Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 460
Filtrar
1.
Biochemistry (Mosc) ; 89(6): 1014-1023, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38981697

RESUMEN

Damages of various origin accumulated in the genomic DNA can lead to the breach of genome stability, and are considered to be one of the main factors involved in cellular senescence. DNA repair systems in mammalian cells ensure effective damage removal and repair of the genome structure, therefore, activity of these systems is expected to be correlated with high maximum lifespan observed in the long-lived mammals. This review discusses current results of the studies focused on determination of the DNA repair system activity and investigation of the properties of its key regulatory proteins in the cells of long-lived rodents and bats. Based on the works discussed in the review, it could be concluded that the long-lived rodents and bats in general demonstrate high efficiency in functioning and regulation of DNA repair systems. Nevertheless, a number of questions around the study of DNA repair in the cells of long-lived rodents and bats remain poorly understood, answers to which could open up new avenues for further research.


Asunto(s)
Quirópteros , Reparación del ADN , Roedores , Animales , Quirópteros/genética , Quirópteros/metabolismo , Roedores/genética , Roedores/metabolismo , Daño del ADN , Longevidad
2.
Elife ; 132024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037770

RESUMEN

Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat (Pteropus alecto) and human. Bat cells showed higher expression levels of Complex I components of electron transport chain (ETC), but, remarkably, a lower rate of oxygen consumption. Computational modeling interpreted these results as indicating that Complex II activity may be low or reversed, similar to an ischemic state. An ischemic-like state of bats was also supported by decreased levels of central metabolites and increased ratios of succinate to fumarate in bat cells. Ischemic states tend to produce reactive oxygen species (ROS), which would be incompatible with the longevity of bats. However, bat cells had higher antioxidant reservoirs (higher total glutathione and higher ratio of NADPH to NADP) despite higher mitochondrial ROS levels. In addition, bat cells were more resistant to glucose deprivation and had increased resistance to ferroptosis, one of the characteristics of which is oxidative stress. Thus, our studies revealed distinct differences in the ETC regulation and metabolic stress responses between human and bat cells.


Asunto(s)
Quirópteros , Fibroblastos , Quirópteros/metabolismo , Humanos , Fibroblastos/metabolismo , Animales , Metabolómica , Especies Reactivas de Oxígeno/metabolismo , Proteómica/métodos , Línea Celular , Consumo de Oxígeno , Multiómica
3.
J Zoo Wildl Med ; 55(1): 235-247, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38453508

RESUMEN

This case series investigates a cluster of deaths in a captive colony of Leschenault's rousettes (Rousettus leschenaultii). Six of seven bats that died between March and September 2021 were diagnosed postmortem with both iron overload (IO) and neoplasia, neither of which have previously been reported in this species. Iron status was assessed via hepatic histopathological grading, hepatic iron concentration, and, in two cases, serum iron concentration. On histopathological grading, all cases had hemochromatosis except one, which had hemosiderosis. Hepatic iron concentrations did not correlate with histopathological grading. Neoplasms in these six bats included hepatocellular carcinoma (HCC; 4), bronchioloalveolar adenocarcinoma (1), pancreatic adenocarcinoma (1), and sarcoma of the spleen and stomach (1). One bat had two neoplasms (HCC and sarcoma of the spleen and stomach). One additional case of HCC in 2018 was identified on retrospective case review. Etiology was investigated to the extent possible in a clinical setting. Nutritional analysis and drinking water testing found oral iron intake within acceptable bounds; however, dietary vitamin C was potentially excessive and may have contributed to IO. Panhepadnavirus PCR testing of liver tissue was negative for all bats. A species-associated susceptibility to IO, as seen in Egyptian fruit bats (Rousettus aegyptiacus), is possible. The high incidence of HCC is suspected to be related to IO; other differentials include viral infection. Causes or contributing factors were not definitively identified for the other neoplasms seen but could include age, inherited risk (given a high level of inbreeding), or an oncogenic virus. Pending further research in this species, it is recommended that keepers of Leschenault's rousettes offer conservative amounts of vitamin C and iron (as for Egyptian fruit bats), submit for postmortem examination any euthanized or found dead, and share records of similar cases.


Asunto(s)
Adenocarcinoma , Carcinoma Hepatocelular , Quirópteros , Hemocromatosis , Neoplasias Hepáticas , Neoplasias Pancreáticas , Sarcoma , Animales , Adenocarcinoma/veterinaria , Ácido Ascórbico , Carcinoma Hepatocelular/veterinaria , Quirópteros/metabolismo , Hemocromatosis/complicaciones , Hemocromatosis/veterinaria , Neoplasias Hepáticas/veterinaria , Neoplasias Pancreáticas/veterinaria , Estudios Retrospectivos , Sarcoma/veterinaria
4.
Ecotoxicology ; 33(4-5): 457-469, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38097853

RESUMEN

Mercury (Hg) endangers human and wildlife health globally, primarily due to its release from artisanal small-scale gold mining (ASGM). During gold extraction, Hg is emitted into the environment and converted to highly toxic methylmercury by microorganisms. In Madre de Dios (MDD), Peru, ASGM dominates the economy and has transformed rainforests into expansive deforested areas punctuated by abandoned mining ponds. The aim of this study was to evaluate the use of bats as bioindicators for mercury pollution intensity in tropical terrestrial ecosystems impacted by ASGM. We collected 290 bat fur samples from three post-ASGM sites and one control site in Madre de Dios. Our results showed a wide Hg distribution in bats (0.001 to 117.71 mg/kg) strongly influenced by feeding habits. Insectivorous and piscivorous bats from ASGM sites presented elevated levels of Hg surpassing the mercury small mammal threshold for small mammals (10 mg/kg). We observed the highest reported fur mercury concentrations for insectivorous Neotropical bats reported to date (Rhynchonycteris naso, 117 mg/kg). Our findings further confirm that Hg emissions from ASGM are entering local food webs and exposing wildlife species at several trophic levels to higher levels of Hg than in areas not impacted by mining. We also found that three bat genera consistently showed increased Hg levels in ASGM sites relative to controls indicating potential usefulness as bioindicators of mercury loading in terrestrial ecosystems impacted by artisanal and small-scale gold mining.


Asunto(s)
Bioacumulación , Quirópteros , Ecosistema , Monitoreo del Ambiente , Oro , Mercurio , Minería , Animales , Quirópteros/metabolismo , Perú , Mercurio/análisis , Mercurio/metabolismo , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/metabolismo , Contaminantes Ambientales/análisis
5.
J Virol ; 97(10): e0020523, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37728614

RESUMEN

IMPORTANCE: A common hypothesis holds that bats (order Chiroptera) are outstanding reservoirs for zoonotic viruses because of a special antiviral interferon (IFN) system. However, functional studies about key components of the bat IFN system are rare. RIG-I is a cellular sensor for viral RNA signatures that activates the antiviral signaling chain to induce IFN. We cloned and functionally characterized RIG-I genes from two species of the suborders Yangochiroptera and Yinpterochiroptera. The bat RIG-Is were conserved in their sequence and domain organization, and similar to human RIG-I in (i) mediating virus- and IFN-activated gene expression, (ii) antiviral signaling, (iii) temperature dependence, and (iv) recognition of RNA ligands. Moreover, RIG-I of Rousettus aegyptiacus (suborder Yinpterochiroptera) and of humans were found to recognize SARS-CoV-2 infection. Thus, members of both bat suborders encode RIG-Is that are comparable to their human counterpart. The ability of bats to harbor zoonotic viruses therefore seems due to other features.


Asunto(s)
Quirópteros , Receptores de Ácido Retinoico , SARS-CoV-2 , Animales , Humanos , Quirópteros/metabolismo , COVID-19 , Receptores Inmunológicos/química , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , SARS-CoV-2/fisiología , Virus , Receptores de Ácido Retinoico/química , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo
6.
Ecotoxicology ; 32(7): 845-857, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37612563

RESUMEN

The St. Lawrence River in Eastern Ontario, Canada, has been a designated an area of concern due to past industrial contamination of sediment in some areas and transport of mercury from tributaries. Previous research using bats as sentinel species identified elevated concentrations of total mercury (THg) in fur of local bats and species-specific variation between little brown bats (Myotis lucifugus) and big brown bats (Eptesicus fuscus). Here, we investigated the mercury exposure pathways for these two species by testing the hypothesis that diet variation, particularly the reliance on aquatic over terrestrial insects, is a determinant of local bat mercury concentrations. We analyzed THg concentration and stable isotope ratios of δ15N and δ13C in fur of little and big brown bats, and in aquatic and terrestrial insects. Big brown bats, especially males, accumulated significantly higher THg concentrations in their fur compared to little brown bats. However, this difference was not related to diet because big brown bats consumed terrestrial insects, which were lower in mercury than aquatic insects, the primary prey for little brown bats. We also evaluated whether fur THg concentrations translate into molecular changes in tissues linked to (methyl)mercury toxicity by quantifying tissue changes in global DNA methylation and mitochondrial DNA abundance. No significant changes in DNA molecular markers were observed in relation to fur THg concentration, suggesting mercury exposure to local bats did not impact molecular level changes at the DNA level. Higher mercury in bats was not associated with local aquatic contamination or genotoxicity in this study area.


Asunto(s)
Quirópteros , Mercurio , Masculino , Animales , Quirópteros/metabolismo , Ontario , Mercurio/análisis , Ecosistema , Ríos
7.
Tissue Cell ; 83: 102131, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37315504

RESUMEN

Artibeus lituratus is one of the most well-known bat species in the Neotropics, probably due to its high abundance and the ability to inhabit urban areas. It plays an important ecological role in the ecosystem due to its ability to disperse seeds, which contributes to the regeneration of degraded areas. Actually, the species has been used as an important experimental model for ecotoxicological studies of the impact of pesticides on male reproduction. Despite that, the reproductive pattern of A. lituratus is still controversial due to inconsistent descriptions of the reproductive cycle. Thus, the aim of the present work was to evaluate the annual variations of the testicular parameters and sperm quality of A. lituratus and analyze their responses to annual variations in abiotic factors in the Cerrado area in Brazil. Testes of five specimens were collected each month for one year (12 sample groups) and submitted to histological, morphometric, and immunohistochemical analyses. Analyses of the sperm quality were also performed. Results demonstrate that A. lituratus presents a continuously active process of spermatogenesis throughout the year, with two significant peaks in spermatogenic production (September-October and March), which indicates a bimodal polyestric pattern of reproduction. These reproductive peaks seem to be related to an increase in proliferation and, consequently, in the number of spermatogonia. Conversely, seasonal variations in testicular parameters are correlated with annual fluctuations in rainfall and photoperiod but not with temperature. In general, the species presents smaller spermatogenic indexes with a similar sperm quantity and quality to other bat species.


Asunto(s)
Quirópteros , Testículo , Masculino , Animales , Quirópteros/metabolismo , Frutas , Ecosistema , Semillas , Reproducción/fisiología , Espermatozoides , Estaciones del Año
8.
Sci Signal ; 16(787): eadi8744, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37253091
9.
Artículo en Inglés | MEDLINE | ID: mdl-36634815

RESUMEN

Dynamic epigenetic changes during hibernation occur in some hibernating rodents, but these changes are poorly understood in hibernating bats. Populations of the greater horseshoe bat (Rhinolophus ferrumequinum) in north China hibernate and provide an opportunity to study how epigenetic markers and modifiers differ in the active and torpid states of a chiropteran. We used fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) and qRT-PCR techniques to determine changes in the global DNA methylation levels and mRNA expression levels of methylation-related proteins. These included DNA methyltransferase (DNMTs), methyl-CpG-binding proteins (MBPs, including MBDs, UHRFs, and zinc-finger protein family) in active and torpid R. ferrumequinum. In the torpid state, both the relative global methylation and the relative mRNA expression levels of some DNMTs and MBPs, including dnmt3b and zbtb4, increased significantly compared to the expression levels of these in the active state. These changes may involve methylation or assist in regulation of a particular subset of genes according to hibernation status. This indicates that epigenetic mechanisms may exist and facilitate the hibernation process of R. ferrumequinum.


Asunto(s)
Quirópteros , Epigénesis Genética , Hibernación , Animales , China , Quirópteros/genética , Quirópteros/metabolismo , Hibernación/genética , ARN Mensajero/genética
10.
J Exp Biol ; 226(2)2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36541225

RESUMEN

Mammalian sperm capacitation involves biochemical and physiological changes, such as an increase in intracellular calcium ion concentration ([Ca2+]i), hyperpolarization of the plasma membrane potential and sperm hyperactivation, among others. These changes provide sperm with the ability to fertilize. In the bat Corynorhinus mexicanus, there is an asynchrony between spermatogenesis and sperm storage in the male with the receptivity of the female. For instance, in C. mexicanus, spermatogenesis occurs before the reproductive season. During the reproductive period, sperm are stored in the epididymis for a few months and the testis undergoes a regression, indicating low or almost null sperm production. Therefore, it is unclear whether the elements necessary for sperm fertilization success undergo maturation or preparation during epididymis storage. Here, we characterized pH-sensitive motility hyperactivation and Ca2+ influx in sperm, regulated by alkalinization and progesterone. In addition, by electrophysiological recordings, we registered currents that were stimulated by alkalinization and inhibited by RU1968 (a CatSper-specific inhibitor), strongly suggesting that these currents were evoked via CatSper, a sperm Ca2+-specific channel indispensable for mammalian fertilization. We also found hyperpolarization of the membrane potential, such as in other mammalian species, which increased according to the month of capture, reaching the biggest hyperpolarization during the mating season. In conclusion, our results suggest that C. mexicanus sperm have functional CatSper and undergo a capacitation-like process such as in other mammals, particularly Ca2+ influx and membrane potential hyperpolarization.


Asunto(s)
Calcio , Quirópteros , Animales , Masculino , Femenino , Calcio/metabolismo , Quirópteros/metabolismo , Potenciales de la Membrana/fisiología , Semen , Espermatozoides/fisiología , Motilidad Espermática
11.
EMBO J ; 42(4): e111737, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36519268

RESUMEN

Bat-origin RshSTT182 and RshSTT200 coronaviruses (CoV) from Rhinolophus shameli in Southeast Asia (Cambodia) share 92.6% whole-genome identity with SARS-CoV-2 and show identical receptor-binding domains (RBDs). In this study, we determined the structure of the RshSTT182/200 receptor binding domain (RBD) in complex with human angiotensin-converting enzyme 2 (hACE2) and identified the key residues that influence receptor binding. The binding of the RshSTT182/200 RBD to ACE2 orthologs from 39 animal species, including 18 bat species, was used to evaluate its host range. The RshSTT182/200 RBD broadly recognized 21 of 39 ACE2 orthologs, although its binding affinities for the orthologs were weaker than those of the RBD of SARS-CoV-2. Furthermore, RshSTT182 pseudovirus could utilize human, fox, and Rhinolophus affinis ACE2 receptors for cell entry. Moreover, we found that SARS-CoV-2 induces cross-neutralizing antibodies against RshSTT182 pseudovirus. Taken together, these findings indicate that RshSTT182/200 can potentially infect susceptible animals, but requires further evolution to obtain strong interspecies transmission abilities like SARS-CoV-2.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Betacoronavirus , Quirópteros , Glicoproteína de la Espiga del Coronavirus , Animales , Humanos , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/metabolismo , Quirópteros/metabolismo , Quirópteros/virología , Especificidad del Huésped , Unión Proteica , Receptores Virales/química , Receptores Virales/metabolismo , SARS-CoV-2/metabolismo , Betacoronavirus/metabolismo , Betacoronavirus/patogenicidad , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo
12.
Nature ; 612(7941): 748-757, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36477529

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) and several bat coronaviruses use dipeptidyl peptidase-4 (DPP4) as an entry receptor1-4. However, the receptor for NeoCoV-the closest known MERS-CoV relative found in bats-remains unclear5. Here, using a pseudotype virus entry assay, we found that NeoCoV and its close relative, PDF-2180, can efficiently bind to and use specific bat angiotensin-converting enzyme 2 (ACE2) orthologues and, less favourably, human ACE2 as entry receptors through their receptor-binding domains (RBDs) on the spike (S) proteins. Cryo-electron microscopy analysis revealed an RBD-ACE2 binding interface involving protein-glycan interactions, distinct from those of other known ACE2-using coronaviruses. We identified residues 337-342 of human ACE2 as a molecular determinant restricting NeoCoV entry, whereas a NeoCoV S pseudotyped virus containing a T510F RBD mutation efficiently entered cells expressing human ACE2. Although polyclonal SARS-CoV-2 antibodies or MERS-CoV RBD-specific nanobodies did not cross-neutralize NeoCoV or PDF-2180, an ACE2-specific antibody and two broadly neutralizing betacoronavirus antibodies efficiently inhibited these two pseudotyped viruses. We describe MERS-CoV-related viruses that use ACE2 as an entry receptor, underscoring a promiscuity of receptor use and a potential zoonotic threat.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Quirópteros , Coronavirus del Síndrome Respiratorio de Oriente Medio , Receptores Virales , Internalización del Virus , Animales , Humanos , Enzima Convertidora de Angiotensina 2/metabolismo , Quirópteros/metabolismo , Quirópteros/virología , Microscopía por Crioelectrón , Coronavirus del Síndrome Respiratorio de Oriente Medio/clasificación , Coronavirus del Síndrome Respiratorio de Oriente Medio/aislamiento & purificación , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Unión Proteica , Receptores Virales/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Zoonosis Virales
13.
Ecotoxicol Environ Saf ; 243: 113971, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35981482

RESUMEN

Anticoagulant rodenticides have been widely used to eliminate wild rodents, which as invasive species on remote islands can disturb ecosystems. Since rodenticides can cause wildlife poisoning, it is necessary to evaluate the sensitivity of local mammals and birds to the poisons to ensure the rodenticides are used effectively. The Bonin Islands are an archipelago located 1000 km southeast of the Japanese mainland and are famous for the unique ecosystems. Here the first-generation anticoagulant rodenticide diphacinone has been used against introduced black rats (Rattus rattus). The only land mammal native to the archipelago is the Bonin fruit bat (Pteropus pselaphon), but little is known regarding its sensitivity to rodenticides. In this study, the Egyptian fruit bats (Rousettus aegyptiacus) was used as a model animal for in vivo pharmacokinetics and pharmacodynamics analysis and in vitro enzyme kinetics using their hepatic microsomal fractions. The structure of vitamin K epoxide reductase (VKORC1), the target protein of the rodenticide in the Bonin fruit bat, was predicted from its genome and its binding affinity to rodenticides was evaluated. The Egyptian fruit bats excreted diphacinone slowly and showed similar sensitivity to rats. In contrast, they excreted warfarin, another first-generation rodenticide, faster than rats and recovered from the toxic effect faster. An in silico binding study also indicated that the VKORC1 of fruit bats is relatively tolerant to warfarin, but binds strongly to diphacinone. These results suggest that even chemicals with the same mode of action display different sensitivities in different species: fruit bat species are relatively resistant to warfarin, but vulnerable to diphacinone.


Asunto(s)
Quirópteros , Rodenticidas , Animales , Anticoagulantes/toxicidad , Quirópteros/metabolismo , Ecosistema , Mamíferos/metabolismo , Fenindiona/análogos & derivados , Ratas , Rodenticidas/toxicidad , Toxicocinética , Vitamina K Epóxido Reductasas/genética , Vitamina K Epóxido Reductasas/metabolismo , Warfarina/toxicidad
14.
J Comp Neurol ; 530(15): 2762-2781, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35703441

RESUMEN

The structure of the mammalian auditory brainstem is evolutionarily highly plastic, and distinct nuclei arrange in a species-dependent manner. Such anatomical variability is present in the superior olivary complex (SOC) and the nuclei of the lateral lemniscus (LL). Due to the structure-function relationship in the auditory brainstem, the identification of individual nuclei supports the understanding of sound processing. Here, we comparatively describe the nucleus arrangement and the expression of functional markers in the auditory brainstem of the two bat species Phyllostomus discolor and Carollia perspicillata. Using immunofluorescent labeling, we describe the arrangement and identity of the SOC and LL nuclei based on the expression of synaptic markers (vesicular glutamate transporter 1 and glycine transporter 2), calcium-binding proteins, as well as the voltage-gated ion channel subunits Kv1.1 and HCN1. The distribution of excitatory and inhibitory synaptic labeling appears similar between both species and matches with that of other mammals. The detection of calcium-binding proteins indicates species-dependent differences and deviations from other mammals. Kv1.1 and HCN1 show largely the same expression pattern in both species, which diverges from other mammals, indicating functional adaptations in the cellular physiology of bat neurons.


Asunto(s)
Quirópteros , Colículos Inferiores , Complejo Olivar Superior , Animales , Vías Auditivas/fisiología , Tronco Encefálico/metabolismo , Proteínas de Unión al Calcio/metabolismo , Quirópteros/metabolismo , Colículos Inferiores/metabolismo , Núcleo Olivar/metabolismo
15.
Commun Biol ; 5(1): 409, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35505237

RESUMEN

RaTG13 is a close relative of SARS-CoV-2, the virus responsible for the COVID-19 pandemic, sharing 96% sequence similarity at the genome-wide level. The spike receptor binding domain (RBD) of RaTG13 contains a number of amino acid substitutions when compared to SARS-CoV-2, likely impacting affinity for the ACE2 receptor. Antigenic differences between the viruses are less well understood, especially whether RaTG13 spike can be efficiently neutralised by antibodies generated from infection with, or vaccination against, SARS-CoV-2. Using RaTG13 and SARS-CoV-2 pseudotypes we compared neutralisation using convalescent sera from previously infected patients or vaccinated healthcare workers. Surprisingly, our results revealed that RaTG13 was more efficiently neutralised than SARS-CoV-2. In addition, neutralisation assays using spike mutants harbouring single and combinatorial amino acid substitutions within the RBD demonstrated that both spike proteins can tolerate multiple changes without dramatically reducing neutralisation. Moreover, introducing the 484 K mutation into RaTG13 resulted in increased neutralisation, in contrast to the same mutation in SARS-CoV-2 (E484K). This is despite E484K having a well-documented role in immune evasion in variants of concern (VOC) such as B.1.351 (Beta). These results indicate that the future spill-over of RaTG13 and/or related sarbecoviruses could be mitigated using current SARS-CoV-2-based vaccination strategies.


Asunto(s)
COVID-19 , Quirópteros , Animales , COVID-19/terapia , Quirópteros/metabolismo , Humanos , Inmunización Pasiva , Glicoproteínas de Membrana/metabolismo , Pandemias , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Proteínas del Envoltorio Viral/genética , Sueroterapia para COVID-19
16.
Virology ; 569: 1-12, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35217403

RESUMEN

The SARS-CoV-2 (SARS-CoV-2) virus has caused a worldwide pandemic because of the virus's ability to transmit efficiently human-to-human. A key determinant of infection is the attachment of the viral spike protein to the host receptor angiotensin-converting enzyme 2 (ACE2). Because of the presumed zoonotic origin of SARS-CoV-2, there is no practical way to assess the susceptibility of every species to SARS-CoV-2 by direct challenge studies. In an effort to have a better predictive model of animal host susceptibility to SARS-CoV-2, we expressed the ACE2 and/or transmembrane serine protease 2 (TMPRSS2) genes from humans and other animal species in the avian fibroblast cell line, DF1, that is not permissive to infection. We demonstrated that expression of both human ACE2 and TMPRSS2 genes is necessary to support SARS-CoV-2 infection and replication in DF1 and a non-permissive sub-lineage of MDCK cells. Titers of SARS-CoV-2 in these cell lines were comparable to those observed in control Vero cells. To further test the model, we developed seven additional transgenic cell lines expressing the ACE2 and TMPRSS2 derived from Felis catus (cat), Equus caballus (horse), Sus domesticus (pig), Capra hircus (goat), Mesocricetus auratus (Golden hamster), Myotis lucifugus (Little Brown bat) and Hipposideros armiger (Great Roundleaf bat) in DF1 cells. Results demonstrate permissive replication of SARS-CoV-2 in cat, Golden hamster, and goat species, but not pig or horse, which correlated with the results of reported challenge studies. Cells expressing genes from either bat species tested demonstrated temporal replication of SARS-CoV-2 that peaked early and was not sustained. The development of this cell culture model allows for more efficient testing of the potential susceptibility of many different animal species for SARS-CoV-2 and emerging variant viruses.


Asunto(s)
COVID-19 , Quirópteros , Enzima Convertidora de Angiotensina 2/genética , Animales , Gatos , Quirópteros/metabolismo , Chlorocebus aethiops , Caballos , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Porcinos , Células Vero
17.
Viruses ; 14(2)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35215944

RESUMEN

The innate immunological response in mammals involves a diverse and complex network of many proteins. Over the last years, the tripartite motif-containing protein 5 (TRIM5) and 22 (TRIM22) have shown promise as restriction factors of a plethora of viruses that infect primates. Although there have been studies describing the evolution of these proteins in a wide range of mammals, no prior studies of the TRIM6/34/5/22 gene cluster have been performed in the Chiroptera order. Here, we provide a detailed analysis of the evolution of this gene cluster in several bat genomes. Examination of different yangochiroptera and yinpterochiroptera bat species revealed a dynamic history of gene expansion occurring in TRIM5 and TRIM22 genes. Multiple copies of TRIM5 were found in the genomes of several bats, demonstrating a very low degree of conservation in the synteny of this gene among species of the Chiroptera order. Our findings also reveal that TRIM22 is often found duplicated in yangochiroptera bat species, an evolutionary phenomenon not yet observed in any other lineages of mammals. In total, we identified 31 TRIM5 and 19 TRIM22 amino acids to be evolving under positive selection, with most of the residues being placed in the PRYSPRY domain, known to be responsible for binding to the viral capsid during restriction in the primate orthologous TRIM proteins. Altogether, our results help to shed light on the distinctive role of bats in nature as reservoirs of viruses, many of which have become threatening zoonotic diseases through virus spillover in the last decades.


Asunto(s)
Quirópteros/genética , Evolución Molecular , Duplicación de Gen , Proteínas de Motivos Tripartitos/genética , Secuencia de Aminoácidos , Animales , Quirópteros/clasificación , Quirópteros/metabolismo , Familia de Multigenes , Filogenia , Proteínas de Motivos Tripartitos/metabolismo
18.
Sci Rep ; 12(1): 971, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-35046462

RESUMEN

Disease results from interactions among the host, pathogen, and environment. Inoculation trials can quantify interactions among these players and explain aspects of disease ecology to inform management in variable and dynamic natural environments. White-nose Syndrome, a disease caused by the fungal pathogen, Pseudogymnoascus destructans (Pd), has caused severe population declines of several bat species in North America. We conducted the first experimental infection trial on the tri-colored bat, Perimyotis subflavus, to test the effect of temperature and humidity on disease severity. We also tested the effects of temperature and humidity on fungal growth and persistence on substrates. Unexpectedly, only 37% (35/95) of bats experimentally inoculated with Pd at the start of the experiment showed any infection response or disease symptoms after 83 days of captive hibernation. There was no evidence that temperature or humidity influenced infection response. Temperature had a strong effect on fungal growth on media plates, but the influence of humidity was more variable and uncertain. Designing laboratory studies to maximize research outcomes would be beneficial given the high costs of such efforts and potential for unexpected outcomes. Understanding the influence of microclimates on host-pathogen interactions remains an important consideration for managing wildlife diseases, particularly in variable environments.


Asunto(s)
Ascomicetos/fisiología , Quirópteros/microbiología , Interacciones Huésped-Parásitos , Microclima , Animales , Composición Corporal , Quirópteros/metabolismo , Femenino , Hibernación , Humedad , Hidrocortisona/metabolismo , Masculino , Temperatura
19.
J Comp Neurol ; 530(9): 1459-1469, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34957555

RESUMEN

Gonadotropin-inhibitory hormone (GnIH, also known RFRP-3 in mammals) is an important regulator of the hypothalamic-pituitary-gonadal axis and downstream reproductive physiology. Substantial species differences exist in the localization of cell bodies producing RFRP-3 and patterns of fiber immunoreactivity in the brain, raising the question of functional differences. Many temperate bat species exhibit unusual annual reproductive patterns. Male bats upregulate spermatogenesis in late spring which is asynchronous with periods of mating in the fall, while females have the physiological capacity to delay their reproductive investment over winter via sperm storage or delayed ovulation/fertilization. Neuroendocrine mechanisms regulating reproductive timing in male and female bats are not well-studied. We provide the first description of RFRP-precursor peptide of GnIH -expression and localization in the brain of any bat using a widespread temperate species (Eptesicus fuscus, big brown bat) as a model. RFRP mRNA expression was detected in the hypothalamus, testes, and ovaries of big brown bats. Cellular RFRP-immunoreactivity was observed within the periventricular nuclei, dorsomedial nucleus of the hypothalamus, arcuate nucleus (Arc), and median eminence (ME). As in other vertebrates, RFRP fiber immunoreactivity was widespread, with the greatest density observed in the hypothalamus, preoptic area, Arc, ME, midbrain, and thalamic nuclei. Putative interactions between RFRP-ir fibers and gonadotropin-releasing hormone (GnRH) cell bodies were observed in 16% of GnRH-immunoreactive cells, suggesting direct regulation of GnRH via RFRP signaling. This characterization of RFRP distribution contributes to a deeper understanding of bat neuroendocrinology, which serves as foundation for manipulative approaches examining changes in reproductive neuropeptide signaling in response to environmental and physiological challenges within, and among, bat species.


Asunto(s)
Quirópteros , Neuropéptidos , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Quirópteros/metabolismo , Femenino , Hormona Liberadora de Gonadotropina/análisis , Gonadotropinas/análisis , Gonadotropinas/metabolismo , Masculino , Neuropéptidos/metabolismo
20.
Dokl Biochem Biophys ; 507(1): 268-272, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36786984

RESUMEN

A comparative analysis of the content of free amino acids in the blood plasma of a representative of the bat fauna of the Urals, Myotis dasycneme (Boie, 1825), in seasonal periods of their annual life cycle is presented for the first time. The blood plasma of the pond bats contains a full spectrum of essential amino acids: threonine, valine, lysine, leucine, isoleucine, methionine, phenylalanine, arginine, histidine, and tryptophan. A significant accumulation of metabolically active glucoplastic alanine in the blood of M. dasycneme in the autumn (2.5 times) and winter (2.2 times) periods indicates its role as a low-temperature adaptogen.


Asunto(s)
Aminoácidos , Quirópteros , Animales , Aminoácidos/metabolismo , Quirópteros/metabolismo , Estaciones del Año , Alanina , Leucina , Arginina , Plasma/metabolismo , Tirosina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA