismo , Humanos , Masculino , Miofibrillas/metabolismo , Cadenas Ligeras de Miosina/química , Cadenas Ligeras de Miosina/metabolismo , Quinasa de Cadena Ligera de Miosina/química , Quinasa de Cadena Ligera de Miosina/genética , Péptidos/análisis , Péptidos/química , Fosforilación , Ratas , Ratas Wistar , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/aislamiento & purificación , Transducción de Señal , Troponina I/química , Troponina I/genética
6.
Rapid Commun Mass Spectrom ; 33(19): 1502-1511, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31151135

RESUMEN

RATIONALE: Previous studies found that charge state could affect both specific and nonspecific binding of protein-metal ion interactions in nanoelectrospray ionization mass spectrometry (nESI-MS). However, the two kinds of interactions have been studied individually in spite of the problem that they often coexist in the same system. Thus, it is necessary to study the effects of charge state on specific and nonspecific protein-metal ion interactions in one system to reveal more accurate binding state. METHODS: The HIV-1 nucleocapsid protein (NCp7(31-55)) which can bind specifically and nonspecifically to Zn2+ served as the model to show the charge-dependent protein-metal ion interactions. Hydrogen/deuterium exchange (HDX) and photodissociation (PD) were used to demonstrate that specific binding state was correlated with protein structure. In addition to NCp7(31-55), three other model proteins were used to investigate the reason for the charge-dependent nonspecific binding. RESULTS: For specific binding, we proposed that protein ions with different charge states had different conformations. The HDX results showed that labile protons in the NCp7(31-55)-Zn complex were exchanged in a charge-state-dependent way. The PD experiments revealed differential fragment yields for different charge states. For nonspecific binding, higher charge states had more Zn2+ additions, but less SO4 2- additions. The effects of charge states on nonspecific binding levels were entirely the opposite for Zn2+ and SO4 2- . These results could reveal that the nonspecific binding was caused by electrostatic interaction. CONCLUSIONS: For specific binding, NCp7(31-55) with lower charge states have folding and undenatured structures. The binding states of lower charge states can better reflect more native binding states. For nonspecific binding, when multiple metal ions adduct to proteins, the proteins have more net positive charges, which tend to generate higher charge ions during electrospray.


Asunto(s)
Meliteno/química , Quinasa de Cadena Ligera de Miosina/química , Proteínas de la Nucleocápside/química , Zinc/química , VIH-1/química , Iones/química , Nanotecnología , Unión Proteica , Espectrometría de Masa por Ionización de Electrospray/métodos , Electricidad Estática
7.
Nat Med ; 25(4): 690-700, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30936544

RESUMEN

Epithelial barrier loss is a driver of intestinal and systemic diseases. Myosin light chain kinase (MLCK) is a key effector of barrier dysfunction and a potential therapeutic target, but enzymatic inhibition has unacceptable toxicity. Here, we show that a unique domain within the MLCK splice variant MLCK1 directs perijunctional actomyosin ring (PAMR) recruitment. Using the domain structure and multiple screens, we identify a domain-binding small molecule (divertin) that blocks MLCK1 recruitment without inhibiting enzymatic function. Divertin blocks acute, tumor necrosis factor (TNF)-induced MLCK1 recruitment as well as downstream myosin light chain (MLC) phosphorylation, barrier loss, and diarrhea in vitro and in vivo. Divertin corrects barrier dysfunction and prevents disease development and progression in experimental inflammatory bowel disease. Beyond applications of divertin in gastrointestinal disease, this general approach to enzymatic inhibition by preventing access to specific subcellular sites provides a new paradigm for safely and precisely targeting individual properties of enzymes with multiple functions.


Asunto(s)
Homeostasis , Mucosa Intestinal/metabolismo , Espacio Intracelular/enzimología , Quinasa de Cadena Ligera de Miosina/metabolismo , Actomiosina/metabolismo , Animales , Células CACO-2 , Enfermedad Crónica , Homeostasis/efectos de los fármacos , Humanos , Inflamación/patología , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/efectos de los fármacos , Yeyuno/efectos de los fármacos , Yeyuno/metabolismo , Yeyuno/patología , Ratones , Cadenas Ligeras de Miosina/metabolismo , Quinasa de Cadena Ligera de Miosina/química , Fosforilación/efectos de los fármacos , Dominios Proteicos , Bibliotecas de Moléculas Pequeñas/farmacología , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo , Factor de Necrosis Tumoral alfa/farmacología
8.
FEBS Lett ; 592(16): 2811-2821, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30066333

RESUMEN

Excitation-contraction coupling in smooth muscle is mediated by the Ca2+ - and calmodulin-dependent regulation of myosin light chain kinase. The precise mechanism of this regulation remains controversial, and several mathematical models have been proposed for the interaction of the three species. These models have previously been analyzed at steady state primarily by numerical simulation of differential equations, for which parameter values must be estimated from data. Here, we use the linear framework for timescale separation to demonstrate that models of this general kind can be solved analytically for an equilibrium steady state, without having to determine parameter values. This analysis leads to parameter-independent methods for discriminating between the models, for which we propose experiments that could be performed with existing methods.


Asunto(s)
Calcio/metabolismo , Calmodulina/metabolismo , Contracción Muscular , Quinasa de Cadena Ligera de Miosina/metabolismo , Animales , Humanos , Modelos Moleculares , Modelos Teóricos , Músculo Liso/fisiología , Quinasa de Cadena Ligera de Miosina/química
9.
Biochemistry ; 57(26): 3702-3712, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29787228

RESUMEN

To investigate the cyanylated cysteine vibrational probe group's ability to report on binding-induced changes along a protein-protein interface, the probe group was incorporated at several sites in a peptide of the calmodulin (CaM)-binding domain of skeletal muscle myosin light chain kinase. Isothermal titration calorimetry was used to determine the binding thermodynamics between calmodulin and each peptide. For all probe positions, the binding affinity was nearly identical to that of the unlabeled peptide. The CN stretching infrared band was collected for each peptide free in solution and bound to calmodulin. Binding-induced shifts in the IR spectral frequencies were correlated with estimated solvent accessibility based on molecular dynamics simulations. This work generally suggests (1) that site-specific incorporation of this vibrational probe group does not cause major perturbations to its local structural environment and (2) that this small probe group might be used quite broadly to map dynamic protein-binding interfaces. However, site-specific perturbations due to artificial labeling groups can be somewhat unpredictable and should be evaluated on a site-by-site basis through complementary measurements. A fully quantitative, simulation-based interpretation of the rich probe IR spectra is still needed but appears to be possible given recent advances in simulation techniques.


Asunto(s)
Calmodulina/metabolismo , Cisteína/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , Péptidos/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Calmodulina/química , Cisteína/química , Drosophila melanogaster , Modelos Moleculares , Quinasa de Cadena Ligera de Miosina/química , Nitrilos/análisis , Nitrilos/metabolismo , Péptidos/química , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapas de Interacción de Proteínas , Conejos , Espectrofotometría Infrarroja/métodos , Termodinámica
10.
J Pept Sci ; 22(11-12): 673-681, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27699916

RESUMEN

Myosin light chain kinase (MLCK) is a key regulator of various forms of cell motility including smooth muscle contraction, cell migration, cytokinesis, receptor capping, secretion, etc. Inhibition of MLCK activity in endothelial and epithelial monolayers using cell-permeant peptide Arg-Lys-Lys-Tyr-Lys-Tyr-Arg-Arg-Lys (PIK, Peptide Inhibitor of Kinase) allows protecting the barrier capacity, suggesting a potential medical use of PIK. However, low stability of L-PIK in a biological milieu prompts for development of more stable L-PIK analogues for use as experimental tools in basic and drug-oriented biomedical research. Previously, we designed PIK1, H-(Nα Me)Arg-Lys-Lys-Tyr-Lys-Tyr-Arg-Arg-Lys-NH2 , that was 2.5-fold more resistant to peptidases in human plasma in vitro than L-PIK and equal to it as MLCK inhibitor. In order to further enhance proteolytic stability of PIK inhibitor, we designed the set of six site-protected peptides based on L-PIK and PIK1 degradation patterns in human plasma as revealed by 1 H-NMR analysis. Implemented modifications increased half-live of the PIK-related peptides in plasma about 10-fold, and these compounds retained 25-100% of L-PIK inhibitory activity toward MLCK in vitro. Based on stability and functional activity ranking, PIK2, H-(Nα Me)Arg-Lys-Lys-Tyr-Lys-Tyr-Arg-D-Arg-Lys-NH2 , was identified as the most stable and effective L-PIK analogue. PIK2 was able to decrease myosin light chain phosphorylation in endothelial cells stimulated with thrombin, and this effect correlated with the inhibition by PIK2 of thrombin-induced endothelial hyperpermeability in vitro. Therefore, PIK2 could be used as novel alternative to other cell-permeant inhibitors of MLCK in cell culture-based and in vivo studies where MLCK catalytic activity inhibition is required. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.


Asunto(s)
Proteínas Aviares/antagonistas & inhibidores , Péptidos de Penetración Celular/síntesis química , Células Endoteliales/efectos de los fármacos , Quinasa de Cadena Ligera de Miosina/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/síntesis química , Secuencia de Aminoácidos , Animales , Proteínas Aviares/química , Proteínas Aviares/aislamiento & purificación , Química Encefálica , Bovinos , Línea Celular , Péptidos de Penetración Celular/sangre , Péptidos de Penetración Celular/farmacología , Células Endoteliales/citología , Células Endoteliales/enzimología , Molleja de las Aves/química , Semivida , Humanos , Quinasa de Cadena Ligera de Miosina/química , Quinasa de Cadena Ligera de Miosina/aislamiento & purificación , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/sangre , Inhibidores de Proteínas Quinasas/farmacología , Estabilidad Proteica , Proteolisis , Técnicas de Síntesis en Fase Sólida/métodos , Trombina/antagonistas & inhibidores , Trombina/farmacología , Pavos
11.
Cell Biochem Funct ; 34(7): 469-474, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27528075

RESUMEN

Myosin light chain kinase (MLCK) phosphorylates S19 of the myosin regulatory light chain (RLC), which is required to activate myosin's ATPase activity and contraction. Smooth muscles are known to display plasticity in response to factors such as inflammation, developmental stage, or stress, which lead to differential expression of nonmuscle and smooth muscle isoforms. Here, we compare steady-state kinetics parameters for phosphorylation of different MLCK substrates: (1) nonmuscle RLC, (2) smooth muscle RLC, and heavy meromyosin subfragments of (3) nonmuscle myosin IIB, and (4) smooth muscle myosin II. We show that MLCK has a ~2-fold higher kcat for both smooth muscle myosin II substrates compared with nonmuscle myosin IIB substrates, whereas Km values were very similar. Myosin light chain kinase has a 1.6-fold and 1.5-fold higher specificity (kcat /Km ) for smooth versus nonmuscle-free RLC and heavy meromyosin, respectively, suggesting that differences in specificity are dictated by RLC sequences. Of the 10 non-identical RLC residues, we ruled out 7 as possible underlying causes of different MLCK kinetics. The remaining 3 residues were found to be surface exposed in the N-terminal half of the RLC, consistent with their importance in substrate recognition. These data are consistent with prior deletion/chimera studies and significantly add to understanding of MLCK myosin interactions. SIGNIFICANCE OF THE STUDY: Phosphorylation of nonmuscle and smooth muscle myosin by myosin light chain kinase (MLCK) is required for activation of myosin's ATPase activity. In smooth muscles, nonmuscle myosin coexists with smooth muscle myosin, but the two myosins have very different chemo-mechanical properties relating to their ability to maintain force. Differences in specificity of MLCK for different myosin isoforms had not been previously investigated. We show that the MLCK prefers smooth muscle myosin by a significant factor. These data suggest that nonmuscle myosin is phosphorylated more slowly than smooth muscle myosin during a contraction cycle.


Asunto(s)
Quinasa de Cadena Ligera de Miosina/metabolismo , Miosina Tipo IIB no Muscular/metabolismo , Miosinas del Músculo Liso/metabolismo , Secuencia de Aminoácidos , Animales , Pollos , Cinética , Modelos Moleculares , Subfragmentos de Miosina/química , Subfragmentos de Miosina/metabolismo , Quinasa de Cadena Ligera de Miosina/química , Miosina Tipo IIB no Muscular/química , Fosforilación , Miosinas del Músculo Liso/química , Especificidad por Sustrato
12.
Biochemistry (Mosc) ; 81(13): 1676-1697, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28260490

RESUMEN

This review discusses and summarizes the results of molecular and cellular investigations of myosin light chain kinase (MLCK, MYLK1), the key regulator of cell motility. The structure and regulation of a complex mylk1 gene and the domain organization of its products is presented. The interactions of the mylk1 gene protein products with other proteins and posttranslational modifications of the mylk1 gene protein products are reviewed, which altogether might determine the role and place of MLCK in physiological and pathological reactions of cells and entire organisms. Translational potential of MLCK as a drug target is evaluated.


Asunto(s)
Proteínas de Unión al Calcio/fisiología , Quinasa de Cadena Ligera de Miosina/fisiología , Animales , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/genética , Regulación de la Expresión Génica , Humanos , Quinasa de Cadena Ligera de Miosina/química , Quinasa de Cadena Ligera de Miosina/genética , Dominios Proteicos , Procesamiento Proteico-Postraduccional
13.
Biochemistry (Mosc) ; 80(10): 1288-97, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26567572

RESUMEN

High molecular weight myosin light chain kinase (MLCK210) is a multifunctional protein involved in myosin II activation and integration of cytoskeletal components in cells. MLCK210 possesses actin-binding regions both in the central part of the molecule and in its N-terminal tail domain. In HeLa cells, mitotic protein kinase Aurora B was suggested to phosphorylate MLCK210 N-terminal tail at serine residues (Dulyaninova, N. G., and Bresnick, A. R. (2004) Exp. Cell Res., 299, 303-314), but the functional significance of the phosphorylation was not established. We report here that in vitro, the N-terminal actin-binding domain of MLCK210 is located within residues 27-157 (N27-157, avian MLCK210 sequence) and is phosphorylated by cAMP-dependent protein kinase (PKA) and Aurora B at serine residues 140/149 leading to a decrease in N27-157 binding to actin. The same residues are phosphorylated in a PKA-dependent manner in transfected HeLa cells. Further, in transfected cells, phosphomimetic mutants of N27-157 showed reduced association with the detergent-stable cytoskeleton, whereas in vitro, the single S149D mutation reduced N27-157 association with F-actin to a similar extent as that achieved by N27-157 phosphorylation. Altogether, our results indicate that phosphorylation of MLCK210 at distinct serine residues, mainly at S149, attenuates the interaction of MLCK210 N-terminus with the actin cytoskeleton and might serve to regulate MLCK210 microfilament cross-linking activity in cells.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Quinasa de Cadena Ligera de Miosina/química , Quinasa de Cadena Ligera de Miosina/metabolismo , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Células HeLa , Humanos , Peso Molecular , Mutación , Quinasa de Cadena Ligera de Miosina/genética , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Conejos
14.
PLoS One ; 10(10): e0141130, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26512720

RESUMEN

BACKGROUND & AIMS: Cardiac myosin light chain kinase (cMLCK) plays an obligatory role in maintaining the phosphorylation levels of regulatory myosin light chain (MLC2), which is thought to be crucial for regulation of cardiac function. To test this hypothesis, the role played by ventricular MLC2 (MLC2v) phosphorylation was investigated in the phenylephrine-induced increase in twitch tension using the naturally-occurring mouse strain, C57BL/6N, in which cMLCK is down regulated. METHODS AND RESULTS: By Western blot and nanoLC-MS/MS analysis, cMLCKs with molecular mass of 61-kDa (cMLCK-2) and/or 86-kDa were identified in mice heart. Among various mouse strains, C57BL/6N expressed cMLCK-2 alone and the closest relative strain C57BL/6J expressed both cMLCKs. The levels of MLC2v phosphorylation was significantly lower in C57BL/6N than in C57BL/6J. The papillary muscle twitch tension induced by electrical field stimulation was smaller in C57BL/6N than C57BL/6J. Phenylephrine had no effect on MLC2v phosphorylation in either strains but increased the twitch tension more potently in C57BL/6J than in C57BL/6N. Calyculin A increased papillary muscle MLC2v phosphorylation to a similar extent in both strains but increased the phenylephrine-induced inotropic response only in C57BL/6N. There was a significant positive correlation between the phenylephrine-induced inotropic response and the levels of MLC2v phosphorylation within ranges of 15-30%. CONCLUSIONS: We identified a new isoform of cMLCK with a molecular mass of 61kDa(cMLCK-2) in mouse heart. In the C57BL/6N strain, only cMLCK-2 was expressed and the basal MLC2v phosphorylation levels and the phenylephrine-induced inotropic response were both smaller. We suggest that a lower phenylephrine-induced inotropic response may be caused by the lower basal MLC2v phosphorylation levels in this strain.


Asunto(s)
Miosinas Cardíacas/metabolismo , Contracción Miocárdica , Quinasa de Cadena Ligera de Miosina/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Expresión Génica , Orden Génico , Isoenzimas , Masculino , Ratones , Datos de Secuencia Molecular , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Quinasa de Cadena Ligera de Miosina/química , Quinasa de Cadena Ligera de Miosina/genética , Fosforilación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Alineación de Secuencia , Especificidad de la Especie , Función Ventricular
15.
Sci Rep ; 5: 13736, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26336830

RESUMEN

While is widely acknowledged that nonmuscle myosin II (NMMII) enables stress fibers (SFs) to generate traction forces against the extracellular matrix, little is known about how specific NMMII isoforms and functional domains contribute to SF mechanics. Here we combine biophotonic and genetic approaches to address these open questions. First, we suppress the NMMII isoforms MIIA and MIIB and apply femtosecond laser nanosurgery to ablate and investigate the viscoelastic retraction of individual SFs. SF retraction dynamics associated with MIIA and MIIB suppression qualitatively phenocopy our earlier measurements in the setting of Rho kinase (ROCK) and myosin light chain kinase (MLCK) inhibition, respectively. Furthermore, fluorescence imaging and photobleaching recovery reveal that MIIA and MIIB are enriched in and more stably localize to ROCK- and MLCK-controlled central and peripheral SFs, respectively. Additional domain-mapping studies surprisingly reveal that deletion of the head domain speeds SF retraction, which we ascribe to reduced drag from actomyosin crosslinking and frictional losses. We propose a model in which ROCK/MIIA and MLCK/MIIB functionally regulate common pools of SFs, with MIIA crosslinking and motor functions jointly contributing to SF retraction dynamics and cellular traction forces.


Asunto(s)
Miosina Tipo II/química , Miosina Tipo II/fisiología , Quinasa de Cadena Ligera de Miosina/fisiología , Fibras de Estrés/química , Fibras de Estrés/fisiología , Quinasas Asociadas a rho/fisiología , Secuencia de Aminoácidos , Módulo de Elasticidad/fisiología , Humanos , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/fisiología , Datos de Secuencia Molecular , Músculo Esquelético/química , Músculo Esquelético/fisiología , Quinasa de Cadena Ligera de Miosina/química , Isoformas de Proteínas/química , Isoformas de Proteínas/fisiología , Estructura Terciaria de Proteína , Estrés Mecánico , Relación Estructura-Actividad , Viscosidad , Quinasas Asociadas a rho/química
16.
PLoS One ; 10(9): e0138127, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26382605

RESUMEN

Genetically encoded calcium indicators (GECIs) permit imaging intracellular calcium transients. Among GECIs, the GFP-based GCaMPs are the most widely used because of their high sensitivity and rapid response to changes in intracellular calcium concentrations. Here we report that the fluorescence of GCaMPs--including GCaMP3, GCaMP5 and GCaMP6--can be converted from green to red following exposure to blue-green light (450-500 nm). This photoconversion occurs in both insect and mammalian cells and is enhanced in a low oxygen environment. The red fluorescent GCaMPs retained calcium responsiveness, albeit with reduced sensitivity. We identified several amino acid residues in GCaMP important for photoconversion and generated a GCaMP variant with increased photoconversion efficiency in cell culture. This light-induced spectral shift allows the ready labeling of specific, targeted sets of GCaMP-expressing cells for functional imaging in the red channel. Together, these findings indicate the potential for greater utility of existing GCaMP reagents, including transgenic animals.


Asunto(s)
Calmodulina/química , Proteínas Fluorescentes Verdes/química , Quinasa de Cadena Ligera de Miosina/química , Procesos Fotoquímicos , Proteínas Recombinantes de Fusión/química , Animales , Animales Modificados Genéticamente , Calcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Color , Drosophila melanogaster , Fluorescencia , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Quinasa de Cadena Ligera de Miosina/genética , Quinasa de Cadena Ligera de Miosina/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
17.
PLoS One ; 10(8): e0134876, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26258553

RESUMEN

Telokin phosphorylation by cyclic GMP-dependent protein kinase facilitates smooth muscle relaxation. In this study we examined the relaxation of gastric fundus smooth muscles from basal tone, or pre-contracted with KCl or carbachol (CCh), and the phosphorylation of telokin S13, myosin light chain (MLC) S19, MYPT1 T853, T696, and CPI-17 T38 in response to 8-Bromo-cGMP, the NO donor sodium nitroprusside (SNP), or nitrergic neurotransmission. We compared MLC phosphorylation and the contraction and relaxation responses of gastric fundus smooth muscles from telokin-/- mice and their wild-type littermates to KCl or CCh, and 8-Bromo-cGMP, SNP, or nitrergic neurotransmission, respectively. We compared the relaxation responses and telokin phosphorylation of gastric fundus smooth muscles from wild-type mice and W/WV mice which lack ICC-IM, to 8-Bromo-cGMP, SNP, or nitrergic neurotransmission. We found that telokin S13 is basally phosphorylated and that 8-Bromo-cGMP and SNP increased basal telokin phosphorylation. In muscles pre-contracted with KCl or CCh, 8-Bromo-cGMP and SNP had no effect on CPI-17 or MYPT1 phosphorylation, but increased telokin phosphorylation and reduced MLC phosphorylation. In telokin-/- gastric fundus smooth muscles, basal tone and constitutive MLC S19 phosphorylation were increased. Pre-contracted telokin-/- gastric fundus smooth muscles have increased contractile responses to KCl, CCh, or cholinergic neurotransmission and reduced relaxation to 8-Bromo-cGMP, SNP, and nitrergic neurotransmission. However, basal telokin phosphorylation was not increased when muscles were stimulated with lower concentrations of SNP or when the muscles were stimulated by nitrergic neurotransmission. SNP, but not nitrergic neurotransmission, increased telokin Ser13 phosphorylation in both wild-type and W/WV gastric fundus smooth muscles. Our findings indicate that telokin may play a role in attenuating constitutive MLC phosphorylation and provide an additional mechanism to augment gastric fundus mechanical responses to inhibitory neurotransmission.


Asunto(s)
Fundus Gástrico/fisiología , Músculo Liso/fisiología , Quinasa de Cadena Ligera de Miosina/química , Fragmentos de Péptidos/química , Animales , Carbacol/química , GMP Cíclico/análogos & derivados , GMP Cíclico/química , Proteínas Quinasas Dependientes de GMP Cíclico/química , Fundus Gástrico/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Contracción Muscular/efectos de los fármacos , Relajación Muscular/efectos de los fármacos , Tono Muscular/efectos de los fármacos , Cadenas Ligeras de Miosina/química , Neuronas/fisiología , Óxido Nítrico/química , Donantes de Óxido Nítrico/química , Nitroprusiato/química , Fosforilación , Cloruro de Potasio/química
18.
Lab Invest ; 95(10): 1145-56, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26146960

RESUMEN

Hepatocellular carcinoma (HCC) carries a poor prognosis with no effective treatment available other than liver transplantation for selected patients. Vascular invasion of HCC is one of the most important negative predictor of survival. As the regulation of invasion of HCC cells is not well understood, our aim was to study the mechanisms by which galectin 3, a ß-galactosidase-binding lectin mediates HCC cell migration. HCC was induced by N-diethylnitrosamine in wild-type and galectin 3(-/-) mice, and tumor formation, histology, and tumor cell invasion were assessed. The galectin 3(-/-) mice developed significantly smaller tumor burden with a less invasive phenotype than the wild-type animals. Galectin 3 was upregulated in the wild-type HCC tumor tissue, but not in the surrounding parenchyma. Galectin 3 expression in HCC was induced by NF-κB transactivation as determined by chromatin immunoprecipitation assays. In vitro studies assessed the pro-migratory effects of galectin 3. The migration of hepatoma cells was significantly decreased after transfection by the galectin 3 siRNA and also after using the Rho kinase inhibitor Y-27632. The reorganization of the actin cytoskeleton, RhoA GTPase activity and the phosphorylation of MLC2 (myosin light chain 2) were decreased in the galectin 3 siRNA-transfected cells. In addition, in vitro and in vivo evidence showed that galectin 3 deficiency reduced hepatoma cell proliferation and increased their apoptosis rate. In conclusion, galectin 3 is an important lectin that is induced in HCC cells, and promotes hepatoma cell motility and invasion by an autocrine pathway. Targeting galectin 3 therefore could be an important novel treatment strategy to halt disease progression.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Galectina 3/metabolismo , Neoplasias Hepáticas/metabolismo , Hígado/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/patología , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Miosinas Cardíacas/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Galectina 3/antagonistas & inhibidores , Galectina 3/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Silenciador del Gen , Hígado/efectos de los fármacos , Hígado/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Cadenas Ligeras de Miosina/metabolismo , Quinasa de Cadena Ligera de Miosina/antagonistas & inhibidores , Quinasa de Cadena Ligera de Miosina/química , Invasividad Neoplásica , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas de Neoplasias/genética , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/agonistas , Proteína de Unión al GTP rhoA/antagonistas & inhibidores , Proteína de Unión al GTP rhoA/genética
19.
J Diabetes Res ; 2015: 484721, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26199947

RESUMEN

Currently there has been no effective treatment of diabetic encephalopathy. Radix Polygoni Multiflori, a famous traditional Chinese medicine, is widely used in antiaging treatment, especially in prevention and treatment of Alzheimer's diseases. In this study we tried to explore the effect of Radix Polygoni Multiflori on cognitive function among diabetic rats with demonstrated cognitive impairment. SD rats were divided into group A (control group), group B (diabetes), group C (treated with Radix Polygoni Multiflori at the dose of 2 g/kg/d), and group D (treated with same drug at the dose of 1 g/kg/d). The results showed that 8 weeks of Radix Polygoni Multiflori treatment could improve the cognitive dysfunction of diabetic rats (P < 0.01), recover the ultrastructure of hippocampal neurons, and increase the number of synapses in a dose-dependent manner. Further experiment also suggested that the neuroprotective effect of Radix Polygoni Multiflori was partly achieved by downregulating MLCK expression in hippocampus via ERK signaling.


Asunto(s)
Encefalopatías Metabólicas/prevención & control , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Neuropatías Diabéticas/prevención & control , Medicamentos Herbarios Chinos/uso terapéutico , Hipotálamo/efectos de los fármacos , Quinasa de Cadena Ligera de Miosina/antagonistas & inhibidores , Fármacos Neuroprotectores/uso terapéutico , Animales , Encefalopatías Metabólicas/complicaciones , Cognición/efectos de los fármacos , Trastornos del Conocimiento/complicaciones , Trastornos del Conocimiento/prevención & control , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patología , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Medicamentos Herbarios Chinos/administración & dosificación , Hipotálamo/metabolismo , Hipotálamo/ultraestructura , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Microscopía Electrónica de Transmisión , Quinasa de Cadena Ligera de Miosina/química , Quinasa de Cadena Ligera de Miosina/metabolismo , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/ultraestructura , Fármacos Neuroprotectores/administración & dosificación , Nootrópicos/uso terapéutico , Ratas Sprague-Dawley
20.
J Mol Cell Cardiol ; 85: 199-206, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26057075

RESUMEN

The effect of phosphorylation on the conformation of the regulatory light chain (cRLC) region of myosin in ventricular trabeculae from rat heart was determined by polarized fluorescence from thiophosphorylated cRLCs labelled with bifunctional sulforhodamine (BSR). Less than 5% of cRLCs were endogenously phosphorylated in this preparation, and similarly low values of basal cRLC phosphorylation were measured in fresh intact ventricle from both rat and mouse hearts. BSR-labelled cRLCs were thiophosphorylated by a recombinant fragment of human cardiac myosin light chain kinase, which was shown to phosphorylate cRLCs specifically at serine 15 in a calcium- and calmodulin-dependent manner, both in vitro and in situ. The BSR-cRLCs were exchanged into demembranated trabeculae, and polarized fluorescence intensities measured for each BSR-cRLC in relaxation, active isometric contraction and rigor were combined with RLC crystal structures to calculate the orientation distribution of the C-lobe of the cRLC in each state. Only two of the four C-lobe orientation populations seen during relaxation and active isometric contraction in the unphosphorylated state were present after cRLC phosphorylation. Thus cRLC phosphorylation alters the equilibrium between defined conformations of the cRLC regions of the myosin heads, rather than simply disordering the heads as assumed previously. cRLC phosphorylation also changes the orientation of the cRLC C-lobe in rigor conditions, showing that the orientation of this part of the myosin head is determined by its interaction with the thick filament even when the head is strongly bound to actin. These results suggest that cRLC phosphorylation controls the contractility of the heart by modulating the interaction of the cRLC region of the myosin heads with the thick filament backbone.


Asunto(s)
Cadenas Ligeras de Miosina/química , Procesamiento Proteico-Postraduccional , Animales , Humanos , Miocardio/química , Miocardio/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Quinasa de Cadena Ligera de Miosina/química , Quinasa de Cadena Ligera de Miosina/fisiología , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosforilación , Conformación Proteica , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA